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Abstract. We identify a potential weakness in the standard security
model for dynamic group signatures which appears to have been over-
looked previously. More specifically, we highlight that even if a scheme
provably meets the security requirements of the model, a malicious group
member can potentially claim ownership of a group signature produced
by an honest group member by forging a proof of ownership. This prop-
erty leads to a number of vulnerabilities in scenarios in which dynamic
group signatures are likely to be used. We furthermore show that the cur-
rently most efficient dynamic group signature scheme does not provide
protection against this type of malicious behavior.
To address this, we introduce the notion of opening soundness for group
signatures which essentially requires that it is infeasible to produce a
proof of ownership of a valid group signature for any user except the
original signer. We then show a relatively simple modification of the
scheme by Groth (ASIACRYPT 2007, full version) which allows us to
prove opening soundness for the modified scheme without introducing
any additional assumptions.
We believe that opening soundness is an important and natural secu-
rity requirement for group signatures, and hope that future schemes will
adopt this type of security.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], allow a group mem-
ber to anonymously sign a message on behalf of the group. More specifically,
anyone will be able to verify that a signature originates from a group member,
but the signature does not reveal the identity of the signer, not even to other
members of the group. Group membership is controlled by an authority called
the issuer, who handles enrollment of users through an interactive join protocol.
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To prevent misuse of the signing capabilities obtained by group members, an-
other authority called the opener can revoke the anonymity of a signature and
identify the signer of the message.

Following the introduction of group signatures, a series of different security
requirements were proposed for this primitive, each of which aims at addressing
a specific security concern by augmenting or refining previous notions, e.g. un-
forgeability, exculpability, traceability, coalition resistance, framing resistance,
anonymity and unlinkability. These security notions were later consolidated in
the security model proposed by Bellare, Micciancio, and Warinschi [2] who in-
troduce two strong security requirements, full-anonymity and full-traceability,
which imply all of the previously proposed notions of security.

However, a drawback of the model by Bellare, Micciancio, and Warinschi [2]
is that only static group signature schemes are considered i.e. the set of group
members is fixed, and the private key material of each group member is gener-
ated in the setup phase of the scheme. Furthermore, the authority controlling
the group (which acts as both the issuer and opener) is considered to be fully
trusted. To address this, Bellare, Shi, and Zhang [3] extended the model of [2]
to capture dynamic group signature schemes in which a user can dynamically
join the group by engaging in a join protocol with the issuer. Furthermore, to
reduce trust in the opener, the model adopts the approach by Camenisch and
Michels [10], and requires that the opener produces a non-interactive and pub-
licly verifiable proof that a given signature was produced by a given signer. The
model introduces three formal security notions: anonymity, traceability, and non-
frameability. The former two notions are adaptations of the full-anonymity and
full-traceability notions to the dynamic group signature setting. The latter no-
tion, non-frameability, requires that even if a malicious opener and issuer collude,
they cannot frame an honest user by producing a signature and corresponding
opening which identify the honest user as the signer, when the honest user did
not produce the signature in question.

Limitations of Non-Frameability. While non-frameability is a strong secu-
rity notion, it only partly covers the security properties one would intuitively
expect to gain when the opener is required to produce a non-interactive and
publicly verifiable proof of an opening. More specifically, the non-frameability
notion only ensures that the opener cannot frame an uncorrupted user by con-
structing a proof that the user is the signer of a signature he did not produce.
However, no guarantee is given regarding an opening involving a corrupted user.
This leaves open the possibility that an opening showing that a malicious or
corrupted user is the signer of a signature produced by an honest user, can be
constructed. Furthermore, this might not require the opener to be corrupted or
malicious, in which case a malicious user might be able to independently forge
a proof showing that he is the signer of any signature of his choice.

Depending on the concrete scenario in which a dynamic group signature
scheme is used, the ability to forge an opening proof might become a real security
concern. We highlight several potential threats that this ability gives rise to:
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– Signer impersonation. The most obvious threat is signer impersonation.
This is a problem if a group signature scheme is used for an anonymous
auction as suggested in [1]. In this scenario, the bidders correspond to group
members, and when submitting a bid, a group member will attach a group
signature on his bid. The opener serves as the auctioneer, and will make the
opening of the signature on the highest bid public. This will enable anyone
to verify who the winner of the auction is. However, a malicious bidder may
forge a proof of ownership of the signature on the highest bid and may insist
that he/she is the winner.
A similar situation occurs if a dynamic group signature scheme is used to
implement an authentication scheme with identity escrow [23]. In this case, a
malicious group member can claim to be the user who authenticated himself
to a server (and provide a proof thereof) when this is not the case.

– Proxy confession. The ability to open a group signature is introduced to
keep the group members accountable of the messages signed on behalf of the
group. However, assume that a signature on some message causes a dispute,
but the real signer wants to avoid being blamed for this. Then the real signer
asks (or intimidates) another group member to forge a proof of ownership of
the signature and take the blame.

– Key exposure. Consider the case in which a group member’s private key
is exposed and falls into the hands of a malicious user. This will not only
allow the malicious user to construct future signatures on any message of
this choice, but will furthermore allow him to claim (and prove) that the
original user is the signer of any previously generated signature.

Our Contribution. We highlight the above described potential weakness of the
security guarantee provided by the formal model of Bellare, Shi, and Zhang [3].
Furthermore, we show that this is not only a property of the security model,
but that the most efficient dynamic group signature schemes enable a malicious
group member to forge a proof of ownership of a signature.

To address this, we propose a new security notion for dynamic group sig-
natures which we denote opening soundness. We consider two variants of this
notion, weak opening soundness and (ordinary) opening soundness. The former
is intended to address the above highlighted security threats in an intuitive and
straightforward manner, and will rule out the possibility that a malicious group
member can produce a proof of ownership of a signature generated by an honest
user. The latter considers a stronger adversary who has access to the private key
of the opener, and who is only required to produce two different openings of a
maliciously constructed signature. The notion of opening soundness implies the
notion of weak opening soundness.

As a positive result, we prove that the generic construction of a dynamic
group signature scheme by Bellare, Shi, and Zhang [3] achieves opening sound-
ness. We furthermore propose a modification of the scheme by Groth [19] which
allows us to prove opening soundness of the modified scheme. In contrast, we
show that the original scheme does not provide weak opening soundness. In ad-
dition, we briefly discuss opening soundness of the random oracle scheme [14, 4].
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A summary of our results regarding opening soundness of the above mentioned
schemes can be seen in Table 1.

Table 1. Summary of the results. The mark “?” means it is an open question whether
the scheme has the given property or not. The rightmost column denotes the section
in which the security of the corresponding scheme is discussed.

Opening Soundness Weak Opening Soundness

Our Variant of [19] Yes Yes (§5.1)
Bellare-Shi-Zhang [3] Yes Yes (§4)
Furukawa-Imai [14] No ? (§4)
Bichsel et al. [4] No ? (§4)
Groth (full version) [19] No No (§4)

Related Work. Since the first proposal of group signature by Chaum and van
Heyst, many efficient constructions have been proposed, most of which are rely-
ing on the random oracle model [1, 6, 9, 22, 14, 12, 4]. Many initial schemes were
based on the strong-RSA assumption. The first group signature schemes based
on assumptions of the discrete-logarithm type were achieved independently by
Camenisch and Lysyanskaya [9], and Boneh, Boyen, and Shacham [6]. The for-
mer scheme is based on the LRSW assumption, while the latter is based on
the q-strong Diffie-Hellman assumption. Kiayias, Tsiounis, and Yung proposed
the notion of traceable signature [21], which can be seen as an extension of
group signature with additional anonymity-revocation functionalities. One of
these functionalities is that of allowing a group member to claim the authorship
of a signature, however, its security requirement does not care about the possi-
bility in which a malicious member falsely claims the authorship of an honestly
generated signature by another.

Constructions which are provably secure without random oracles were only
recently achieved. Besides the generic construction relying on NIZK proofs for
general NP languages, Groth constructed the first concrete group signature
scheme with constant signature size by exploiting the properties of bilinear
groups [17], though signatures are extremely large. Boyen and Waters proposed
group signature schemes [7, 8] whose signature sizes are quite compact. In par-
ticular the latter scheme has signatures consisting only of six group elements
of a composite order group. The drawback of these schemes is that they only
achieve weaker security guarantees, that is, they only provide so called CPA-
anonymity in the security model of Bellare, Micciancio, and Warinschi [2]. Groth
proposed another group signature scheme [18, 19] which has constant signature
size (roughly one or two kilobytes) and which is provably secure in the dynamic
group signature model of Bellare, Shi, and Zhang [3] without relying on random
oracles.
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2 Preliminaries

2.1 Group Signatures

In this section, we briefly review the model and the security notions of group
signatures, presented by Bellare, Shi, and Zhang [3]. A group signature scheme
consists of the following seven algorithms:

GKg: This is a group key generation algorithm which, on input 1k, returns the
keys (gpk , ik , ok), where gpk is a group public key, ik is an issuing key, and
ok is an opening key.

UKg: This is a user key generation algorithm which, on input gpk , returns a
personal public and private key pair (upk , usk). Each user i will generate a
personal key pair (upk i, usk i) before engaging in the joining protocol which
is described below.

Join/Issue: This is a pair of interactive algorithms which implement the joining
protocol run by a user i and the issuer. The algorithm Join, which is run
by the user, takes (gpk , upk , usk) as input, whereas Issue, which is run by
the issuer, takes (gpk , upk , ik) as input. Upon successful completion of the
protocol, Join outputs a private signing key gsk i for user i, and Issue outputs
the registration information of user i which is stored in reg [i], where reg is a
registration table maintained by the issuer.

GSig: This is the group signing algorithm run by a user i, which, on input gpk ,
a signing key gsk i, and a message m, returns a group signature Σ.

GVf: This is the group signature verification algorithm which, on input (gpk ,m,
Σ), returns 1 to indicate that Σ is a valid signature on m, or 0 otherwise.

Open: This is the opening algorithm run by the opener, which, on input (gpk , ok ,
reg ,m,Σ), returns (i, τ), where i specifies that the originator of the signature
Σ is the user i, and τ is a non-interactive proof of this. In case the algorithm
fails to identify the originator of the signature, it outputs i = 0. Note that
Open requires access to the registration table reg .

Judge: This is the judge algorithm which, on input (gpk , i, upk i,m,Σ, τ), out-
puts either 1 or 0 indicating that the proof τ is accepted as valid or invalid,
respectively.

The model in [3] introduces four requirements for a group signature scheme,
namely, correctness, anonymity, non-frameability, and traceability. The correct-
ness notion requires that honestly generated signatures will be accepted as valid
by the verification algorithm, can be opened by the opening algorithm, and that
the judging algorithm will accept the resulting proof as valid. The anonymity
notion requires that no information about the identity of a signer is leaked from
a group signature, even if the signing keys of all group members and the issuer
are exposed. The non-frameability notion requires that no adversary corrupting
both the opener and the issuer, can produce a signature and an opening proof
that identify an uncorrupted group member as the signer, when the uncorrupted
group member did not produce the signature in question. The traceability no-
tion requires that an adversary corrupting the opener and controlling a group



6 Y. Sakai, J. C. N. Schuldt, K. Emura, G. Hanaoka, and K. Ohta

of malicious group members, cannot produce a valid signature that cannot be
opened correctly.

The formal definitions of the four notions are given as follows. We first define
several oracles needed for security notions:

AddU(i): The add-user oracle runs UKg(gpk) and Join/Issue protocol to add an
honest user. It returns the user public key upk of the user. The oracle add i
to the set HU.

RReg(i): The read-registration-table oracle reveals the content of the registra-
tion table reg [i].

SndToU(i,M) The send-to-user oracle at first sets up a user public/secret key
pair by (upk i, usk i) ← UKg(gpk) and add i to the set HU. The oracle then
allows the adversary to engage a group-joining protocol of the user i on
the behalf of the corrupted issuer. The message M is sent to the user i
who follows the protocol Join(gpk , upk i, usk i). The response of the user is
returned to the adversary.

WReg(i,M) The write-registration-table oracle updates reg [i] to M .
USK(i): The user-secret-keys oracle reveals the secret keys (usk i, gsk i) of the

user i to the adversary.
CrptU(i,M): The corrupt-user oracle sets the user public key of the user i to M

and add i to the set CU.
Open(m,Σ): The open oracle returns the opening (i, τ)← Open(gpk , ok ,m,Σ)

of the signature Σ under the message m.
Chb(m, i0, i1): The challenge oracle returns a challenge Σ∗ ← GSig(gpk , gsk ib ,

m). The users i0 and i1 needs to be in the set HU.
GSig(i,m): The signing oracle returns a signature Σ ← GSig(gpk , gsk i,m) on

the message m of the user i, who needs to be in the set HU.
SndToI(i,M): The send-to-issuer oracle allows the adversary to engage a group-

joining protocol on behalf of the corrupted user i. The message M is sent to
the issuer who follows the protocol Issue(gpk , upk i, ik). The response of the
issuer is returned to the adversary. The user i needs to be in the set CU.

The correctness and security requirements for a group signature scheme are
as follows:

Definition 1. A group signature scheme is said to have correctness if

Pr[(gpk , ik , ok)← GKg(1k); (i,m)← AAddU,RReg(gpk);

Σ ← GSig(gpk , gsk i,m); (j, τ)← Open(gpk , ok , reg ,m,Σ)

: GVf(gpk ,m,Σ) = 0 ∨ i 6= j ∨ Judge(gpk , i, upk i,m,Σ, τ) = 0]

is negligible for any probabilistic polynomial-time adversary A.

Definition 2. A group signature scheme is said to have anonymity if

Pr[b← {0, 1}; (gpk , ik , ok)← GKg(1k);

b′ ← ASndToU,WReg,USK,CrptU,Open,Chb(gpk , ik) : b = b′]− 1

2

is negligible for any probabilistic polynomial-time adversary A.
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Definition 3. A group signature scheme is said to have non-frameability if

Pr[(gpk , ik , ok)← GKg(1k);

(m,Σ, i, τ)← ASndToU,WReg,USK,CrptU,GSig(gpk , ok , ik);

: GVf(gpk ,m,Σ) = 1 ∧ Judge(gpk , i, upk i,m,Σ, τ) = 1

∧ A queried neither USK(i) nor GSig(i,m)]

is negligible for any probabilistic polynomial-time adversary A.

Definition 4. A group signature scheme is said to have traceability if

Pr[(gpk , ik , ok)← GKg(1k); (m,Σ)← ACrptU,SndToI,AddU,USK,RReg(gpk , ok);

(i, τ)← Open(gpk , ok , reg ,m,Σ)

: GVf(gpk ,m,Σ) = 1 ∧ (i = 0 ∨ Judge(gpk , i, upk i,m,Σ, τ) = 0)]

is negligible for any probabilistic polynomial-time adversary A.

2.2 Other Primitives

Public-Key Encryption. A public key encryption scheme consists of three
algorithms (EKg,Enc,Dec), which satisfy the following correctness condition: For
any security parameter ` ∈ N, any plaintext m ∈ {0, 1}∗, any random tape r for
EKg, and any random tape s for Enc, the condition Dec(dk ,Enc(pk ,m; s)) = m
holds, where pk and dk are output from EKg as (pk , dk) ← EKg(1`; r). In this
paper we require a public key encryption scheme to satisfy the security notion
of indistinguishability under chosen-ciphertext attack (IND-CCA) [25].

Digital Signature. A digital signature scheme consists of three algorithms
(SKg,Sign,Ver), which satisfy the following correctness condition: For any secu-
rity parameter ` ∈ N, any message m ∈ {0, 1}∗, any random tape r for SKg, and
any random tape s for Sign, the condition Ver(vk ,m,Sign(sk ,m; s)) = > holds,
where vk and sk are output from SKg as (vk , sk)← SKg(1`; r). In this paper we
use two types of security for digital signature schemes. One is the standard secu-
rity notion of unforgeability under adaptive chosen message attack (EUF-CMA),
and the other is strong one-time signatures. See [16] for exact definitions.

Target Collision-Resistant Hash Functions. A family of functions is called
target collision-resistant if no algorithms, which firstly chooses an input and then
is given a description of a function in the family, can find another input that
produces the same output to the first input. The formal definition we need is as
follows: A function generator HashGen(1`) takes as input a security parameter
and outputs a function H. The family of functions is said to be target collision-
resistant when Pr[(x, s)← A;H ← HashGen(1`);x′ ← A(H, s) : H(x) = H(x′)∧
x 6= x′] is negligible for any polynomial-time algorithm A.
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Non-interactive Proofs. A non-interactive proof system for an NP-relation
R ∈ {0, 1}∗ × {0, 1}∗ defining L = {x|(x,w) ∈ R for some w} consists of three
algorithms (K,P, V ), which satisfy the following correctness and soundness con-
ditions: For correctness, it is required that for any security parameter ` ∈ N,
any common reference string crs ← K(1`), and any pair (x,w) ∈ R, it holds
that V (1`, crs, x, P (1`, crs, x, w)) = >; for soundness, it is required that for
any ` ∈ N and any probabilistic polynomial-time algorithm A, the probabil-
ity Pr[crs ← K(1`); (x, π) ← A(1`, crs) : V (1`, crs, x, π) = > ∧ x 6∈ L] is
negligible. In fact we will later use two types of proof systems, one which is
zero-knowledge [5, 13] and one which is simulation-sound [26] in addition to
zero-knowledge.

Bilinear Maps and Groth-Sahai Proofs. Bilinear groups are groups G and
GT with the same order that have an efficiently computable bilinear map e :
G×G→ GT . Let G be a probabilistic polynomial-time algorithm that outputs
a group parameter gk = (p,G,GT , e, g) where p is the order of G and GT , e is a
non-degenerates bilinear map e : G×G→ GT , and g is a generator of G.

Groth and Sahai [20] introduced a framework for very efficient non-interactive
proof for the satisfiability of some algebraic equations they called quadratic equa-
tions. The proof system consists of algorithms (KNI, P, V,X). The algorithm
KNI(gk) takes a group parameter gk as input and outputs (crs, xk), where crs
is a common reference string and xk is a trapdoor extraction key for extracting
a witness from a proof. The algorithm P (crs, x, w) outputs a proof π for an
equation described by x whose witness is w. A proof π is verified by running
V (crs, x, π). The algorithm Xxk (x, π) extracts a witness from the proof π which
passes the verification algorithm. In fact there are two types of proof systems
(KNI, PNIWI, VNIWI, X) and (KNI, PNIZK, VNIZK, X), which respectively provide
witness-indistinguishability and zero-knowledge properties. The two proof sys-
tems have the identical common reference string generation algorithm. Moreover
they share single string for different sets of equations in the Groth group signa-
ture scheme.

The common reference string consists of eight group elements as crs =
(F,H,U, V,W,U ′, V ′,W ′). A notable property on this is that F and H essen-
tially serve as a public key of the linear encryption [6]. This property is exploited
in the Groth group signature scheme (and so in our modification of that scheme).
For further details see [20].

Tag-based Encryption. Tag-based encryption is an extension of public key
encryption, which associates an additional “tag” with a ciphertext. The exact
syntax is as follows: A key generation algorithm G(1`) generates a public key pk
and a secret key dk ; an encryption algorithm Epk (t,m) takes as input a public
key pk , a tag t, and a plaintext m, and outputs a ciphertext c; a decryption
algorithm Ddk (t, c) takes as input a decryption key dk , a tag t, and a ciphertext
c and outputs a plaintext m or a special symbol ⊥ indicating the decryption
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failed. The correctness condition only ensures that the plaintext is recovered
when the tags used in the encryption and the decryption are identical.

In this paper we use Kiltz’s construction of tag-based encryption [24], which
is explained below. The scheme can be built on bilinear groups. Let gk =
(p,G,GT , e, g) be a group description. The key generation algorithm chooses
random integers φ, η ← Zp and random elements K,L ← G, and sets pk =
(F,H,K,L) where F = gφ and H = gη and dk = (φ, η). A ciphertext of a plain-
text m under a tag t is computed as y = (y1, y2, y3, y4, y5) = (F r, Hs,mgr+s,
(gtK)r, (gtL)s). The decryption algorithm decrypts a ciphertext (y1, y2, y3, y4,
y5) under a tag t by checking e(F, y4) = e(y1, g

tK) and e(H, y5) = e(y2, g
tL)

and outputs y3/y
φ
1 y

η
2 if the two equations hold, otherwise outputs ⊥. This en-

cryption scheme is secure against selective-tag weak chosen-ciphertext attacks if
the decisional linear assumption holds [24]. Another interesting property is that
the scheme has public verifiability in the sense that it can be efficiently checked
whether a given five-tuple (y1, y2, y3, y4, y5) lies in the range of the encryption
algorithm under a given public key pk and a given tag t by checking the two
equations e(F, y4) = e(y1, g

tK) and e(H, y5) = e(y2, g
tL).

3 Opening Soundness

In this section we give a formal definition of opening soundness. Specifically, we
introduce two variants of opening soundness, weaker and stronger definitions.

The weaker definition, named weak opening soundness, is intended to address
the security concerns discussed in the introduction in a straightforward manner,
and will rule out the possibility that a malicious user can claim ownership of a
signature produced by an honest user by forging an opening proof. The definition
is as follows:

Definition 5. A group signature scheme is said to have weak opening soundness
if

Pr[(gpk , ik , ok)← GKg(1k); (m, i, i∗, s)← AAddU(·)(gpk);

Σ ← GSig(gpk , gsk i,m); τ∗ ← AAddU(·)(s,Σ, gsk i∗)

: i 6= i∗ ∧ i, i∗ ∈ HU ∧ Judge(gpk , upk i∗ ,m,Σ, τ
∗) = 1]

is negligible for all polynomial time adversaries A, where the oracle AddU is
defined as follows:

AddU: On a query i ∈ N, the oracle runs (upk i, usk i)← UKg(gpk), then executes
the protocol (gsk i, reg i) ← 〈Join(gpk , upk i, usk i), Issue(gpk , ik)〉, adds i to a
set HU , and lastly returns upk i.

Note that the adversary is only allowed to receive the secret signing key of a single
user i∗. Hence, this definition will not rule out attacks involving a corrupted
opener, and therefore cannot contribute towards reducing trust in this entity.
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In contrast, the stronger definition, named opening soundness, is intended
to rule out the possibility that an adversary can produce two different openings
of a signature, even if he is allowed to corrupt the opener and all the users in
the system, and furthermore generate the signature in question maliciously. The
definition is as follows:

Definition 6. A group signature scheme is said to have opening soundness if

Pr[(gpk , ik , ok)← GKg(1k); (m,Σ, i1, τ1, i2, τ2)← ACrptU,WReg(gpk , ok , ik)

: GVf(gpk ,m,Σ) = 1 ∧ i1 6= i2 ∧ Judge(gpk , upk i1 ,m,Σ, τ1) = 1

∧ Judge(gpk , upk i2 ,m,Σ, τ2) = 1]

is negligible for all polynomial time adversaries A, where the oracle CrptU(i,M)
sets the user public key of the user i to be M , and the oracle WReg(i,M) sets
reg [i] to M .

While the weaker definition provides a minimum level of protection against
the type of attacks described in the introduction, we believe that, when applied
to the scenarios mentioned in the introduction, any dynamic group signature
scheme should provide (ordinary) opening soundness to prevent any type of
attack which exploits ambiguity of openings, or involves a corrupted opener.
Furthermore, we will show that this level of security can be achieved efficiently
by showing that our modified version of the scheme by Groth provides opening
soundness (See Sect. 5 for details).

4 Opening Soundness of Existing Schemes

We will now take a closer look at some of the existing dynamic group signature
schemes, and highlight the level of opening soundness (ordinary, weak or none)
achieved by these. Note that since the Bellare-Shi-Zhang security model for
dynamic group signatures does not considers opening soundness, a security proof
in this model will not allow us to make any conclusions regarding the opening
soundness of existing schemes.

In this section, we will focus on the standard model scheme by Groth de-
scribed in [19] (note that the updated scheme in [19] is slightly different from
the scheme described in [18]) and the generic construction of a dynamic group
signature scheme by Bellare, Shi, and Zhang [3]. More specifically, we will show
that the scheme by Groth does not have weak opening soundness whereas the
generic construction by Bellare, Shi and Zhang has opening soundness. We fur-
ther show that the random oracle model schemes by Furukawa and Imai [14]
and Bichsel et al. [4] do not have opening soundness. Interestingly, while these
schemes do not provide opening soundness, there seems to be no obvious attack
against the weak opening soundness of these.

The Groth Scheme. Figure 1 shows a description of the Groth scheme. Below,
we will expand on the description given in the figure.
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GKg(1k):

gk ← G(1k); H ← HashGen(1k)
(f, h, z)← G; T = e(f, z)
(crs, xk)← KNI(gk);
(F,H,U, V,W,U ′, V ′,W ′)← crs;
K,L← G; pk ← (F,H,K,L)
(gpk , ik , ok)
← ((gk ,H, f, h, T, crs, pk), z, xk)

Join/Issue(User i: gpk ; Issuer: gpk , ik):
Run the coin-flipping protocol in [19]

The user obtains vi = gxi and xi
and the issuer obtains vi

Issuer: r ← Zp;
(ai, bi)← (f−r, (vih)rz);
set reg [i]← vi
send (ai, bi) to the user

User: If e(ai, hvi)e(f, bi) = T
set upk i ← vi, gsk i ← (xi, ai, bi)

Open(gpk , ok , reg ,m,Σ):
(b, v, σ)
← Xxk (crs, (gpk , a,H(vk sots)), π)

Return (i, σ) if there is i so v = reg [i],
else return (0, σ)

GSig(gpk , gsk i,m):

(vk sots, sk sots)← KeyGensots(1
k)

(Repeat until H(vk sots) 6= −xi)
ρ← Zp; a← aif

−ρ; b← bi(hvi)
ρ

σ ← g1/(xi+H(vksots))

π ← PNIWI(crs, (gpk , a,H(vk sots)), (b, vi, σ))
y ← Epk (H(vk sots), σ)
ψ ← PNIZK(crs, (gpk , y, π), (r, s, t))
σsots ← Signsksots

(vk sots,m, a, π, y, ψ)
Return Σ = (vk sots, a, π, y, ψ, σsots)

GVf(gpk ,m,Σ):
Return 1 if the following holds:
1 = Vervksots((vk sots,m, a, π, y, ψ), σsots),
1 = VNIWI(crs, (gpk , a,H(vk sots)), π),
1 = VNIZK(crs, (gpk , π, y), ψ), and
1 = ValidCiphertext(pk ,H(vk sots), y),
else return 0

Judge(gpk , i, upk i,m,Σ, σ):
Return 1 if

i 6= 0 ∧ e(σ, vigH(vksots)) = e(g, g),
else return 0

Fig. 1. The Groth group signature scheme [19].

In the group key generation algorithm GKg, the elements f, h, T correspond
to a verification key of the Zhou-Lin signature scheme [27], whereas z corresponds
to a signing key. Furthermore, pk is a public key of Kiltz’s tag-based encryption
scheme. Note that the first two elements of pk and the common reference string
crs for the non-interactive Groth-Sahai proofs are identical.

In the group signing algorithm GSig, a group member constructs two non-
interactive Groth-Sahai proofs. The first proof π, constructed via PNIWI, shows
knowledge of a signature σ, a verification key v and a part b of a (re-randomized)
certificate (a, b) which satisfy e(a, hv)e(f, b) = T ∧e(σ, vgH(vksots)) = e(g, g). The
first part a of the certificate can safely be revealed as part of the group signature
since it does not leak any information about the identity of the member due
to the re-randomization. The second proof ψ, constructed via PNIZK, demon-
strates that the plaintext of y is the same as the witness σ used in π. Let us
explain in detailed. The tag-based encryption y has the form (y1, y2, y3, y4, y5) =
(F ry , Hsy , gry+syσ, (gH(vksots)K)ry , (gH(vksots)L)sy ), while the Groth-Sahai proof
π contains a commitment c = (c1, c2, c3) = (F rcU t, HscV t, grc+scW tσ). The
proof demonstrates that there exists (r, s, t) such that (c1y

−1
1 , c2y

−1
2 , c3y

−1
3 ) =
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(F rU t, HsV t, gr+sW t). When y and c encrypt the same message, there exists
(r, s, t) that satisfies above equation, but if y and c encrypt different messages,
no such tuple (r, s, t) exists.

The verification algorithm GVf will, in addition to the verification of the
two non-interactive proofs and the one-time signature, verify that the ciphertext
y is a valid ciphertext, using the algorithm ValidCiphertext. This algorithm is
easily implemented for the tag-based encryption scheme by Kiltz (see the last
paragraph of Sect. 2 for details).

We will now show how a malicious group member can forge a opening proof
which shows that he is the signer of any signatureΣ produced by user i. As shown
above, an opening proof consists of a certified signature σ on vksots which is part
of Σ. To verify the opening proof, it is only verified that σ is a valid signature
on vksots under the verification key vi of the user in question.

Hence, a malicious user i′ who wants to impersonate the signer of the group
signature Σ on m, simply uses his own private signing xi′ key to construct a new
signature σ′ on vksots, and publicizes this as an opening proof together with his
own identity i′. This proof will be accepted by the Judge algorithm since σ′ is a
valid signature in vksots.

We formally state this as a theorem:

Theorem 1. The Groth group signature scheme does not provide weak opening
soundness.

Proof. We describe an algorithm for producing a forged proof: When the ad-
versary receives the security parameter 1` and a group public key gpk , it firstly
issues two queries AddU(1) and AddU(2) in order to add two members 1 and 2
the group. The adversary then requests the challenge by outputting (i, i∗,m) =
(1, 2, 0`), and receives a tuple (Σ, gsk2), where Σ = (vk sots, a, π, y, ψ, σsots) and
gsk2 = (x2, a2, b2). The adversary forges a proof of ownership by computing
σ∗ = g1/(x2+H(vksots)) and outputs σ∗ (Notice that vk sots is taken from the group
signature Σ).

One can easily verify that Judge(gpk , 2, reg [2],m,Σ, σ∗) actually outputs 1,
which means that the algorithm successfully breaks the opening soundness. ut

The Bellare-Shi-Zhang Scheme. Below, we will give an intuitive description
of the generic construction of a dynamic group signature scheme by Bellare, Shi,
and Zhang.

In the Bellare-Shi-Zhang construction, each group member i has a key pair
(vk i, sk i) of an EUF-CMA secure signature scheme. The issuer also possesses
his own key pair (ak , ck) of the signature scheme. The issuer signs the message
〈i, vk i〉 to obtain the signature cert i, and sends cert i to the user i. A group
signature on a message m by the user i is a pair (C, π): here C is an encryption of
〈i, vk i, cert i, s〉, s is a signature on m under the key pair (vk i, sk i), and the NIZK
proof π proves that the plaintext encrypted in C is of the form 〈i, vk , cert , s〉.
The opener attributes a group signature Σ = (C, π) to the user i by providing
an NIZK proof τ for another statement (i.e. different from that of π), which
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claims the existence of a decryption key that corresponds to the opener’s public
key and that under that key C is decrypted to 〈i, vk i, cert i, s〉.

This simple scheme provides opening soundness. Intuitively, this is due to the
correctness of the public key encryption used to encrypt the signature and the
certificate, and the soundness of the NIZK proof system for τ . The correctness
condition of public key encryption ensures that given a public key pk and a ci-
phertext C, the decryption of C is determined uniquely. Now, let us assume that
an adversary of the opening soundness game outputs a tuple (m,Σ, i1, τ1, i2, τ2)
where Σ = (C, π) and wins the game. The proof τ1 proves that C decrypts to
〈i1, vk , cert , s〉 for some vk , cert , and s, whereas τ2 proves that C decrypts to
a different plaintext 〈i2, vk ′, cert ′, s′〉 for some vk ′, cert ′, and s′. However, this
should not be possible since the decryption of C under a fixed public key is
unique. Hence, the adversary breaks the soundness of the NIZK proof system.

A formal statement and its proof are deferred to the full version.

The Furukawa-Imai Scheme. The Furukawa-Imai group signature scheme
does not have opening soundness, which we will show in the following.

The scheme exploits a group G on which the decisional Diffie-Hellman as-
sumption holds, in addition to bilinear groups (G1,G2,GT ) with an asymmetric
bilinear map e : G1 × G2 → GT . In this scheme, each group member i has a
public key Qi = gxi and its corresponding secret key xi. The public key Qi
is encrypted in a group signature with (a kind of) ElGamal encryption. Let
(R, V ) = (Qig

r, Sr) be the ciphertext that appears in a group signature, where
S = gs is the public key of the ElGamal encryption. The opener possesses the
decryption key s, and identifies the signer by decrypting the ciphertext. An open-
ing contains a proof of knowledge of w such that Qi = R/V 1/w, where Qi is the
public key of the specified member (The opener uses s as the witness for the
above equation).

If the adversary corrupts the opener and two different members i and j, the
adversary can construct two different openings of a single signature, each of which
attributes the signature to the user i or the user j, respectively. The adversary
proceeds as follows: At first the signature is honestly generated by the user i.
Let (R, V ) = (gxi+r, Sr) be the ciphertext contained in this signature. The first
opening is also honestly generated by the opener to attribute the signature to i.
The second proof is generated by computing a proof of knowledge w that satisfies
Qj = R/V 1/w with the witness w = sr/(xi + r − xj). This proof attributes the
signature to the user j. Note that the randomness r for the encryption is reused
to forge the second proof. This is the reason why the adversary needs to corrupt
the user i, not only the user j and the opener.

The Bichsel et al. Scheme. In the Bichsel et al. scheme, a group member
receives a Camenisch-Lysyanskaya signature on a random message ξ from the
issuer. To generate a group signature, the member rerandomizes the certificate
and computes a “signature of knowledge” of ξ. This rerandomized certificate and
the signature of knowledge constitute the group signature.
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The issuer should not know the random message ξ, because otherwise non-
frameability is compromised. For this reason, in a group-joining protocol, the
ξ is jointly generated by the user and the issuer as follows: The user i chooses
a random exponent τi and sends r̃ = x̃τi to the issuer, while the issuer also
chooses a random κi and computes w̃ = r̃ · x̃κi = x̃τi+κi . This τi+κi will be used
as the random message ξ mentioned above. To establish a publicly verifiable
connection between this ξ and the user i, the user i generates an (ordinary)
signature on ki = e(g, r̃) with a key pair which is previously registered in a
public key infrastructure.

To open a signature, the opener uses w̃ to identify which ξ is the mes-
sage of the Camenisch-Lysyanskaya signature. Since w̃ makes the Camenisch-
Lysyanskaya signature publicly verifiable, it cannot be used as an opening. In-
stead, the opener produces a non-interactive zero-knowledge proof of w̃ and κi
such that ki = e(g, w̃)/e(g, x̃)κi and provides the signature on ki. To verify this
opening, a third party simply verifies the non-interactive zero-knowledge proof
and the signature.

Unfortunately this scheme does not satisfy opening soundness. Assume a
malicious signer obtains a group signature by an honest user, and further obtains
an honestly generated opening of the signature. The proof of ownership contains
ki and a signature on this by the honest user. The malicious signer replaces the
signature on ki with his own signature on ki. This forged opening passes the
verification.

5 Achieving Opening Soundness

In this section we present a variant of the Groth scheme, which provides opening
soundness (besides anonymity, non-frameability, and traceability).

5.1 The Modified Groth Scheme

The High-Level Idea. Let us first consider a general approach for achieving
opening soundness.

The opener, who has the secret opening key, will always be able to determine
the correct opening. To provide opening soundness, the opener needs to convince
others that a given opening is correct. The easiest way to do that is to make
the opening key public, but this will compromise the anonymity of the scheme.
Instead, the opener can provide an NIZK proof of the correctness of an opening,
to convince any third party. This is, in fact, the approach used in the Bellare-
Shi-Zhang construction.

If the opening algorithm essentially corresponds to a “decryption” of a ci-
phertext contained in the group signature (this is the case for many existing
schemes), we might be able to take a different and more efficient approach. If
the encryption scheme provides randomness recovering, the opener can simply
release the randomness used for the ciphertext in question instead of an expensive
zero-knowledge proof. Any third party will then be able to verify the correctness
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of an opening by re-encrypting the relevant information with the randomness
provided by the opener, and then confirm that the resulting ciphertext is the
same as the one contained in the signature.

In the Groth scheme, an opening essentially corresponds to the decryp-
tion of a linear encryption scheme. While linear encryption is not randomness-
recovering, the opener is able to release related values which, together with
an algebraic trick using a bilinear map, allow a third party to confirm that the
decryption was done correctly. This property will allow us to add opening sound-
ness to the original scheme. More specifically, in our variant of the Groth scheme,
the opener, given a ciphertext (c1, c2, c3) = (F r, Hs, vgr+s), reveals gr and gs

as a part of an opening. Using the properties of the bilinear map, these values
can replace the exact randomness r and s when checking the correspondence
between a ciphertext and a decryption: If a third party, given gr and gs, wants
to check the correspondence between a ciphertext (c1, c2, c3) and a decryption
v, he simply checks whether the equations e(F, gr) = e(c1, g), (H, gs) = e(c2, g),
and v = c3/(g

rgs) hold. If this is the case, he accepts the decryption as valid.
This idea is essentially the same as that used by Galindo et al. [15] in the

context of public key encryption with non-interactive opening (PKENO). In [15],
the application of PKENO schemes to group signature is briefly discussed as a
mechanism for simplifying the construction of an opening. We will show that
this technique is also able to ensure the opening soundness of group signature
schemes.

Description of our variant. The Groth scheme can achieve opening soundness
with the small modification shown in Fig. 2.

Open(gpk , ok ,m,Σ):
If GVf(gpk ,m,Σ) = 0, return (0,⊥)
(b, v, σ)← Xxk (crs, (gpk , a,H(vk sots)), π)
(dF , dH)← xk ; (y1, . . . , y5)← y

τF := y
1/dF
1 ; τH := y

1/dH
2

Return (i, (σ, τF , τH))
if there is i so v = reg [i],

else (0,⊥)

Judge(gpk , i, reg[i],m,Σ, (σ, τF , τH)):
Return 1 if the following holds:
GVf(gpk ,m,Σ) = 1,

i 6= 0, e(σ, vig
H(vksots)) = e(g, g),

e(F, τF ) = e(y1, g), e(H, τH) = e(y2, g),
and στF τH = y3,
else return 0

Fig. 2. The proposed modification of the Groth group signature scheme. The algo-
rithms that do not appear in the figure are exactly the same as in Fig. 1.

Theorem 2. The modified Groth scheme shown in Fig. 2 provides opening
soundness.

Proof. Let us consider the game in Definition 6, and let gpk be the group public
key in the game, where the key is parsed to (F,H, · · · ), and (m,Σ, i, τ, i′, τ ′)
be the output of the adversary. Let Σ, τ , and τ ′ be parsed as follows: Σ =
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(vk sots, a, π, y, ψ, σsots) in which y = (y1, y2, y3, y4, y5), τ = (σ, τF , τH) and τ ′ =
(σ′, τ ′F , τ

′
H).

We hereafter show that given a fixed Σ, it must hold that i = i′: Given a
fixed Σ (in particular y1, y2, and y3), the verification equations

e(F, τF )
?
= e(y1, g) ∧ e(H, τH)

?
= e(y2, g) ∧ στF τH

?
= y3

uniquely determine τF , τH , and σ. Since both τ = (σ, τF , τH) and τ ′ = (σ′, τ ′F , τ
′
H)

pass the Judge verification, we must have that (σ, τF , τH) = (σ′, τ ′F , τ
′
H). Now

vi satisfies e(σ, vig
H(vksots)) = e(g, g) and vi′ satisfies e(σ, vi′g

H(vksots)) = e(g, g),
but because σ = σ′, and the equation e(σ, vgH(vksots)) = e(g, g) uniquely deter-
mines v given fixed σ and H(vk sots), we have that vi = vi′ , which implies that
i = i′. ut

The changes shown in Fig. 2 yields a scheme which is secure in the BSZ
model i.e. the anonymity, the non-frameability, and the traceability of the orig-
inal Groth scheme are maintained. This will be shown in the following.

Theorem 3. The modified Groth scheme provides anonymity if the decision
linear assumption holds on G, the one-time signature scheme is strongly un-
forgeable, and the hash function is target collision-resistant.

Proof (Sketch). The proof proceeds almost as in the original Groth scheme. The
biggest difference from the original proof is that the simulator for the modi-
fied scheme needs to simulate two additional group elements (τF , τH) = (gr, gs)
when receiving an Open query. Note that in the simulation of Kiltz’s tag-based
encryption, when the simulator receives a decryption query (y1, y2, y3, y4, y5) =
(F r, Hs,mgr+s, (gtK)r, (gtL)s), the simulator at first extracts gr and gs with-
out the knowledge of the decryption key and then simulates the decryption by
computing y3/g

rgs. In a similar way, it is possible to simulate the two extra
components required in our scheme. ut

Non-frameability and traceability can be proven more easily since these secu-
rity notions do not require simulation of the Open oracle. For non-frameability,
once an opening of the modified scheme that compromises the non-frameability
notion is produced, one can obtain an opening for the original scheme (by sim-
ply dropping the extra components of τF and τH) which will compromise the
non-frameability of the original scheme.

Theorem 4. The modified Groth scheme provides non-frameability.

Theorem 5. The modified Groth scheme provides traceability.

6 Conclusion

We have identified an overlooked security concern for dynamic group signatures,
namely, the possibility that a false opening proof can be produced by a corrupt
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user. To address this concern, we defined (two variants of) a new security notion
denoted opening soundness, and furthermore discussed the opening soundness of
several existing schemes. As a result, we have shown that the Bellare-Shi-Zhang
construction [3] provides opening soundness as it is, and that small modifications
to the Groth scheme (of the full version) [19] allow this scheme to provide opening
soundness as well. We have also briefly discussed the opening soundness of some
of the random oracle schemes [14, 4], but leave further investigation of these
schemes as future work.
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