
Improved Security for Linearly Homomorphic
Signatures: A Generic Framework

David Mandell Freeman?

Stanford University, dfreeman@cs.stanford.edu

Abstract. We propose a general framework that converts (ordinary) signature
schemes having certain properties into linearly homomorphic signature schemes,
i.e., schemes that allow authentication of linear functions on signed data. The secu-
rity of the homomorphic scheme follows from the same computational assumption
as is used to prove security of the underlying signature scheme. We show that the
following signature schemes have the required properties and thus give rise to
secure homomorphic signatures in the standard model:

– The scheme of Waters (Eurocrypt 2005), secure under the computational
Diffie-Hellman asumption in bilinear groups.

– The scheme of Boneh and Boyen (Eurocrypt 2004, J. Cryptology 2008),
secure under the q-strong Diffie-Hellman assumption in bilinear groups.

– The scheme of Gennaro, Halevi, and Rabin (Eurocrypt 1999), secure under
the strong RSA assumption.

– The scheme of Hohenberger and Waters (Crypto 2009), secure under the RSA
assumption.

Our systems not only allow weaker security assumptions than were previously
available for homomorphic signatures in the standard model, but also are secure in
a model that allows a stronger adversary than in other proposed schemes.
Our framework also leads to efficient linearly homomorphic signatures that are
secure against our stronger adversary under weak assumptions (CDH or RSA)
in the random oracle model; all previous proofs of security in the random oracle
model break down completely when faced with our stronger adversary.

Keywords. Homomorphic signatures, standard model, bilinear groups, CDH, RSA.

1 Introduction

Suppose Alice has some set of data m1, . . . ,mk that she signs with a digital signature
and stores in a database. At some later point in time Bob queries the database for the
mean m of the data. Since Bob suspects the database might be malicious, he also wants
Alice’s signature on m to prove that the mean was computed correctly. Bob’s bandwidth
is limited, so he can’t simply download the whole database, verify the signature, and
compute the mean himself. Or maybe he has the bandwidth but Alice has requested that
the data be kept private, with only the mean to be made public. What is Bob to do?
? This material is based upon work supported by the Defense Advanced Research Projects Agency

through the U.S. Office of Naval Research under Contract N00014-11-1-0382. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the Department of Defense or the U.S. Government.

Homomorphic signatures [19,5,14,7,2,6] are a cryptographic primitive that addresses
this problem. In a homomorphic signature scheme, a user signs messages m1, . . . ,mk

in some message spaceM, producing signatures σ1, . . . , σk; verification is performed
as usual for a signature scheme. The “homomorphic” property is as follows: given this
set of signatures and a function f :Mk →M from a set of “admissible” functions F ,
anyone can produce a signature on the pair (f, f(m1, . . . ,mk)) ∈ F ×M. Validation
of the signature asserts that the claimed value is indeed the result of applying f to the
underlying data; if the system is secure, then a malicious adversary cannot compute a
valid signature on (f,m∗) for any m∗ 6= f(m1, . . . ,mk).

Homomorphic signatures were originally proposed by Johnson, Molnar, Song, and
Wagner [19] and were adapted for the above application by Boneh, Freeman, Katz,
and Waters [5], whose motivation was to authenticate packets in network coding proto-
cols [1,23]. Other applications of homomorphic signatures include computing statistics,
Fourier transforms, or least-squares fits on authenticated data, all of which can be done
using “linearly homomorphic” signatures; i.e., those that authenticate linear functions.

The construction of Boneh et al. uses bilinear groups and authenticates linear func-
tions on vectors over large prime fields. Follow-up work by Gennaro, Katz, Krawczyk,
and Rabin [14] is based on RSA and authenticates linear functions on vectors over the
integers, while the system of Boneh and Freeman [7] is based on lattice assumptions
and authenticates linear functions on vectors over small fields. In a recent breakthrough,
Boneh and Freeman [6] showed how to use “ideal lattices” to authenticate polynomial
functions on data; this system is currently the only one that goes beyond linear functions.

In all of the above systems security is proven only in the random oracle model.
At present there are only two homomorphic signature schemes proven secure in the
standard model. The first is a scheme of Attrapadung and Libert [2], which is based on
the Lewko-Waters identity-based encryption scheme [22] and uses bilinear groups of
composite order. Signatures consist of three group elements of size at least 1024 bits, and
security is proven using three nonstandard (fixed-size) assumptions, two of which are
decisional and one of which is computational. The second is a scheme of Catalano, Fiore,
and Warinschi [8], which is based on the general framework of “adaptive pseudo-free
groups.” In the instantiation based on the strong RSA assumption, signatures consist of
two integers of size at least 1024 bits.

1.1 Our Contributions

A general framework for homomorphic signatures. Motivated by a desire to con-
struct efficient systems with stronger security, we propose a general framework that
converts (ordinary) signature schemes having certain properties into linearly homomor-
phic signature schemes. The security of the homomorphic scheme follows from the same
computational assumption as is used to prove security of the underlying signature scheme.
We show that the schemes of Waters [24], Boneh and Boyen [4]; Gennaro, Halevi, and
Rabin [13]; and Hohenberger and Waters [18] all have the required properties and thus
give rise to secure homomorphic signatures. The resulting homomorphic constructions
are all secure under a computational (as opposed to a decisional) assumption in the
standard model, and the pairing-based constructions offer shorter signatures than those

2

of [2] or [8]. Our framework also leads to a variant of the construction of Attrapadung
and Libert, as the signature scheme derived from Lewko-Waters IBE has the required
properties; the security proof, however, still requires decisional assumptions.

A stronger security model. Not only do our systems allow weaker security assumptions
than were previously available for homomorphic signatures, but our schemes are proven
secure in a model that allows a stronger adversary than in other proposed schemes.
Specifically, in all previous schemes the adversary could adaptively query signatures on
many data sets but was required to submit all messages belonging to a given data set at
the same time, after which he would receive signatures on all of the messages at once. In
our security model the adversary is allowed to adaptively query one message at a time,
and even to intersperse queries from different data sets. It was not previously known how
to construct a homomorphic signature scheme that is secure against such an adversary.

We also observe that certain of our constructions are also secure in the random oracle
model under weak assumptions: the Waters-based scheme (actually the same as that of
Gentry and Silverberg [15]) under (co-)CDH in bilinear groups, and the Gennaro-Halevi-
Rabin scheme under RSA. While these random-oracle schemes are less efficient than
current homomorphic schemes that use the same assumptions [5,14], they are secure
against our stronger adversary. All previous proofs of security in the random oracle
model break down completely when faced with our stronger adversary.

It is possible to modify the proofs of the standard-model schemes of Attrapadung-
Libert [2] and Catalano-Fiore-Warinschi [8] to work against our stronger adversary; in
the full version of this paper [12] we address a variant of the former.

Many schemes. Our framework gives users a wide range of options when choosing a
homomorphic signature scheme, including variability of the underlying vector space
(vectors over Fp for pairing-based systems, vectors over Z for RSA-based ones) and
tradeoffs between security and efficiency (the most efficient systems require stronger
assumptions). We also expect our framework to be applicable to other signature schemes,
both existing and not yet proposed.

1.2 Overview of Our Construction

We consider linearly homomorphic signature schemes, in which messages are vectors v
with coordinates in some ring R and functions are R-linear combinations of messages.
Using network coding terminology, we call a set of vectors that can be linearly combined
with each other a “file.”

The impetus for our framework comes from comparing the Attrapadung-Libert homo-
morphic signatures [2] to the Lewko-Waters signatures on which they are based [22]. The
Lewko-Waters system uses a cyclic group G whose order N = pqr is a product of three
distinct primes, along with a nondegenerate, symmetric bilinear map ê on G. A signature
on a message m consists of two group elements (σ1, σ2) =

(
grhs, gαH(m)rhs

′)
,

where g, h are public group elements of prime order p, q, respectively; gα is the secret
key; H is a hash function; and r, s, s′ are random in ZN . Verification can be carried out
by testing whether ê(σ2, g)/ê(σ1, H(m)) is equal to e(g, g)α, where this last value is
also public. (Here g and h are constructed so that ê(g, h) = 1.)

3

Attrapadung and Libert convert this scheme to a homomorphic scheme that signs
n-dimensional vectors defined over ZN . The main idea is that to sign a vector v =
(v1, . . . , vn) belonging to a file F , we use the underlying scheme to sign the filename
F (or more precisely, a “tag” chosen at random to identify F) and then add on a
signed “homomorphic hash” of the vector v using the same randomness on the g part.
Specifically, the signature has the form

(σ1, σ2, σ3) =
(
grhs, gαH(F)rhs

′
, (hv11 · · ·hvnn)rhs

′′)
where h1, . . . , hn are additional public group elements in 〈g〉 and s′′ is random. To
verify, we check whether the first two components form a valid signature on F , and
whether ê(σ1,

∏
hvii) = ê(σ3, g).

To make signatures on different vectors within a file compatible, we need to use the
same randomness r in the underlying signature each time, so the σ1 and σ2 components
are the same for each vector in the file. Attrapadung and Libert achieve this property by
applying a pseudorandom function to the filename F to produce r. Once the randomness
is the same across all vectors within a file, the homomorphic property follows: given
two vectors v,w in the same file F and two signatures σv = (σ1, σ2, σ3) and σw =
(σ1, σ2, σ

′
3) produced with the same value of r, the triple (σ1, σ2, σ3σ

′
3) is a valid

signature on the vector v +w. Specifically, we have

ê(σ1,
∏
hvi+wi
i) = ê(σ1,

∏
hvii) · ê(σ1,

∏
hwi
i) = ê(σ3, g) · ê(σ′3, g) = ê(σ3σ

′
3, g).

This property generalizes in the obvious way to authenticate ZN -linear combinations of
arbitrary numbers of vectors in (ZN)n.

Pre-homomorphic signatures. The idea of using a homomorphic hash to authenticate
linear combinations of vectors goes back to Krohn, Freedman, and Mazières [21], and
the idea of signing such a hash is used in several previous constructions [5,14,6]. The
key idea here — and the one that we can generalize to other systems — is signing the
filename and the hash separately and tying them together with the signing function.

Specifically, the abstract properties of the Lewko-Waters scheme that make the
homomorphic scheme work are as follows:

– The signature contains a component σ1 = gf(m,r) for some fixed group element g
and some function f of the message m and randomness r. (In Lewko-Waters we
take f(m, r) = r, modulo h components.)

– Given σ1, m, and two group elements x and y, there is an efficient algorithm to test
whether y = xf(m,r). (In Lewko-Waters we use the pairing.)

In Section 3 we formalize these properties in the notion of a pre-homomorphic signature.
Our main construction is as follows: given a pre-homomorphic signature, we form

a homomorphic signature on a vector v in a file F by generating signing random-
ness r using a PRF, signing the tag τ identifying F to produce the component σ1 =
gf(m,r) (and perhaps some other component σ2), and then forming the component
σ3 = (

∏
hvii)f(m,r). The signature on v is (σ1, σ2, σ3). As in the Attrapadung-Libert

scheme, homomorphic operations within the same file can be carried out by multiplying
σ3 components, and verification can be carried out using the testing algorithm. As stated

4

this system is “weakly” secure, and we must add some kind of “chameleon hash” to
obtain full security; details are in Section 3.

Examples. Surveying the literature, we see that many pairing-based schemes have the
“pre-homomorphic” structure we define. These include the CDH-based schemes of
Gentry-Silverberg [15], Boneh-Boyen [3], and Waters [24], where signatures have the
same general form as in the Lewko-Waters system, as well as that of Boneh-Boyen [4],
where signatures have the form g1/(x+m+yr) and security is based on the q-strong Diffie-
Hellman problem. In all cases we can use the pairing to determine whether two pairs of
elements have the same discrete log relationship.

Expanding into the RSA space, we see that the signatures of Gennaro, Halevi,
and Rabin [13] also have our “pre-homomorphic” form: signatures are of the form
g1/H(m) mod N , and we can easily test whether y = x1/H(m) by raising both sides
to the power H(m). GHR signatures are secure under the strong RSA assumption;
Hohenberger and Waters [18] demonstrate a hash function H that allows for a proof of
security of the same construction under the (standard) RSA assumption.

Security. As formalized by Boneh et al. [5] for network coding and adapted to the
more general homomorphic setting by Boneh and Freeman [6], an attacker tries to
break a homomorphic signature scheme by adaptively submitting signature queries to a
challenger and outputting a forgery. The forgery is a tuple (τ∗,w∗, σ∗, f∗) consisting
of a “tag” τ∗ that identifies a file, a vector w∗, a signature σ∗, and a function f∗. There
are two winning conditions: either τ∗ does not identify one of the files queried to the
challenger (a Type 1 forgery), or τ∗ does identify such a file F , but w∗ is not equal to
f(v1, . . . ,vk), where v1, . . . ,vk are the vectors in F (a Type 2 forgery).

For our general construction, we give a direct reduction that shows that a Type 1
forgery leads to a break of the underlying signature scheme. Furthermore we show that
if the underlying signature scheme is strongly unforgeable, then certain Type 2 forgeries
also break the underlying scheme. We also observe that since the identifying tags are
chosen by the challenger, the underlying scheme need only be unforgeable against a
weak adversary, i.e., one that submits all of its message queries before receiving the
public key. This relaxation allows for improved efficiency in our construction.

For the remaining Type 2 forgeries we do not have a black-box reduction to the
underlying signature scheme. However, we can do the next best thing: we can abstract
out properties of the scheme’s security proof that allow us to use a forgery in the
homomorphic system to solve the computational problem used to prove the underlying
scheme secure. Specifically, suppose we have a simulator that takes an instance of a
computational problem and mimics the underlying signature scheme. Let f be the “pre-
homomorphic” signing function discussed above, and suppose that the simulator can
produce two group elements x, y with the following properties:

– The simulator can compute xf(m,r) for all message queries.
– The simulator can compute yf(m,r) for all but one message query m∗.
– If r∗ is the randomness used to sign m∗, then the value of yf(m

∗,r∗) can be used to
solve the computational problem.

A typical example of such a simulator is the kind used in security proofs of (strong-)RSA
signatures [13,11,16,17,18]: if {ei} is the set of integers that need to be inverted mod

5

ϕ(N) to answer signature queries, we compute E =
∏
ei and E∗ =

∏
i 6=` ei for a

random ` and set x = gE mod N , y = gE
∗
mod N . Using Shamir’s trick, given y1/e`

we can recover g1/e` and in many cases solve the computational problem.
Given such a simulator, we “program” the homomorphic hash function so that for all

vectors queried by the adversary, Hhom(v) consists of x factors only and therefore all
signatures can be computed. However, if the adversary produces a linear function f∗

described by coefficients (c1, . . . , ck) and a vector w∗ such that w∗ 6=
∑
civi, then we

can show that with noticeable probability the hash of w∗ has a nontrivial y factor, and
therefore a forged signature can be used to solve the computational problem.

Our general security theorem appears in Section 5. An example instantiation, based
on Boneh-Boyen signatures, appears in Section 6. In the full version of this paper [12]
we show how to modify our schemes in bilinear groups to achieve privacy; specifically,
a derived signature on m′ = f(m1, . . . ,mk) reveals nothing about the values of the mi

that cannot be obtained from the value of m′ and the knowledge of f . (We also show
that our RSA schemes do not have this property.)

1.3 Concurrent Work

In concurrent and independent work, Catalano, Fiore, and Warinschi [9] have proposed
two new linearly homomorphic signature schemes that are secure in the standard model:
one based on Boneh-Boyen signatures and secure under the q-SDH assumption, and one
based on Gennaro-Halevi-Rabin signatures and secure under the strong-RSA assumption.
Signatures in these schemes consist only of the σ3 component of our corresponding
schemes, and thus signatures are shorter than those arising from our construction. The
strong-RSA construction also has the feature that the length of integer vectors to be
signed is unbounded. (Our RSA constructions as well as that of [14] require an upper
bound on vector length.)

While the constructions in [9] are proved secure only against an adversary that
queries entire files at once, it is possible to modify the proofs to work against our
stronger adversary. We also expect that if the hash function from [18] is used in the
strong-RSA scheme, the resulting scheme is secure under the (standard) RSA assumption.
However, it does not appear that the techniques of [9] can be used to produce linearly
homomorphic signatures based on Waters signatures and the co-CDH assumption.

Acknowledgments. The author thanks Nuttapong Attrapadung, Dan Boneh, and Benoı̂t
Libert for helpful discussions, and the anonymous referees for their feedback.

2 Homomorphic Signatures

In a homomorphic signature scheme we can sign messages m in some message space
M and apply functions f to signed messages for f in some set of “admissible” functions
F . Each set of messages is grouped together into a “data set” or “file,” and each file is
equipped with a “tag” τ that serves to bind together the messages in that file. Formally,
we have the following.

6

Definition 2.1 ([6]). A homomorphic signature scheme is a tuple of probabilistic,
polynomial-time algorithms (Setup,Sign,Verify,Eval) as follows:

– Setup(1λ, k). Takes a security parameter λ and a maximum data set size k. Outputs
a public key pk and a secret key sk. The public key pk defines a message spaceM,
a signature space Σ, and a set F of “admissible” functions f :Mk →M.

– Sign(sk, τ,m, i). Takes a secret key sk, a tag τ ∈ {0, 1}λ, a message m ∈ M and
an index i ∈ {1, . . . , k}, and outputs a signature σ ∈ Σ. (The index i indicates that
this is the ith message in the file.)

– Verify(pk, τ,m, σ, f). Takes a public key pk, a tag τ ∈ {0, 1}λ, a message m ∈M,
a signature σ ∈ Σ, and a function f ∈ F , and outputs either 0 (reject) or 1 (accept).

– Eval(pk, τ, f, ~σ). Takes a public key pk, a tag τ ∈ {0, 1}λ, a function f ∈ F , and a
tuple of signatures ~σ ∈ Σk, and outputs a signature σ′ ∈ Σ.

Let πi :Mk → M be the function πi(m1, . . . ,mk) = mi that projects onto the ith
component. We require that π1, . . . , πk ∈ F for all pk output by Setup(1λ, k).

Informally, the correctness conditions of our scheme are that (a) a signature produced
by Sign on message m with index i verifies for the projection function πi, and (b) if Eval
is given a function g and signatures that verify for messages mi and functions fi, then
the signature output by Eval verifies for the message g(~m) and the function obtained by
composing g with the fi.

Formally, we require that for each (pk, sk) output by Setup(1λ, k), we have:

1. Let τ ∈ {0, 1}λ be any tag, let m ∈M be any message, and let i ∈ {1, . . . , k} be
any index. If σ ← Sign(sk, τ,m, i), then Verify(pk, τ,m, σ, πi) = 1.

2. Let τ ∈ {0, 1}λ be any tag, let ~µ = (µ1, . . . , µk) ∈Mk be any tuple of messages,
let ~σ = (σ1, . . . , σk) ∈ Σk be signatures produced by zero or more iterative
applications of Eval on the outputs of Sign(sk, τ, µi, i), and let (f1, . . . , fk, g) ∈
Fk+1 be any tuple of admissible functions. Let g ◦ ~f denote the function that sends
~x = (x1, . . . , xk) to g(f1(~x), . . . , fk(~x)). If Verify(pk, τ,mi, fi) = 1 for some
m1, . . . ,mk ∈M, the message g(m1, . . . ,mk) is inM, and the function g ◦ ~f is
admissible, then Verify

(
pk, τ, g(~m), Eval

(
pk, τ, g, ~σ

)
, g ◦ ~f

)
= 1.

Note that if fi = πi is the ith projection function, then the function g ◦ ~f in condition
(2) is equal to g. Thus condition (2) says that if we apply Eval to the function g and
signatures σi = Sign(pk, τ, µi, i) for i = 1, . . . , k, then the resulting signature verifies
for the message g(~µ) and the function g.

A linearly homomorphic signature scheme is a homomorphic signature scheme
where the message spaceM consists of n-dimensional vectors over a ring R, and the set
of admissible functions F consists of R-linear functions from (Rn)k to R. We identify
F with a subset of Rk by representing the function f(v1, . . . ,vk) =

∑
ckvi as the

vector (c1, . . . , ck) ∈ Rk.

Relationship to Network Coding. Definition 2.1 generalizes the definition of Boneh,
Freeman, Katz and Waters for signatures in network coding systems [5, Definition 1].

7

In network coding, a file is parsed as a set of vectors v′1, . . . ,v
′
k ∈ Fnp . Each vector

v′i is then “augmented” by appending the ith unit vector ei, creating k “augmented
vectors” v1, . . . ,vk ∈ Fn+kp . It is these augmented vectors that are transmitted through
the network.

In the network coding protocol, each router in the network creates random linear
combinations of its incoming vectors and passes the resulting vectors downstream. The
vectors’ augmentation carries information about the function that has been applied.
Specifically, the ith unit vector that we append to the ith data vector represents the
projection function πi. If we apply the linear function f : (Fn+kp)k → Fn+kp given by
f(x1, . . . , xk) =

∑
i cixi, then the “augmentation component” of w = f(v1, . . . ,vk)

(i.e., the last k entries) is exactly (c1, . . . , ck). Thus there are two equivalent ways of
viewing a signature on a derived vector w: as a signature on the entire vector w, or as a
signature on the pair (w′, f) where w′ =

∑
i civ

′
i is the first n components of w. Our

definition takes the latter view, as it is the one that generalizes more readily to nonlinear
functions (see e.g. [6]).

Security. The goal of an adversary attacking a homomorphic signature scheme is to
produce a signature on a message-function pair that cannot be derived from previously
seen data and signatures. This can be done in two ways: the adversary can produce a
signature on a function-message pair that doesn’t correspond to a previously seen data
set (a Type 1 forgery), or the adversary can authenticate an incorrect value of a function
on a previously seen data set (a Type 2 forgery).

In our model, the adversary is allowed to make adaptive queries on data sets of his
choice. Our adversary is allowed to query one message at a time and proceed adaptively
within each data set, or even to intersperse queries from different data sets. In contrast,
in previous works the adversary was required to submit all messages in a given data set
at once. This new flexibility implies a third type of forgery: the adversary might output a
function-message pair that corresponds to a previously seen data set, but for which the
adversary has not queried enough messages for the function’s output to be well-defined
on the input data set. We call this forgery a Type 3 forgery.

In our model (and in our constructions) we must avoid collisions between tags τ , so
we have the challenger choose them uniformly from {0, 1}λ. Since the adversary can
intersperse queries from different files, the signer must maintain a state to ensure that
each query is signed with the correct tag and index.

Definition 2.2 (adapted from [6]). A homomorphic signature scheme S = (Setup,Sign,Verify,Eval)
is unforgeable against an adaptive per-message attack (or simply unforgeable) if for
all k the advantage of any probabilistic, polynomial-time adversary A in the following
game is negligible in the security parameter n:

Setup: The challenger runs Setup(1λ, k) to obtain (pk, sk) and gives pk to A. The
public key defines a message spaceM, a signature space Σ, and a set F of admissible
functions f :Mk →M.

Queries: A specifies a filename F ∈ {0, 1}∗ and a message v ∈ M. If v is the first
query for F , the challenger chooses a tag τF uniformly from {0, 1}λ, gives it to A, and
sets a counter iF = 1. Otherwise, the challenger looks up the value of τF previously

8

chosen and increments the counter iF by 1. The challenger then gives to A the signature
σ(F,iF) ← Sign(sk, τF ,v, iF).
The above interaction is repeated a polynomial number of times, subject to the restriction
that at most k messages can be queried for any given filename F . We let VF denote the
tuple of elements v queried for filename F , listed in the order they were queried.

Output: A outputs a tag τ∗ ∈ {0, 1}λ, a message w∗ ∈M, a signature σ∗ ∈ Σ, and a
function f∗ ∈ F .

We say a function f is well-defined onF if either iF = k or iF < k and f(VF ,viF+1, . . . ,vk)
takes the same value for all possible choices of (viF+1, . . . ,vk) ∈Mk−iF . The adver-
sary wins if Verify(pk, τ∗,w∗, σ∗, f∗) = 1 and one of the following hold:

(1) τ∗ 6= τF for all filenames F queried by A (a Type 1 forgery),
(2) τ∗ = τF for filename F , f∗ is well-defined on F , and w∗ 6= f∗(VF) (a Type 2

forgery), or
(3) τ∗ = τF for filename F and f∗ is not well-defined on F (a Type 3 forgery).

The advantage HomSig-Adv[A,S] of A is the probability that A wins the game.

For t ∈ {1, 2, 3}, we say that the scheme is secure against type t forgeries if the
winning condition in Definition 2.2 is restricted to type t forgeries only. The proof of the
following result can be found in the full version of this paper [12].

Proposition 2.3. Let H be a linearly homomorphic signature scheme with message
spaceM ⊂ Rn for some ring R. If H is secure against Type 2 forgeries, then H is
secure against Type 3 forgeries.

Privacy. In addition to the unforgeability property described above, one may wish ho-
momorphic signatures to be private, in the sense that a derived signature on m′ =
f(m1, . . . ,mk) reveals nothing about the values of the mi beyond what can be ascer-
tained from the values of m′ and f . We discuss this property in the full version of this
paper [12].

3 Building Blocks

Pre-homomorphic Signatures. Our generic conversion applies to “hash-and-sign” sig-
natures with a specific form. Namely, a signature on a message m with randomness
r must have a component gf(m,r), where g is some fixed generator of a cyclic group
G and f is some function that may depend on the secret key. Furthermore, if we are
given a valid signature on m with randomness r, then given x and y there is an efficient
algorithm that tests whether y = xf(m,r).

Definition 3.1. Let S = (KeyGen,Sign,Verify) be a signature scheme. LetM be the
space of messages andR be the space of randomness sampled by the signing algorithm.
We say that S is pre-homomorphic if the following three conditions hold for each key
pair (pk, sk) output by KeyGen:

9

1. There is a finite cyclic group G such that Sign defines a map Signsk :M×R →
G× {0, 1}∗, whereM is the message space andR is the space of randomness used
by Sign. We decompose a signature σ as (σ1, σ2) with σ1 ∈ G, and we allow the σ2
component to be empty.

2. The public key pk contains a generator g of the group G in (1), and there is an
efficiently computable function fsk : M× R → Z such that for each signature
(σ1, σ2)← Signsk(m, r), we have σ1 = gfsk(m,r)

3. There is an efficient algorithm Test(pk,m, σ, x, y) that takes input the public key
pk, a message m ∈ M, a signature σ = (σ1, σ2), and group elements x, y ∈ G′
for some group G′ of the same order as G. Suppose Verify(pk,m, σ) = 1. Then
the algorithm outputs 1 if and only if logg(σ1) = logx(y); otherwise, the algorithm
outputs 0. (If Verify(pk,m, σ) 6= 1 then the algorithm’s output is unspecified.)

Homomorphic Hashing. A homomorphic hash is a linear function that maps vectors
defined over some ring R to elements of some finite group G. The ring R is interpreted
as “exponents” of the group G; the following definition makes this concept precise.

Definition 3.2. Let G be a finite cyclic group,R be a ring, and φ : R→ Z be an injective
function. We say (R,φ) is a ring of exponents for G if φ(r) mod |G| defines a ring
homomorphism from R to Z|G|.

We shall assume from now on that the map φ is understood, in which case we say R
itself is a ring of exponents for G and we identify R with its image under φ. In particular,
for g ∈ G and r ∈ R, we interpret gr to mean gφ(r).

While Definition 3.2 is abstract, it is very concrete in our two principal examples:

– If G is a cyclic group of order p and φ is the map that lifts elements of Fp to integer
representatives in [0, p− 1], then (Fp, φ) is a ring of exponents for G.

– If G is any finite cyclic group and φ is the identity map on Z, then (Z, φ) is a ring of
exponents for G. (In our constructions G will be a cyclic subgroup of Z∗N .)

In both cases our interpretation of gr for r ∈ R agrees with standard usage.
We now define the homomorphic hash used in our conversion. Our definition incor-

porates, in a single abstract framework, the homomorphic hash from previous linearly
homomorphic signatures using discrete log groups [21,10,5,2] as well as the RSA-based
construction of Gennaro et al. [14].

Definition 3.3. Let G be a finite cyclic group and let R be a ring of exponents for G.
For any positive integer n, define the following algorithms:

HomHash.Setup(G, n): Choose random elements h1, . . . , hn
R← G and output hk =

(h1, . . . , hn).
HomHash.Eval(hk,v): Given a key hk = (h1, . . . , hn) and a vector v = (v1, . . . , vn) ∈

Rn, output
∏n
j=1 h

vj
j .

For a fixed value of hk, we defineHhom : Rn → G byHhom(v) = HomHash.Eval(hk,v).

10

As the name implies, the key property of HomHash is that it is homomorphic: for
v,w ∈ Rn and a, b ∈ R,

Hhom(v)
a·Hhom(w)b =

(∏n
j=1 h

vj
j

)a
·
(∏n

j=1 h
wj

j

)b
=
∏n
j=1 h

avj+bwj

j = Hhom(av+bw).

(In the middle equality we have used the homomorphic property of Definition 3.2.)

Uniform Sampling. To sample uniformly random elements of G, we raise a generator to
a random exponent. The following definition captures the property this exponent needs
to have.

Definition 3.4. Let G be a finite cyclic group and (R,φ) be a ring of exponents for G.
We say a distribution χ on R is G-uniform if:

1. For x R← χ, the distribution of gφ(x) is statistically closeto the uniform distribution
on G; and

2. If the order of G is not efficiently computable, then for x R← χ, the distribution
of φ(x) mod e is statistically close to the uniform distribution on Ze for all e ∈
[|G|/16, |G|].

If R = Zp and G is a group of (known) order p, we can take χ to be the uniform
distribution on R. If R = Z and G is the multiplicative group of nonzero squares mod
N = pq, we can take χ to be the uniform distribution on [0, a] for any a � |G|. To
obtain a statistical distance of at most 2−m, it suffices to take a = N · 2m.

Chameleon Hashing. As defined by Krawczyk and Rabin [20], a chameleon hash
function is a function C that takes two inputs: a message m and randomness s. It is
collision-resistant and has the additional property that there is a “trapdoor” that allows
collisions to be computed.

To show unforgeability of our homomorphic signature scheme (as opposed to weak
unforgeability) we will embed a “homomorphic” chameleon hash function C.Since the
underlying messages are vectors, the randomness will be an additional vector component
s, and we define C(v, s) = Hhom(v) · us for some fixed (public) u ∈ G. Note that (up
to relabeling) this is simply Hhom applied to the (n+ 1)-dimensional vector (v, s).

Let us a try a first attempt at embedding a “trapdoor” in the homomorphic hash. We
can generate hk and u such that we know discrete logs of the hi and u to some base
g; e.g., hi = gβi , u = gη. When G has prime order p, to evaluate C we can choose a
uniformly random s ∈ Zp, and to hit a fixed target C(v, s) = ga we simply compute s
in Zp such that 〈~β,v〉+ ηs = a. Since this s is unique, the distribution of s conditioned
on (v, C(v, s) = ga) is the same in both cases.

However, if G is a group of unknown order then this attempt fails. To begin, we
cannot sample s from the uniform distribution on Z|G|; in addition, we can’t invert in the
exponent to compute s. To get around these obstacles, we choose s from the distribution
that the simulator in our security proof needs to sample (see Section 5) and we set
η = 1. Specifically, the trapdoor information is β1, . . . , βn and δ1, . . . , δk sampled from
a G-uniform distribution χ (Definition 3.4). To produce a signature on the ith file vector
v, the simulator uses the trapdoor to set s = δi + 〈~β,v〉. Thus in the “forward” direction
we compute a random s by sampling δi and βj from the same distribution χ.

11

More precisely, s is chosen from the following distribution:

Definition 3.5. Let χ be a G-uniform distribution on R and v ∈ Rn be a vector. Let F :
K× {0, 1}λ ×Z→ R be a pseudorandom function whose outputs are indistinguishable
from samples from χ. For a fixed key µ ∈ K, define the distribution Ξτ,v on R as
follows:

1. Compute βj ← Fµ(τ, j) for j = 1, . . . , n.
2. Sample δ ← χ.
3. Output δ + 〈~β,v〉.

(The distribution Ξτ,v depends on µ, but we suppress this in the notation for readability.)

Since our simulator only needs to evaluate the chameleon hash for one file, it does
not need to reuse the values of δ, so we can choose a new uniform δ each time. Note that
if R is finite and χ is the uniform distribution on R, then Ξτ,v is the uniform distribution
on R. In particular, the distribution does not depend on the PRF F , so we have recovered
our “first attempt” above.

4 A Generic Conversion

Let S = (S.KeyGen,S.Sign,S.Verify) be a pre-homomorphic signature scheme. Define
a homomorphic signature scheme HomSig(S) as follows:

HomSig(S).Setup(1λ, k, n): On input a security parameter λ, a maximum data set
size k, and a dimension n, do the following:
1. Compute (pkS , skS) ← S.KeyGen(1λ). Let G,G′ be the groups in Defini-

tion 3.1 and let R be a ring of exponents for G.
(In our instantitaions, we use R = Fp if G has order p, and R = Z if G ⊂ Z∗N .)

2. If the order of G is efficiently computable from pkS , set B1 = B2 = |G|.
Otherwise, choose B1, B2 such that kB1B2 < |G|/32. (We assume that a
lower bound on |G| can be efficiently computed.)

3. Compute hk← HomHash.Setup(G′, n).
4. Choose random t1, . . . , tk, u

R← G′.
5. Choose a pseudorandom function Ψ : K× {0, 1}λ → R, whereR is the space

of randomness sampled by S.Sign, and choose a random key κ R← K.1

6. Choose a pseudorandom function F : K′ × {0, 1}λ × Z → R, and choose a
random key µ R← K′.

7. Output the public key pk = (pkS , hk, {ti}ki=1, u,R,B1, B2) and the secret key
sk = (skS , Ψ, κ, F, µ, pk).

– The message space is M = {v ∈ Rn : ‖v‖ ≤ B1}, where we define ‖v‖ =
maxj{|vj |}. (Recall that we are identifying R with a subset of Z as remarked after
Definition 3.2. If |G| is efficiently computable, thenM is all of Rn.)

1 If S.Sign is deterministic, then we do not need the PRF Ψ .

12

– We represent an R-linear function f : Rn → R as a k-tuple of elements of R;
specifically, the function f(v1, . . . ,vk) =

∑
civi is represented by the vector

(c1, . . . , ck) ∈ Rk. We define ‖f‖ = maxi{|ci|}.
– The set of admissible functions F is all R-linear functions on k-tuples of vectors in
Rn with ‖f‖ ≤ B2. (Note that when R = Z|G| this is all R-linear functions from
(Rn)k to R.)

– We use Hhom(v) to denote HomHash.Eval(hk,v).

HomSig(S).Sign(sk, τ,v, i): On input a secret key sk, a tag τ ∈ {0, 1}λ, a vector
v ∈ Rn, and an index i ∈ {1, . . . , k}, do the following:
1. Compute r ← Ψκ(τ).
2. Compute (σ1, σ2)← S.Sign(skS , τ, r).
3. Using the PRF F , choose s← Ξτ,v (Definition 3.5).

If |G| is known, this is equivalent to choosing s R← Z|G|.

4. Compute σ3 ←
(
ti ·Hhom(v) · us

)fsk(τ,r), where fsk is the function in Defini-
tion 3.1 (2).

5. Output σ = (σ1, σ2, σ3, s).
HomSig(S).Verify(pk, τ,w, σ, f): On input a public key pk, a tag τ ∈ {0, 1}λ, a vector

w ∈ Rn, a signature σ = (σ1, σ2, σ3, s), and a function f = (c1, . . . , ck), do the
following:
1. Compute ζ1 ← S.Verify(pkS , τ, (σ1, σ2)).
2. Let x← (

∏k
i=1 t

ci
i)·Hhom(w)·us and compute ζ2 ← Test

(
pkS , τ, (σ1, σ2), x, σ3

)
,

where Test is the algorithm from Definition 3.1 (3).
3. If ‖w‖ ≤ kB1B2, set ζ3 = 1; otherwise set ζ3 = 0.
4. If ζ1 = ζ2 = ζ3 = 1, output 1; otherwise output 0.

HomSig(S).Eval(pk, τ, f, ~σ): On input a public key pk, a tag τ ∈ {0, 1}λ, a function
f = (c1, . . . , ck), and a vector of signatures ~σ = (σ(1), . . . , σ(k)) where σ(i) =

(σ
(i)
1 , σ

(i)
2 , σ

(i)
3 , s(i)), do the following:

1. Compute σ′3 ←
∏k
i=1

(
σ
(i)
3

)ci , s′ ←
∑k
i=1 cis

(i).

2. Output σ′ = (σ
(1)
1 , σ

(1)
2 , σ′3, s

′).

Lemma 4.1 (Proof in full version [12].). The homomorphic signature scheme HomSig(S)
satisfies the correctness properties of Definition 2.1.

5 Security

Recall that an adversary can break a homomorphic signature scheme by computing any of
three types of forgeries in Definition 2.2. By Proposition 2.3, a Type 3 forgery in a linearly
homomorphic scheme implies a Type 2 forgery. In our security analysis we consider the
remaining two types separately. We further split Type 2 into two subtypes. In a Type 2
forgery for HomSig(S), the adversary outputs a forged signature (σ∗1 , σ

∗
2 , σ
∗
3 , s
∗) and a

tag τ∗ equal to one of the tags τ` returned from a previous query. By our construction of
Eval, any signature derived from the queried signatures corresponding to τ` will have the
same σ1 and σ2 components as in the queried signatures. This motivates the following
definition:

13

– Type 2a: The pair (σ∗1 , σ
∗
2) output by the adversary is not equal to (σ1, σ2) ←

S.Sign(skS , τ∗, r∗) computed by the challenger. (Here r∗ = Ψκ(τ
∗).)

– Type 2b: The pair (σ∗1 , σ
∗
2) output by the adversary is equal to (σ1, σ2)← S.Sign(skS , τ∗, r∗)

computed by the challenger.

Type 1, 2a Forgeries. We show that Type 1 forgery in our homomorphic scheme
HomSig(S) leads to a forgery of the underlying signature scheme S; i.e., a valid signature
on a previously unseen message. In addition, a Type 2a forgery leads to a strong forgery
of the underlying signature scheme, i.e., a new valid signature on a previously queried
message. Since the underlying scheme S is used to sign random messages chosen by the
challenger, we only require that S be unforgeable against a weak adversary.

Theorem 5.1. If S is strongly unforgeable against a weak adversary and Ψ is a secure
PRF, then HomSig(S) is secure against Type 1 and Type 2a forgeries.

Sketch of Proof. We simulate the public key for HomSig(S) using the public key for
S and elements ti = gγi , hj = gαj , and u = gδ with known discrete logarithms. To
sign vector vi, we query τ to the S challenger to obtain (σ1, σ2), and we compute
σ3 = σ

γi+〈~α,vi〉+δs
1 for s R← Ξτ,vi . Given a Type 1 or Type 2a forgery (τ∗,w∗, f∗, σ∗,

the (σ1, σ2) component of σ∗ is a valid forgery for S on the message τ∗. ut

Type 2b Forgeries. In this case we do not have a black-box reduction to the underlying
signature scheme. However, we do not have to prove each instance separately, as we can
abstract out properties of the underlying scheme’s security proof — or more specifically,
of the simulator used in the reduction — that allow our reduction to go through. These
properties are captured in the following definition:

Definition 5.2. Let S be a pre-homomorphic signature scheme andP be a computational
problem. We say that S is δ-simulatable and γ-extractable for P if there is a simulator
Sim that takes an instance I of P , interacts with a signature adversary A that makes at
most q message queries, and has the following properties:

1. The probability that Sim aborts is at most 1− δ.
2. Conditioned on Sim not aborting, the public key pkS produced by Sim is statistically

indistinguishable from a real public key for S.
3. Conditioned on Sim not aborting and for any public key pkS , the signatures produced

by Sim are statistically indistinguishable from real signatures produced by S.
4. Let (σ(`)

1 , σ
(`)
2) be the signature produced by Sim on the `th message query, and let

ω` = logg(σ
(`)
1). (If Sim simulates signatures perfectly, then ω` = fsk(m`, r`) for

implicit randomness r`.) Then Sim can efficiently compute generators x and y of G′
such that

– Sim can efficiently compute xω` for all `;
– Sim can efficiently compute yω` for all ` 6= `∗, where `∗ is a value in 1, . . . , q

randomly chosen by Sim.

14

5. For y and `∗ as above, there is an efficient algorithm Extract that given an integer
b, a value z = yb·ω`∗ , and the internal state of Sim, outputs either ⊥ or a solution
to the instance I of P . Furthermore, if the distribution of b is G-uniform, then the
probability (over the instances of P and the random coins of Sim) that Extract
outputs ⊥ is at most 1− γ.

Theorem 5.3. Suppose S is a δ-simulatable, γ-extractable pre-homomorphic signature
scheme for δ, γ ≥ 1/ poly(λ). If there is no efficient algorithm to solve problem P in
the group G and Ψ and F are secure PRFs, then HomSig(S) is secure against Type 2b
forgeries.

Proof. We describe an algorithm B that takes an instance I of problem P and interacts
with an adversary A in the unforgeability game for HomSig(S). B runs as follows:

Setup: B does the following:
1. Run Sim on instance I to generate a (simulated) public key pkS and elements
x, y ∈ G′ and `∗ ∈ {1, . . . , q} as in Definition 5.2; abort if Sim aborts.

2. Let R,B1, B2 be as in HomSig(S).Setup and let χ be a G′-uniform distribu-
tion on R.

3. For j = 1, . . . , n, choose αj , βj
R← χ and set hj ← xαjy−βj . Let ~α, ~β be the

vectors of αj and βj , respectively, and let hk = (h1, . . . , hn).

4. For i = 1, . . . , k, choose γi, δi
R← χ and set ti ← xγiy−δi . Let ~γ, ~δ be the

vectors of γi, δi, respectively.

5. Choose η R← χ and set u = xηy.

6. Choose random tags τ1, . . . , τ`
R← {0, 1}λ, and abort if τi = τj for i 6= j.

Initialize an empty array A and counters c` = 1 for ` = 1, . . . , q.
7. Send A the public key pk = (pkS , hk, {ti}ki=1, u,R,B1, B2).

Queries: When A makes a query for filename F ∈ {0, 1}∗ and a vector v ∈ Rn, B
does the following:
1. If F is not in the array A, append F to A. Let ` be the index of F in A and let
i = c`. If c` = 1, send the tag τ` to the adversary.

2. Run Sim to produce (simulated) S signatures (σ(`)
1 , σ

(`)
2) on the message τ`,

using (perhaps implicit) randomness r`; abort if Sim aborts.

3. If ` 6= `∗, choose s(`,i) R← Ξ`,v (Definition 3.5).
If ` = `∗, set s(`,i) = δi + 〈~β,v〉

4. Compute the third component of Sign(sk, τ`,v, i) as

σ
(`,i)
3 ← (ti ·Hhom(vi) · us)ω` =

(
xγi+〈~α,vi〉+ηs(`,i)ys

(`,i)−δi−〈~β,vi〉
)ω`

Property 4 of Definition 5.2 implies that we can efficiently compute this value
for all `. (Note that when ` = `∗, there is no y term due to our choice of s.)

5. Send the signature σ(`,i) = (σ
(`)
1 , σ

(`)
2 , σ

(`,i)
3 , s(`,i)) to the adversary.

6. Set c` ← c` + 1.

15

Forgery: When A outputs a Type 2b forgery (τ∗,w∗, σ∗, f∗) with f∗ represented by
c = (c1, . . . , ck) and σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3 , s
∗), B does the following:

1. If τ∗ 6= τ`∗ , abort.
2. Let v1, . . . ,vk be the vectors queried with tag τ∗. Compute

a = 〈~γ, c〉+ 〈~α,w∗〉+ηs∗, b = −〈~δ, c〉−〈~β,w∗〉+ s∗, z = σ∗3/x
a·ω`∗ .

Property 4 of Definition 5.2 implies that we can efficiently compute z.
3. Run Extract(b, z, Sim) and output the result.

In the full version of this paper [12], we analyze the simulation using a series of
games; here we give a sketch of the analysis.

Let W0 be the event that A wins the unforgeability game when interacting with a
real challenger for HomSig(S) and W1 be the event that A wins when interacting with
our simulator. Then we can show that under the hypotheses of the theorem statement,
Pr[W1] ≥ δ

q · Pr[W0]− ε for some negligible ε. (The δ factor represents the simulator
not aborting, and the 1/q factor reflects the simulator guessing the correct `∗.)

If W1 occurs, then the fact that the forgery is a valid signature for the tag τ`∗ implies
that the element z computed in the forgery is equal to yb·ω`∗ . Under the assumption that
b is G′-uniform, property (5) of Definition 5.2 implies that B outputs a solution to the
instance I of problem P with probability at least γ, which completes the proof.

It remains only to show that b is G′-uniform. Let y =
∑
civi −w∗ ∈ Rn and let

ŝ =
∑k
i=1 cis

(`∗,i). It follows from our construction of the s(`
∗,i) that b = 〈~β,y〉+s∗−ŝ.

Since the property of being G′-uniform is invariant under translation by a scalar, it
suffices to show that (1) y 6= 0 mod |G|, and (2) the vector ~β comes from a distribution
statistically close to χn even when conditioned on the adversary’s view. Property (1)
follows from the fact thatA outputs a Type 2b forgery, while property (2) can be verified
by looking at the information about ~α, ~β,~γ, ~δ available to the adversary. ut

6 Example Instantiation: Boneh-Boyen Signatures

We now describe how our construction can be instantiated using the signatures of Boneh
and Boyen [4]; we describe additional instantiations in the full version of this paper [12].

Let G,GT be group of prime order p with an efficiently computable, nondegenerate
bilinear map ê : G × G → GT . (For simplicity we assume here that the pairing is
symmetric; in the full version we consider a general pairing ê : G1 ×G2 → GT .) The
signature scheme BB consists of the following algorithms:

BB.Setup: Choose random α
R← Zp and g R← G. The public key is pk = (g, gα), and

the secret key is sk = α.
BB.Sign: Given a message m ∈ Zp, output σ = g1/(α+m).
BB.Verify: Output 1 if ê(σ, gm · gα) = ê(g, g); otherwise output 0.

An instance of the q-strong Diffie-Hellman problem is a tuple (g, gα, gα
2

, . . . , gα
q

)

for randomly chosen g R← G and α R← Zp. A solution is a pair (r, g1/(α+r)) ∈ Zp ×G.

16

Boneh and Boyen [4, Lemma 9] show that if the q-SDH assumption holds for G, then
BB is strongly unforgeable against a weak adversary making at most q signature queries.

The BB scheme is pre-homomorphic (Definition 3.1): the (deterministic) signing
function is fsk(m) = 1/(α +m) (mod p), and we define BB.Test(pk,m, σ, x, y) to
output 1 if and only if ê(σ, x) = ê(g1, y) (regardless of the output of Verify(pk,m, σ)).

We now describe the Boneh-Boyen simulator SimBB that takes an instance (g, gα, gα
2

, . . . , gα
q

)
of the q-SDH problem and interacts with a weak signature adversary.

Setup: Given distinct messages m1, . . . ,mq ∈ Zp queried by the adversary, form the
polynomial P (t) =

∏q
i=1(t+mi) ∈ Zp[t]. Since P (t) has degree at most q, we can

use the q-SDH instance to compute x = gP (α). Output the public key pk = (x, gα);
the (implicit) secret key is α.

Signatures: Let P`(t) =
∏
i 6=`(t+mi). The signature on m` is σ(`) = x1/(α+m`) =

gP`(α), which can be computed from the q-SDH challenge.

Proposition 6.1. SimBB is 1-simulatable & (1− 1
p)-extractable for the q-SDH problem.

Proof. Conditions 1–3 of Definition 5.2 are obviously satisfied. To verify condition 4, let
P (t) and P`(t) be as above. Let x = gP (α) and y = gP`∗ (α). We have σ(`) = x1/α+m` ,
so ω` = 1/(α+m`) and the simulator can compute xω` for all ` and yω` for all ` 6= `∗.

To verify the last condition, write P`∗(t)/(t+m`∗) = Q(t)+ c/(t+m`∗) for some
polynomial Q ∈ Zp[t] of degree at most q − 2 and c ∈ Zp. Since the messages mi are
distinct, we have c 6= 0. Given an integer b and the element

z = yb·ω`∗ = gb·P
∗(α)/(α+m`∗) = gb·(Q(α)+c/(α+m`∗)),

we let Extract output
(
m`∗ , (z

1/b/gQ(α))1/c
)
, or ⊥ if b = 0 mod p. Thus for uniform

b in Zp, Extract outputs a solution to the q-SDH problem with probability 1− 1/p. ut

Corollary 6.2. If the q-SDH assumption holds for G, then HomSig(BB) is unforgeable.

References

1. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Transactions on
Information Theory 46(4), 1204–1216 (2000)

2. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model.
In: Public Key Cryptography — PKC ’11. Springer LNCS, vol. 6571, pp. 17–34 (2011)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random
oracles. In: Advances in Cryptology — EUROCRYPT ’04. Springer LNCS, vol. 3027, pp.
223–238 (2004)

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption
in bilinear groups. J. Cryptology 21, 149–177 (2008), extended abstract in Advances in
Cryptology — EUROCRYPT ’04

5. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes
for network coding. In: Public-Key Cryptography — PKC ’09. LNCS, vol. 5443, pp. 68–87.
Springer (2009)

17

6. Boneh, D., Freeman., D.M.: Homomorphic signatures for polynomial functions. In: Paterson,
K. (ed.) Advances in Cryptology — EUROCRYPT 2011. Springer LNCS, vol. 6632, pp.
149–168 (2011), full version available at http://eprint.iacr.org/2011/018

7. Boneh, D., Freeman, D.M.: Homomorphic signatures over binary fields and new tools for
lattice-based signatures. In: Public Key Cryptography — PKC 2011. Springer LNCS, vol.
6571, pp. 1–16 (2011), full version available at http://eprint.iacr.org/2010/
453

8. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applications. In:
Paterson, K.G. (ed.) Advances in Cryptology — EUROCRYPT 2011. Springer LNCS, vol.
6632, pp. 207–223 (2011)

9. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard
model. Cryptology ePrint Archive, Report 2011/696 (2011), http://eprint.iacr.
org/2011/696

10. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. International Journal of
Information and Coding Theory 1(1), 3–14 (2009)

11. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Public Key
Cryptography — PKC 2003. Springer LNCS, vol. 2567, pp. 116–129 (2003)

12. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic frame-
work. Cryptology ePrint Archive, Report 2012/060 (2012), http://eprint.iacr.org/
2012/060

13. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle.
In: Advances in Cryptology — Eurocrypt 1999. LNCS, vol. 1592, pp. 123–139 (1999)

14. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In:
Public Key Cryptography — PKC ’10. Springer LNCS, vol. 6056, pp. 142–160 (2010)

15. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Advances in Cryptology
— ASIACRYPT 2002, Springer LNCS, vol. 2501, pp. 548–566. Springer, Berlin (2002)

16. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Advances in
Cryptology — CRYPTO 2008. Springer LNCS, vol. 5157, pp. 21–38 (2008)

17. Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under standard assumptions.
In: Advances in Cryptology — EUROCRYPT ’09. Springer LNCS, vol. 5479, pp. 333–350
(2009)

18. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assumption. In:
Advances in Cryptology — CRYPTO ’09. Springer LNCS, vol. 5677, pp. 654–670 (2009)

19. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Topics
in Cryptology — CT-RSA 2002. Springer LNCS, vol. 2271, pp. 244–262 (2002)

20. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Network and Distributed System Security
Symposium (2000)

21. Krohn, M., Freedman, M., Mazières, D.: On-the-fly verification of rateless erasure codes
for efficient content distribution. In: Proc. of IEEE Symposium on Security and Privacy. pp.
226–240 (2004)

22. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE
with short ciphertexts. In: Theory of Cryptography — TCC 2010. Springer LNCS, vol. 5978,
pp. 455–479 (2010)

23. Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Info. Theory 49(2),
371–381 (2003)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Advances in
Cryptology — EUROCRYPT ’05. Springer LNCS, vol. 3494, pp. 320–329 (2005)

18

http://eprint.iacr.org/2011/018
http://eprint.iacr.org/2010/453
http://eprint.iacr.org/2010/453
http://eprint.iacr.org/2011/696
http://eprint.iacr.org/2011/696
http://eprint.iacr.org/2012/060
http://eprint.iacr.org/2012/060

	Improved Security for Linearly Homomorphic Signatures: A Generic Framework
	 David Mandell Freeman

