
Efficient Network Coding Signatures in the
Standard Model

Dario Catalano1, Dario Fiore2? and Bogdan Warinschi3

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy.
catalano@dmi.unict.it

2 Department of Computer Science, New York University, USA
fiore@cs.nyu.edu

3 Dept. Computer Science, University of Bristol, UK
bogdan@cs.bris.ac.uk

Abstract. Network Coding is a routing technique where each node may
actively modify the received packets before transmitting them. While this
departure from passive networks improves throughput and resilience to
packet loss it renders transmission susceptible to pollution attacks where
nodes can misbehave and change in a malicious way the messages trans-
mitted. Nodes cannot use standard signature schemes to authenticate the
modified packets: this would require knowledge of the original sender’s
signing key. Network coding signature schemes offer a cryptographic so-
lution to this problem. Very roughly, such signatures allow signing vector
spaces (or rather bases of such spaces), and these signatures are homo-
morphic: given signatures on a set of vectors it is possible to create
signatures for any linear combination of these vectors. Designing such
schemes is a difficult task, and the few existent constructions either rely
on random oracles or are rather inefficient. In this paper we introduce two
new network coding signature schemes. Both of our schemes are provably
secure in the standard model, rely on standard assumptions, and are in
the same efficiency class as previous solutions based on random oracles.

1 Introduction

Network Coding [1, 23] is an elegant and novel routing approach that is alter-
native to traditional routing where each node simply stores and forwards the
incoming packets. The main difference is that in Network Coding intermediate
nodes can modify data packets in transit, still allowing the final recipients to
obtain the original information.

More specifically, we consider a network setting where a source node wants
to transmit a piece of information (a file) to a set of target nodes. The source
node splits the file into m network packets and sends them to its neighboring
nodes. An intermediate node who receives a set of packets from its incoming
links, modifies them and sends the resulting packets into the network through
its outgoing edges. In Linear Network Coding packets are seen as vectors in a

? Work done while at École Normale Supérieure.

linear space over some field and the modifications by the intermediate nodes
are linear combinations of these vectors. Such linear combinations can be per-
formed by using ad-hoc coefficients (e.g., fixed by the application or defined by
a central authority), or random coefficients chosen by the intermediate nodes in
a suitable domain. The latter case is referred to as Random (Linear) Network
Coding. In addition to offering a more decentralized approach, random network
coding has been shown to perform almost as well as network coding with ad-hoc
coefficients [12, 16, 18]. One important aspect of linear network coding is that it
enables target nodes to recover the original information with high probability if
they receive sufficiently many correct packets. Interestingly, the target nodes can
do so without knowledge of the coefficients chosen by the intermediate nodes.
We give a more detailed description of these techniques in Section 2.2.
The original motivation for network coding was to increase throughput in de-
centralized networks and indeed, the technique performs well in wireless/ad-hoc
network topologies where a centralized control may not be available. For exam-
ple, it has been suggested as a good means to improve file sharing in peer-to-peer
networks [22], and digital content distribution over the Internet [15].
The main issue of (random) linear network coding is its susceptibility to pol-
lution attacks in which malicious nodes (or simple network error transmission)
may inject into the network invalid packets to prevent the target nodes from
reconstructing the original information. In the specific setting of linear network
coding, an invalid packet is simply a vector outside the space spanned by the
initial m vectors sent by the source node. In turn, intermediary nodes can later
use the invalid incoming vectors thus generating even more invalid packets. This
means that errors may dramatically propagate through the network, and ad-
versaries might easily mount a Denial of Service attack to prevent the file from
being reconstructed by only injecting a few invalid packets.
Two main approaches have been proposed to deal with this problem. One is
information-theoretic and uses error-correction techniques [17, 18, 20]. Unfortu-
nately, this introduces redundant information that badly affects the communi-
cation efficiency. The other approach (the one considered in our work) relies on
computational assumptions and uses cryptographic techniques. Here, the main
idea is to provide a way to authenticate valid vectors. However, standard au-
thentication techniques, such as MACs or digital signatures, do not solve the
problem as we want to grant the intermediate nodes some malleability on the
received vectors.
The main tool that has been proposed to achieve this goal employs network cod-
ing signature schemes [7]. In a few words, a network coding signature allows to
sign a linear subspaceW ⊂ FN in such a way that a signature σ onW is verified
only by those vectors w ∈ W.
These schemes can be constructed either from homomorphic hash functions, or
from homomorphic signatures. Very briefly, a homomorphic hash function H
satisfies the property that for any vectors a, b and scalar coefficients α and β,
it holds that H(αa+ βb) = H(a)αH(b)β . Constructions based on homomorphic
hashing [22, 16, 7, 14] are less recent and their security can be based on well-

established assumptions in the standard model, such as solving discrete log or
factoring. The main drawback of this approach is that the public key and the
authentication information that has to be sent along with the packets are linear
in the size m of the vector space and thus defeats the purpose of increasing the
throughput. Furthermore, the sender has to know the entire file before sending
the first packet (which is undesirable for example in the ubiquitous streaming
applications).
In contrast, solutions based on homomorphic signatures [7, 14, 3, 11] are more
communication-efficient, even though they are computationally somewhat more
expensive than those built from homomorphic hashing. In a nutshell, a homo-
morphic signature is a special type of signature scheme that enjoys a linear
homomorphic property: for any vectors a, b and scalar coefficients α and β, it
holds that Sign(αa+βb) = Sign(a)αSign(b)β . More formally, this means that the
scheme is equipped with a Combine algorithm that given µ signatures σ1, . . . , σµ
on vectors w1, . . . , wµ respectively, and scalar coefficients α1, . . . , αµ, it can com-
pute a signature σ which is valid with respect to the vector w =

∑µ
i=1 αi · wi.

Importantly, the combination operation does not require the secret key. The
security notion for this primitive requires that an adversary who receives signa-
tures on a set of vectors w1, . . . , wm should be able to generate only signatures
on vectors that lie in the linear span of (w1, . . . , wm). It should be clear at this
point how this primitive can be used to secure the network coding-based appli-
cation (see Section 2.4 for a detailed description) and, more generally, enable
authenticated computation of linear functions of signed data [2].

Related Work. Since our work focuses on homomorphic network coding sig-
natures, in this section we describe the most significant works in this topic. The
notion of homomorphic signature was first introduced by Johnson, Molnar, Song
and Wagner in a more general setting [21] and only recently adapted to the par-
ticular application for network coding by Boneh, Freeman, Katz and Waters [7].
In their work, Boneh et al. propose an efficient construction over bilinear groups
and prove its security from the CDH assumption in the random oracle model.
One year later, Gennaro, Katz, Krawkzyk and Rabin [14] proposed another im-
plementation of homomorphic network coding signatures based on RSA in the
random oracle model. Moreover, as an additional contribution, they showed that
even if the homomorphic signature works over a large finite field (or over the
integers), it is possible to use small coefficients in the linear combinations, and
this significantly improves the efficiency at the intermediate nodes in the net-
work coding application. In [9] Boneh and Freeman give the construction of a
homomorphic network coding signature based on lattices. As a new property,
their scheme allows to authenticate vectors defined over binary fields, and is
based on the problem of finding short vectors in integer lattices. The security
of this construction relies on the random oracle heuristic. In addition, the same
paper shows a scheme in the standard model, but this scheme is only k-time
secure (a signing key can be used to issue only k signatures, where k is fixed
in advance). In a subsequent work [8], Boneh and Freeman proposed the notion
of homomorphic signatures for polynomial functions. While all previous works

considered schemes whose homomorphic property allows to compute only linear
functions on the signed data, the scheme in [8] is capable to evaluate multivariate
polynomials. Their construction uses ideal lattices and its security is proven in
the random oracle model.

The problems associated to the use of the random oracles are well-known
and significant research effort is invested in devising implementations that do
not rely on this heuristic. For network coding such constructions proved elusive
– and we are only aware of two such proposals [3, 11]4.

In [3] Attrapadung and Libert give an implementation over bilinear groups
of composite order, using the dual system techniques of Waters [24] to carry on
the security proof. Unfortunately the scheme relies on the setting of composite
order groups and is thus highly inefficient. Furthermore, even if the scheme were
to be converted to gropus of prime order (as suggested, but not fully described
in [3]), the efficiency gap between the resulting construction and those in the
random oracle solutions is still significant.

The most recent proposal is by Catalano, Fiore and Warinschi who propose
a homomorphic network coding signature as an application of the notion of
Adaptive Pseudo-Free groups [11]. In particular, the concrete implementation is
secure in the standard model under the Strong RSA assumption. While from the
point of view of computation the efficiency of this scheme is not far from that of
the random oracle construction of Gennaro et al. which also works in the RSA
group, the signature’s size in [11] is much worse than that in [14], as it is very
affected by the large random exponent s (that is 1346 bits long if one considers
80 bits of security).

Our Contribution. In this work we design two new homomorphic network
coding signatures with security proofs in the standard model. Our realizations
outperform in efficiency the two currently known constructions in the standard
model [3, 11] and achieve computational and communication efficiency compa-
rable to those of the random oracle implementations [7, 14].

Our first scheme works over asymmetric bilinear groups of prime order p,
and is secure under the q-Strong Diffie Hellman assumption (q-SDH for short)
introduced by Boneh and Boyen [6]. The construction adapts ideas from the
signature by Hofheinz and Kiltz [19] which in turn is based on the concept of
Programmable Hash Functions. There, a signature is a random r ∈ Zp and a
group element X that is a solution of Xz+r = H(M), where z is the secret
key, and H is the programmable hash function. To obtain a solution for signing
vector spaces along the same lines, we developed some non-trivial extensions
which roughly speaking deal with the fact that in our case the same random
exponent has to be reused for several signatures. In our construction, a signature
on a vector w = (u, v) ∈ Fm+n

p consists of a random element s ∈ Zp and the

4 We mention that the random oracle based solution given in [7] might be turned into
a scheme secure in the standard model if one is willing to give up the homomorphic
property. This makes the resulting solution much less interesting in practice as the
signer would need to sign all the vectors in the given subspace at once.

solution X to the following equation:

Xz+fid = hshu1
1 · · ·humm gv11 · · · gvnn

where fid ∈ Zp represents the random file identifier and z is the secret key. We
can therefore achieve rather short signatures: one group element plus an element
of Zp, that is, about 512 bits for 128 bits of security.

Our second realization works over Z∗N where N is the product of two safe
primes pq. The scheme can be seen as an optimization of the construction by
Catalano-Fiore-Warinschi where the random exponent s can now be taken as
small as 2k bits (where k denotes the desired bit security). The signature on a
vector w = (u, v) ∈ Fm+n is a random integer s ∈ Ze and the solution x to the
equation

xe = gshu1
1 · · ·humm gv11 · · · gvnn mod N

where e is a random prime representing the file identifier, and g, h1, . . . , hm,
g1, . . . , gn ∈ Z∗N are in the public key. As an additional improvement, we show
how to do linear combinations (mod e), allowing for the signature scheme to be
used in networks with paths of any lengths. This was not the case in [11] and [14]
where the parameters have to be set according to a bound L on the maximum
length of a path between the source and the target nodes in the network.

A more detailed efficiency analysis of our schemes as well as comparisons
with previous solutions, are given in Section 5.

Concurrent work. In concurrent and independent work Freeman has proposed
a semi-generic transformation for building linearly-homomorphic signatures from
standard signature schemes [13]. This transformation yields new linearly homo-
morphic signature schemes that are secure in the standard model under a new
security notion (introduced in [13]) which is slightly stronger than the one con-
sidered in our work. Our schemes are different from the ones obtained in [13]
enjoy better efficiency. It is of future interest to check whether they also satisfy
the stronger notion of security proposed in [13].

2 Background and Definitions

In what follows we will denote with k ∈ N a security parameter. We say that
a function ε : N → R+ is negligible if and only if for every positive polynomial
p(k) there exists a k0 ∈ N such that for all k > k0: ε(k) < 1/p(k). If S is a set,

we denote with x
$← S the process of selecting x uniformly at random in S. Let

A be a probabilistic algorithm. We denote with x
$← A(·) the process of running

A on some appropriate input and assigning its output to x.

2.1 Computational Assumptions

An integer N is called RSA modulus if it is the product of two distinct prime
numbers pq. The Strong RSA Assumption was introduced by Baric and Pfitz-
mann in [4]. Informally, the assumption states that given a public RSA modulus

N , and a random value z ∈ ZN , any PPT adversary cannot compute an e-th
root of z for an e 6= 1 of its choice.

Definition 1 (Strong RSA Assumption). Let N be a random RSA modulus
of length k where k ∈ N is the security parameter, and z be a random element
in ZN . Then we say that the Strong RSA assumption holds if for any PPT
adversary A the probability

Pr[(y, e)←A(N, z) : ye = z mod N ∧ e 6= 1]

is negligible in k.

Let G,G′ and GT be bilinear groups of prime order p such that e : G×G′ →
GT is a bilinear map. The q-Strong Diffie-Hellman Assumption (q-SDH for short)
was introduced by Boneh and Boyen in [5] and it is defined as follows.

Definition 2 (q-SDH Assumption). Let k ∈ N be the security parameter,
p > 2k be a prime, and G,G′,GT be bilinear groups of the same order p such
that g and g′ are the generators of G and G′ respectively. Then we say that
the q-SDH Assumption holds in G,G′,GT if for any PPT algorithm A and any
q = poly(k), the following probability (taken over the random choice of x and
the random coins of A) is negligible in k

Pr[A(g, gx, gx
2

, · · · , gx
q

, g′, (g′)x) = (c, g1/(x+c))]

2.2 Background on Linear Network Coding

In linear network coding [1, 23] a file to be transmitted is viewed as a set of
n-dimensional vectors (v(1), . . . , v(m)) defined over the integers or over some
finite field. To transmit a file V = (v(1), . . . , v(m)) the source node creates m
augmented vectors (w(1), . . . , w(m)) where each w(i) is obtained by prepending
to v(i) a vector u(i) of length m, i.e., w(i) = (u(i), v(i)). Precisely, (u(1), . . . , u(m))
represents the canonical basis of Zm, that is u(i) is the i-th unitary vector, with
1 in position i and 0 elsewhere. This way, the vectors w(1), . . . , w(m) form a basis
of a subspace W ⊂ Fm+n. Vectors w(i) of the above form are called properly
augmented vectors while (w(1), . . . , w(m)) is a properly augmented basis.

In this setting, the source node sends these vectors as packets in the network.
Whenever a node in the network receives (w(1), . . . , w(µ)) on its µ incoming
edges, it computes a linear combination ŵ of the received vectors and transmits
ŵ in the network through its outgoing edges. The coefficients used in the linear
combination can be fixed by the application, established by a central authority,
or they can be randomly chosen by each node. The latter is the case considered
in our work and it is called “random network coding”. As shown in [12, 16, 18],
random network coding performs almost as well as linear network coding with
ad-hoc coefficients. To recover the original file a node must receive m (valid)
vectors ŵ(1), . . . , ŵ(m) of the form described before, i.e., ŵ(i) = (û(i), v̂(i)). In
particular, in order for the file to be reconstructed, the vectors (û(1), . . . , û(m))

need to be linearly independent. Let denote with Û the matrix whose rows are
the vectors (û(1), . . . , û(m)) and with V̂ the matrix whose rows are the vectors
(v̂(1), . . . , v̂(m)). Then, the original file can be retrieved by computing

V = Û−1 · V̂.

Although the above described approach solves the problem of recovering the
information in network coding, as we mentioned in the introduction, the main
issue in this approach is that it is susceptible to pollution attacks where malicious
nodes may inject invalid packets in the network so that the reconstruction of
the original file becomes impossible. This is particularly sensitive also because
a single error introduced by a (malicious) node can be propagated by honest
nodes.

Before describing solutions, we observe how two trivial approaches do not
solve the problem. First, the source node cannot simply sign the transmitted
packets as the receivers are likely to get modified versions of them (by the effect
of the linear combinations). Second, the source could sign the entire file. This
would prevent the receivers to accept incorrect files, but it does not provide an
efficient way for the receivers to recover the correct file as malicious nodes can
still inject invalid packets to mount a DoS attack.

To mitigate the effect of pollution attacks two main approaches have been
proposed. They can be divided into two categories: information-theoretic and
computational.

Information theoretic approaches [17, 18, 20] use error-correction techniques
to introduce redundancy in the transmitted vectors so that it is possible to
reconstruct the original file as long as the number of compromised vectors is
not too big. These methods have the advantage of not relying on computational
assumptions, but, unfortunately, they introduce a significant overhead in the
communication.

On the other hand, approaches based on computational assumptions use
cryptographic techniques to provide a way for honest nodes to verify that the
received packets are correct. The main tool to achieve this goal are network coding
signature schemes. Roughly speaking, the basic requirement of such schemes is
that they allow to efficiently check if a given vector is valid, i.e., it has been
generated as linear combination of initial (valid) vectors w(1), . . . , w(m). Two
classes of network coding signatures are known: those based on homomorphic
hashing [22, 16, 7], and those using homomorphic signatures [21, 7, 14, 11].

In our work, we focus on the second class of schemes, that is homomorphic
network coding signatures. We give relevant definitions in the following section.

2.3 Network Coding Signatures

In this section we give the definition of a network coding signature scheme and
its security notion, as done by Boneh et al. in [7]. As we mentioned before, a
network coding signature scheme allows to sign a subspace W ⊂ FN so that any
vector w ∈ W is accepted, whereas vectors w /∈ W are rejected. In particular, in

our work we focus on subspaces W that are described by a properly augmented
basis.

We assume that a file is associated with a file identifier fid that is chosen by
the source node before the transmission. In general, such fid can be the filename.
Though, in our systems we need such file identifiers to be randomly chosen by
the source node. Thus we think of fid as an element of an efficiently samplable
set I.

Definition 3 (Network Coding Signatures). A network coding signature is
defined by a triple of algorithms (NetKG,NetSign,NetVer) such that:

NetKG(1k,m, n) On input the security parameter k and two integers m,n, this
algorithm outputs (vk, sk) where sk is the secret signing key and vk is the
public verification key. m defines the dimension of the vector spaces while n
is an upper bound to the size of the signed vectors. We assume that the public
key implicitly defines the field F over which vectors and linear combinations
are defined.

NetSign(sk, fid,W) The signing algorithm takes as input the secret key sk, a ran-
dom file identifier fid and a properly augmented basis of a m-dimensional
subspace W ⊂ Fm+` (with 1 ≤ ` ≤ n), and it outputs a signature σ.

NetVer(vk, fid, w, σ) Given the public key vk, a file identifier fid, a vector w ∈
Fm+` (for 1 ≤ ` ≤ n) and a signature σ, the algorithm outputs 0 (reject) or
1 (accept).

For correctness, we require that for all honestly generated key pairs (vk, sk), all
identifiers fid ∈ I, all 1 ≤ ` ≤ n, and all W ⊂ Fm+`, if σ←Sign(sk, fid,W) then
Ver(vk, fid, w, σ) = 1 ∀w ∈ W.

Security of Network Coding Signatures. The security notion of network
coding signatures is defined by the following game between a challenger and an
adversary A:

Setup. The adversary chooses positive integers m,n and gives them to the

challenger. The challenger runs (vk, sk)
$← NetKG(1k,m, n) and gives vk to

A.
Signing queries. The adversary can ask signatures on vector spaces Wi ⊂

Fm+` (with ` ≤ n) of its choice, specified by giving to the challenger a
properly augmented basis describing Wi. The challenger chooses a random

file identifier fidi, runs σi
$← NetSign(sk, fidi,Wi) and returns σi to A.

Forgery. The adversary outputs a tuple (fid∗, w∗, σ∗).

We say that the adversary wins this game if NetVer(vk, fid∗, v∗, σ∗) = 1 and
either one of the following cases holds: (1) fid∗ 6= fidi for all i (type-I forgery);
(2) fid∗ = fidi for some i, but w∗ /∈ Wi (type-II forgery).

We define the advantage of A into breaking a network coding signature
scheme, AdvNC(A), as the probability that A wins the above security game, and
we say that a network coding signature is secure if for any PPT A, AdvNC(A)
is at most negligible in the security parameter.

Finally, we give the formal definition of homomorphic network coding signa-
ture.

Definition 4 (Homomorphic Network Coding Signatures). A homomor-
phic network coding signature scheme is defined by a 4-tuple of algorithms
(NetKG,NetSign,NetVer,Combine) such that:

NetKG(1k,m, n) On input the security parameter k and two integers m,n ≥ 1,
this algorithm outputs (vk, sk) where sk is the secret signing key and vk is the
public verification key. Here, m defines the dimension of the vector spaces
and n + m is an upper bound to the size of the signed vectors. We assume
that the public key implicitly defines the field F over which vectors and linear
combinations are defined, and that it contains the description of an efficiently
samplable distribution for fid.

NetSign(sk, fid, w) The signing algorithm takes as input the secret key sk, a file
identifier in the support of fid and a vector w ∈ F`+m (with 1 ≤ ` ≤ n) and
outputs a signature σ.

NetVer(vk, fid, w, σ) Given the public key vk, a file identifier fid, a vector w ∈ F`
and a signature σ, the algorithm outputs 0 (reject) or 1 (accept).

Combine(vk, fid, {(w(i), αi, σi)}µi=1) This algorithm takes as input the public key
vk, a file identifier fid, and a set of tuples (w(i), αi, σi) where σi is a signature,
w(i) ∈ F` is a vector and αi ∈ F is a scalar. This algorithm outputs a new
signature σ such that: if each σi is a valid signature on vector w(i), then σ is
a valid signature for w obtained from the linear combination

∑µ
i=1 αi · w(i).

For correctness, we require that for all m,n ≥ 1, all honestly generated pairs

of keys (vk, sk)
$← NetKG(1k,m, n) the following hold:

– For all fid ∈ I and all w ∈ Fm+`, if σ
$← NetSign(sk, fid, w), then

NetVer(vk, fid, w, σ) = 1.
– For all fid ∈ I, any µ > 0, and all sets of triples {(w(i), αi, σi)}µi=1, if

NetVer(vk, fid, w(i), σi) = 1 for all i, then it must be the case that

NetVer(vk, fid,
∑

αiw
(i),Combine(vk, fid, {(w(i), αi, σi)}µi=1) = 1.

As noticed by Boneh et al. [7], homomorphic network coding signatures are a
special case of network coding signatures.

2.4 An Efficient Linear Network Coding Scheme

In this section we specify the linear network coding scheme considered in our
work. Basically, it is the random network coding solution described in the pre-
vious section except that we consider some optimizations recently proposed by
Gennaro et al. in [14]. The scheme works as follows.

The application specifies four global parameters m,n,M, p′ ∈ N such that
m,n ≥ 1, and p′ is a prime. In this setting, a file V to be transmitted is always
encoded as a set of m vectors (v(1), . . . , v(m)) where each v(i) takes values in F`M

where M is a bound on the initial magnitude of each coordinate and ` ≤ n. Since
m is fixed in advance by the application, at the time of the transmission, once the
size of the file V is known, the total length of information in every vector v(i) is
determined. Thus, ` can be chosen accordingly as any number between 1 and n.
The freedom in choosing ` is important as different choices have different impact
on the efficiency of the scheme: a smaller ` saves bandwidth, while a larger ` saves
computation (see [14] for more details). The parameter p′ specifies the domain
P = {0, . . . , p′−1} from which the network nodes sample the coefficients for the
linear combination. Linear combinations can then be performed either over the
integers, or modulo some large prime p (which is specified by the application
or by the signature scheme). Gennaro et al. show that taking a small p′ (e.g.,
p′ = 257) allows to improve the performances of the network coding scheme as
well as to keep a good decoding probability. In particular, they show that this
holds in both cases when the linear combinations are done over the integers, or
over some large prime p > M . Precisely, in the latter case, the performances
remain better (than the case when coefficients are chosen in Fp) as long as the
bit-size of p′ is negligible compared to the bit-size k of the prime p.

Global application parameters: m,n,M, p′ ∈ N as specified above.
Key Generation: Each source node generates a pair of keys

(vk, sk)
$← NetKG(1k,m, n) of a homomorphic network coding signature

scheme.
File transmission: On input a file V represented by m vectors v(1), . . . , v(m) ∈

F`M (with ` ≤ n), the source node generates augmented vectors w(1), . . . , w(m),
i.e., w(i) = (u(i), v(i)) where u(i) is the i-th unity vector. Next, it chooses a

random file identifier fid
$← I (recall that I is specified by vk), and for i = 1

to m, it generates σi
$← NetSign(sk, fid, w(i)). Finally, it sends the tuples

(fid, w(i), σi) on its outgoing edges.
Intermediate nodes: When a node receives µ vectors w(1), . . . , w(µ) and sig-

natures σ1, . . . , σµ, all corresponding to file fid, it proceeds as follows. First, it
checks that NetVer(vk, fid, w(i), σi) = 1, for i = 1 to µ. It discards all the vec-
tors (and signatures) that did not pass the check. For the remaining vectors

(for simplicity, let they be w(1), . . . , w(µ)), the node chooses α1, . . . , αµ
$← P ,

and computes: w =
∑µ
i=1 αi · w(i), σ←Combine(vk, fid, {(w(i), αi, σi)}µi=1).

Finally, the node sends (fid, w, σ) on its outgoing edges.
Target node: Once a node obtains linearly independent vectors w(1), . . . , w(m)

together with the respective signatures and the same file identifier fid, it first
checks that they are all valid, i.e., it verifies that NetVer(vk, fid, w(i), σi) = 1,
∀i = 1, . . . ,m. Given m valid vectors, the node can reconstruct the original
file (v(1), . . . , vm) as described in Section 2.2.

3 A construction based on SDH

In this section we propose the construction of a network coding homomorphic
signature based on the Strong Diffie-Hellman assumption.

Recall that we are in the setting of the linear network coding application
described in the previous section. A file V is represented as a set of m vectors
(v(1), . . . , v(m)) such that each v(i) ∈ F`p where p is a (publicly known) prime
specified by the key generation algorithm and ` ≤ n. Notice that all the oper-
ations with the vectors are thus defined over the finite field Fp, i.e., mod p.
Moreover, the space for file identifiers is the set Z∗p where p is the same prime
specified in the key generation.

Below we give a precise description of the scheme’s algorithms5:

NetKG(1k, n,m): Let G,G′,GT be bilinear groups of prime order p such that
e : G × G′ → GT is a bilinear map and g ∈ G, g′ ∈ G′ are two gen-

erators. Pick a random z
$← Zp and set Z = (g′)z. Choose random el-

ements h, h1, . . . , hm, g1, . . . , gn
$← G. Output the public verification key

vk = (p, g, g′, Z, h, h1, . . . , hm, g1, . . . , gn) and the secret key sk = z.
NetSign(sk, fid, w): Let w = (u, v) ∈ Fm+n

p be a properly augmented vector, and
let fid be randomly chosen in Z∗p. The signing algorithm proceeds as follows.

Pick a random s
$← Zp and compute

X =

(
hs

m∏
i=1

huii

n∏
i=1

gvii

) 1
z+fid

Finally, output σ = (X, s).
NetVer(vk, fid, w, σ) Let σ = (X, s) ∈ G× Zp. This algorithm checks whether σ

is a valid signature on a vector w = (u, v) w.r.t. the file identifier fid.
If the following equation holds, then output 1, otherwise output 0:

e(X,Z · (g′)fid) = e(hs
m∏
i=1

huii

n∏
i=1

gvii , g
′).

Combine(vk, fid, {w(i), αi, σi}µi=1): Recall that w(i) = (u(i), v(i)) where u(i) ∈ Fmp
and v(i) ∈ Fnp , and that αi ∈ Fp is a randomly chosen coefficient, for all
i ∈ {1, . . . , µ}. Moreover, recall that in our application this algorithm is run
when every σi has been verified as a valid signature on w(i) w.r.t. fid.
The algorithm computes

X =

µ∏
i=1

(Xi)
αi , s =

µ∑
i=1

αi · si mod p

and outputs σ = (X, s).

Efficiency. A signature consists of one element of G and one element of Zp.
Signing costs a multi-exponentiation in G, whereas verification needs to compute
two pairings, one exponentiation in G′, i.e., (g′)fid, and one multi-exponentiation.

5 For ease of exposition, in our description we assume that the vectors w have the
maximum length m+n. In fact, in our scheme any shorter vector with ` < n can be
augmented by appending n− ` zeros.

We state the following theorem (for lack of space its proof appears in the full
version of this paper [10])

Theorem 1. If the q-SDH assumption holds in (p,G,G′,GT) for any polyno-
mial q, then the scheme described above is a secure network coding signature.

4 A (Strong) RSA based realization

In this section we describe our strong-RSA based implementation. We stress
that the file to be signed is encoded as a set of vectors (v(1), . . . , v(m)) of `
components each where ` ≤ n for some pre-specified bound n. Before being
signed and transmitted, such vectors will be prepended with m unitary vectors
u(i) (each having m components). We denote with w(i) the resulting vectors. Our
implementation uses a parameter λ to specify the space I for the file identifiers.
If M is the bound on the initial magnitude of each vector component, then
2λ > M and I is the set of prime numbers of (exactly) λ+ 1 bits, greater than
2λ.

Finally, we notice that in this scheme the exact finite field over which are
done the linear combinations is different for each file. In particular, it will be Fe
where e = fid (e is a prime number) is the file identifier chosen by the sender.
More precisely, this means that whenever a vector space W has to be signed, a
file identifier fid = e is chosen (as a sufficiently large prime) and it is associated
to W. Thus, linear combinations are done mode and w 6∈ W implies that w
cannot be written as a linear combination mod e of vectors of W.

A precise description of our network coding scheme NetPFSig = (NetKG,
NetSign,NetVer,Combine) follows.

NetKG(1k, λ,m, n) The NetKG algorithm chooses two random (safe) primes p, q
of length k/2 each. It sets N = pq and proceeds by choosing g, g1, . . . , gn,
h1, . . . , hm at random (in Z∗N). In addition to k, here we assume an additional
security parameter λ which specifies the space I of file identifiers as described
before. The public key is set as (N, g, g1, . . . , gn, h1, . . . , hm), while the secret
key is (p, q).

NetSign(sk, fid, w) The signing algorithm proceeds as follows. Let w = (u, v) ∈
Fm+n
M and let fid be a random file identifier, which is a prime number of the

form specified before. For ease of exposition, let e = fid. The signer chooses
a random element s ∈ Ze and uses its knowledge of p and q to solve the
following equation

xe = gs
m∏
j=1

h
uj
j

n∏
j=1

g
vj
j mod N

Finally, it outputs the signature σ = (s, x).
NetVer(vk, fid, w, σ) To verify a signature σ = (s, x) on a vector w, the verifica-

tion algorithm proceeds as follows. Let e = fid.
– Check that e is an odd number of the right size (i.e. λ+ 1 bits).
– Check that all the u’s, v’s and s are in Ze.

– Check that the equation xe = gs
∏m
j=1 h

uj
j

∏n
j=1 g

vj
j mod N is satisfied

by the given x.
– If all the checks above are satisfied, output 1, otherwise 0.

Combine(vk, fid, {w(i), αi, σi}µi=1 To combine signatures σi, corresponding to vec-
tors w(i) sharing the same fid, the algorithm proceeds as follows.

– It computes

w =

µ∑
i=1

αi · w(i) mod e, w′ = (

µ∑
i=1

αi · w(i) − w)/e

s =

µ∑
i=1

αisi mod e, s′ = (

µ∑
i=1

αisi − s)/e

Let w′ = (u′, v′). It outputs σ = (s, x) where x is obtained by computing:

x =

∏µ
i=1 x

αi
i

gs′
∏m
j=1 h

u′
j

j

∏n
j=1 g

v′j
j

mod N

To complete the description of the scheme we show its correctness. In partic-
ular, while the correctness of the signatures returned by the signing algorithm
can be easily checked by inspection, we pause to show that also the signatures
obtained from the Combine algorithm are correct. Assume that for i = 1 to µ,
σi = (xi, si) is a valid signature on the vector w(i) = (u(i), v(i)), and let αi be
the integer coefficients of the linear combination. Let σ = (x, s) be the signature
as computed by Combine(vk, fid, {w(i), αi, σi}µi=1. We have that:

xe =

∏µ
i=1(xei)

αi

(gs′
∏m
j=1 h

u′
j

j

∏n
j=1 g

v′j
j)e

(1)

=
g
∑µ
i=1 siαi

∏m
j=1 h

∑µ
i=1 u

(i)
j αi

j

∏n
j=1 g

∑µ
i=1 v

(i)
j αi

j

(gs′
∏m
j=1 h

u′
j

j

∏n
j=1 g

v′j
j)e

(2)

= g(
∑µ
i=1 siαi−s

′e)
m∏
j=1

h
(
∑µ
i=1 u

(i)
j αi−u′

je)

j

n∏
j=1

g
(
∑µ
i=1 v

(i)
j αi−v′je)

j (3)

= gs
m∏
j=1

h
uj
j

n∏
j=1

g
vj
j (4)

which shows correctness as desired. Above, equation (2) is justified by that each
σi is valid, and equation (4) follows from the definition of s′ and w′ = (u′, v′) as
computed in the Combine algorithm.

Efficiency. Each signature consists of an element of ZN and one integer of λ bits.
Signing costs one full exponentiation and one multi-exponentiation in ZN with λ-
bits exponents, plus the sampling of a random prime number (which is dominated

by the cost of prime verification). The verification needs an exponentiation with
a (λ+ 1)-bits prime, xe, and one multi-exponentiation with λ-bits exponents.

Here we state the following theorem (again for lack of space the proof appears
in [10])

Theorem 2. Under the Strong-RSA assumption, the scheme described above is
a secure homomorphic network coding signature.

5 Efficiency and Comparisons

In this section we discuss the efficiency of our two constructions and compare
it to that of other known homomorphic network coding signatures. As we al-
ready mentioned, there are not that many schemes in the literature realizing
this primitive: a few constructions [7, 14, 9, 8] rely on random oracles, and a cou-
ple of more recent schemes [3, 11, 13] are proven secure in the standard model.
We should also mention that there are other schemes in the standard model
based on homomorphic hashing. However these are less appealing in practice
mainly because the basis vectors have to be signed all at once, which means that
in the network coding application the source node must know the entire file be-
fore sending the first packet. This is not desirable in several applications, e.g. a
source node which is a sensor collecting data in some time interval, or streaming
applications. Moreover, the authentication information to be sent along with the
packets is quite long.

Therefore, we compare our constructions with the schemes in the standard
model, and later in this section we will briefly discuss a comparison with the
random oracle based ones.

In the scheme by Attrapadung and Libert [3] a signature consists of three
group elements where the bilinear groups have composite order N , with N prod-
uct of three primes. To compute a signature, the scheme needs to perform two
multi-exponentiations and one exponentiation, whereas the verification time is
dominated by the computation of four pairings in such composite order groups.
Even if one applies standard techniques to convert the scheme in prime order
groups (as suggested in [3]), the overhead would still remain significant.

In [13] Freeman proposes a general framework, that can be seen as a gener-
alization of the Attrapadung and Libert methodology, for converting signature
schemes with certain properties into linearly homomorphic ones. There are two
appealing features in Freeman’s work. First, his model allows for a stronger
adversary than the one we consider. Second, the proposed approach is general
enough to work with several currently known signature schemes. However, all the
resulting (linearly homomorphic) signatures are less efficient than those given in
this paper.

In the scheme by Catalano, Fiore and Warinschi [11] each signature consists
of an element of Z∗N and an integer s of λs = 3k+|N | bits, where k is the security
parameter and |N | is the bit size of the RSA modulus N (which is related to k).
Signing and verifying both need one multi-exponentiation (where all exponents

have size λ, except one of size λs) and one exponentiation. Since in this scheme
the linear combinations are done over the integers, it can support only a limited
number of linear combinations, that in the network coding application trans-
lates to supporting only networks with paths of predetermined bounded length.
Technically, the reason of such bound is that the vector coordinates cannot be
let grow more than the size of the prime e.

In this scenario, our solution based on q-SDH seems the most efficient in terms
of both bandwidth and computation. In fact, recall that in our case a signature
is one group element plus one element of Zp: 512 bits in total, if one considers
k = 128 bits of security and asymmetric pairings. The operations for signing
and verifying are similar in all the schemes, but our SDH construction has the
advantage that such operations can be performed over prime order groups. Our
RSA realization, can be seen as a significant optimization of the Catalano-Fiore-
Warinschi’s scheme [11]. There are two main improvements. First, our scheme
allows for a much smaller exponent s. In fact, in our case s can be of λ bits,
that is even more than 10 times shorter than in [11], if one considers 128 bits of
security. Intuitively, the reason of using a large s in [11] is that in the real scheme
s is truly random, while in the simulation it is used to hide some information of
2k + |N | bits, which decreases its entropy down to k bits. So, there s is taken
sufficiently large to keep it within negligible statistical distance from a uniform
value of λs bits. In our case, s is in Ze, and we take advantage of modular
reduction to obtain a uniformly distributed s also in the simulation. Notice that
having such a short s saves in both bandwidth and computation. Second, our
idea of computing all the linear combinations (mod e) avoids the problem that
the vector coordinates may grow beyond e. In this way we can support networks
with paths of any lengths, which was not the case in the previous RSA-based
schemes [11] and [14].

Finally, we consider the schemes in the random oracle model that work over
similar algebraic settings, i.e., bilinear groups [7] and RSA [14]. Compared to
them, our solutions are (not surprisingly) slightly worse. The main difference is
the size of the public key that in our case is linear in m+n, whereas in [7, 14] it is
constant (because O(m+m) group elements are generated on-the-fly using the
random oracle). On the other hand, the size of a signature and the time needed
to sign and verify are somewhat comparable. In this sense, we believe that our
solutions offer a good compromise if one does not want to rely on the random
oracle heuristic.

Acknowledgements The work described in this paper has been supported in
part by the European Commission through the ICT programme under contract
ICT-2007-216676 ECRYPT II. The authors would like to thank Dennis Hofheinz
and Eike Kiltz for helpful discussions in the early stage of this work.

References

1. R. Ahlswede, Ning-Cai, S. Li, and R.W. Yeung. Network information flow. IEEE
Transactions on Information Theory, 46(4):1204–1216, 2000.

2. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and
Brent Waters. Computing on authenticated data. To appear at TCC 2012. Also
in http://eprint.iacr.org/2011/096.

3. Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signa-
tures in the standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, PKC 2011: 14th International Workshop on Theory
and Practice in Public Key Cryptography, volume 6571 of Lecture Notes in Com-
puter Science, pages 17–34, Taormina, Italy, March 6–9, 2011. Springer, Berlin,
Germany.

4. Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Walter Fumy, editor, Advances in Cryptology – EURO-
CRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 480–494,
Konstanz, Germany, May 11–15, 1997. Springer, Berlin, Germany.

5. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 56–73,
Interlaken, Switzerland, May 2–6, 2004. Springer, Berlin, Germany.

6. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008.

7. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear
subspace: Signature schemes for network coding. In Stanislaw Jarecki and Gene
Tsudik, editors, PKC 2009: 12th International Conference on Theory and Practice
of Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science,
pages 68–87, Irvine, CA, USA, March 18–20, 2009. Springer, Berlin, Germany.

8. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polyno-
mial functions. In Kenneth G. Paterson, editor, Advances in Cryptology – EURO-
CRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 149–168,
Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

9. Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures. In Dario Catalano, Nelly
Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, volume 6571
of Lecture Notes in Computer Science, pages 1–16, Taormina, Italy, March 6–9,
2011. Springer, Berlin, Germany.

10. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network
coding signatures in the standard model. Cryptology ePrint Archive
http://eprint.iacr.org/2011/696.

11. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Adaptive pseudo-free groups
and applications. In Kenneth G. Paterson, editor, Advances in Cryptology – EURO-
CRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 207–223,
Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

12. P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In 41st Allerton
Conference on Communication, Control and Computing, 2003.

13. David Mandell Freeman. Improved security for linearly homomorphic sig-
natures: A generic framework. PKC 2012. Cryptology ePrint Archive
http://eprint.iacr.org/2012/060.

14. Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network
coding over the integers. In Phong Q. Nguyen and David Pointcheval, editors,
PKC 2010: 13th International Conference on Theory and Practice of Public Key

Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 142–160,
Paris, France, May 26–28, 2010. Springer, Berlin, Germany.

15. C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribu-
tion. In Proc. of IEEE INFOCOM 2005, pages 2235–2245, 2005.

16. T. Ho, R. Koetter, M. Médard, D. Karger, and M. Effros. The benefit of coding
over routing in a randomized setting. In Proc. of International Symposium on
Information Theory (ISIT), page 442, 2003.

17. T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and D. Karger. Byzantine
modification detection in multicast networks using randomized network coding. In
Proc. of International Symposium on Information Theory (ISIT), pages 144–152,
2004.

18. T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong.
A random linear network coding approach to multicast. IEEE Transactions on
Information Theory, 52:4413–4430, 2006.

19. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume
5157 of Lecture Notes in Computer Science, pages 21–38, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Berlin, Germany.

20. S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Médard, and M. Effros. Re-
silient network coding in the presence of byzantine adversaries. IEEE Transactions
on Information Theory, 54:2596–2603, 2008.

21. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Ho-
momorphic signature schemes. In Bart Preneel, editor, Topics in Cryptology –
CT-RSA 2002, volume 2271 of Lecture Notes in Computer Science, pages 244–262,
San Jose, CA, USA, February 18–22, 2002. Springer, Berlin, Germany.

22. M. Krohn, M. Freedman, and D. Mazieres. On the-fly verification of rateless erasure
codes for efficient content distribution. In 2004 IEEE Symposium on Security
and Privacy, pages 226–240, Berkeley, California, USA, May 9–12, 2004. IEEE
Computer Society Press.

23. Shuo-Yen Robert-Li, Raymond Y. Yeung, and Ning Cai. Linear network coding.
IEEE Transactions on Information Theory, 49(2):371–381, 2003.

24. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE
under simple assumptions. In Shai Halevi, editor, Advances in Cryptology –
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 619–636,
Santa Barbara, CA, USA, August 16–20, 2009. Springer, Berlin, Germany.

