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Abstract. We revisit the definition of unforgeability of blind signatures as
proposed by Pointcheval and Stern (Journal of Cryptology 2000). Surprisingly,
we show that this established definition falls short in two ways of what one
would intuitively expect from a secure blind signature scheme: It is not excluded
that an adversary submits the same message m twice for signing, and then
produces a signature for m′ 6= m. The reason is that the forger only succeeds
if all messages are distinct. Moreover, it is not excluded that an adversary
performs k signing queries and produces signatures on k + 1 messages as long
as each of these signatures does not pass verification with probability 1.

Finally, we propose a new definition, honest-user unforgeability, that covers

these attacks. We give a simple and efficient transformation that transforms

any unforgeable blind signature scheme (with deterministic verification) into

an honest-user unforgeable one.

1 Introduction

Blind signature schemes have been suggested by Chaum [12,13]. Roughly speaking,
this widely-studied primitive allows a signer to interactively issue signatures for
a user such that the signer learns nothing about the message being signed
(blindness) while the user cannot compute any additional signature without the
help of the signer (unforgeability). Typical applications of blind signatures include
e-cash, where a bank signs coins withdrawn by users, and e-voting, where an
authority signs public keys that voters later use to cast their votes. Another
application of blind signature schemes are anonymous credentials, where the
issuing authority blindly signs a key [9,10]. Very recently, Microsoft introduced a
new technology called U-Prove to “overcome the long standing dilemma between
identity assurance and privacy” [6,29]. Their technology uses as a central building
block blind signatures [6,8].

There are two main security requirements for blind signature schemes. First,
the scheme should be blind. That is, a malicious signer should not be able to link
the final signatures output by the user to the individual interactions with the
user. In other words, the signer cannot tell which session of the signing protocol
corresponds to which message. Second, the scheme should be unforgeable. That
is, an adversary, even if he can impersonate the user and interact freely with the
signer, should not be able to produce signatures on messages except for those
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that the signer signed. It is the notion of unforgeability we are concerned with in
this paper.

A formal definition of the unforgeability of blind signatures schemes (or
generally interactive signature schemes) has been proposed by [25]. Roughly,
their definition states that an adversary that interacts k times with the adversary
cannot produce valid signatures on more than k different messages.3 At this point,
one may wonder why the definition of unforgeability does not just require that
the adversary cannot output a signature for m unless there was an interaction
with the signer in which m was queried. The reason is that in general, it is not
well-defined which message is queried in a given interaction. The message is not
sent in clear, and it might be even information-theoretically impossible to tell
from an interaction which message is being signed.4 Thus, in order to be able
to tell which message is signed in a given interaction, we would have to add
some kind of extractability to the security definition; this would be an additional
requirement on the protocols and make them more complex.

Insecurity of unforgeable blind signatures schemes. Unfortunately, however, the
definition of unforgeability might not cover all cases in which one would intuitively
expect unforgeability to be sufficient. We illustrate this by the following toy
protocol:

reseller

parental
control

content
provider

client

X,name

blind(X,name)
σ

σ movie X

Fig. 1. Setting of an online video
store.

Consider the setting of an online video
store such as Netflix. In our setting, we as-
sume that the store is implemented via two
entities, the content provider and the reseller.
We assume that the contract between client
and reseller is a flatrate that allows the client
to download a fixed number of movies. For
privacy reasons, we do not wish the reseller to
know which movies the client actually watches.
On the other hand, we wish to ensure that
underage clients can only download movies
suitable for their age. To achieve this, we in-
troduce another (trusted) entity, the parental
control server whose job it is to work as a
proxy between reseller and client and to en-
sure that the client only obtains appropriate
movies. Then, to download a movie X, the client first sends her name and X to
the parental control server. If X is appropriate for the client, the parental control
server then runs a blind signature scheme with the reseller to obtain a signature

3 There is also a variant called strong unforgeability which requires that the adversary
cannot produce more than k different message/signature pairs. In particular, this
means that the adversary wins even if he produces additional signatures for an already
signed message. Since most known blind signature schemes (e.g., [20,15,3,26,19,18])
do not satisfy strong unforgeability, in this work we focus on the weaker notion.

4 This might be the case when signing a message m is implemented by signing an
information-theoretically hiding commitment on m.
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σ on (X,name) (the blind signature is used to protect the privacy of the client,
there is no need for the reseller to know which movies the client watches). Then
σ is sent to the client, and the client uses σ to download X from the content
provider. (We assume that all communication is suitably authenticated.)

At a first glance, it seems that this protocol is secure. In particular, the client
will not be able to download a movie that is not approved by the parental control
server. It turns out, however, that the client can cheat the parental control server:
Assume the client twice requests a signature on some harmless movie X. He will
then obtain two signatures σ1, σ2 on X from the parental control server. Then,
given σ1 and σ2, the client might be able to compute a signature on an adult
movie Y that has not been approved by the parental control server.

It seems that unforgeability should forbid the possibility of such an attack.
But it does not. From the point of view of the signer, two signing queries have
been performed, and finally signatures on two different messages X and Y have
been produced. This does not violate the definition of unforgeability. In fact, we
show in Section 4.2 that blind signature schemes exist that allow such attacks
but that are still unforgeable.

What went wrong? The definition of unforgeability covers only partially the
case that the user of the scheme is honest. It only ensures that the number of
signed messages is not greater than the number of interactions with the signer.
Only considering the number of messages but not their content is fine from the
signer’s point of view who is not allowed to know the messages anyway. It is
not, however, fine from the user’s point of view. If the user signs some messages
m1, . . . ,mk (by interacting with the signer), he expects that no signature on
some different message m′ can be computed from his signatures. We believe
that settings in which the user is honest are natural, and that the definition
of unforgeability should cover this case. We thus propose a new game-based
definition, honest-user unforgeability, which is a strengthening of unforgeability.
Alternatively, one could also define an ideal functionality (see [14,4]) that covers
these attacks, but schemes that achieve such strong security properties are usually
less efficient.

Definition 1 (Honest-user unforgeability – informal). If an adversary
performs k direct interactions with the signer, and requests signatures for the
message m1, . . . ,mn from the user (which produces these signatures by interacting
with the signer), then the adversary cannot produce signatures for pairwise distinct
messages m∗1, . . . ,m

∗
k+1 with {m∗1, . . . ,m∗k+1} ∩ {m1, . . . ,mn} = ∅.

Notice that this definition also covers the hybrid case in which the adversary
interacts with an honest user and the signer simultaneously. Alternatively, one
could also require that security in each of the setting individually: Security when
there is no honest user (that is, the normal definition of unforgeability), and
security when the adversary may not query the signer directly (we call this
S+U -unforgeability). We show in the full version of this paper [28] that requiring
these variants of security individually leads to a strictly weaker security notion.
Notice that S + U -unforgeability would be sufficient to solve the problem in our
video store example. It seems, however, restrictive to assume that in all protocols,
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there will always be only either queries from honest users or only from dishonest
users but never from both in the same execution.

Achieving honest-user unforgeability. We show that any unforgeable blind signa-
ture scheme can be converted into an honest-user unforgeable blind signature
scheme. The transformation is very simple and efficient: Instead of signing a
message m, in the transformed scheme the user signs the message (m, r) where r
is some randomness. Furthermore, we show that if a scheme is already strongly
unforgeable, then it is strongly honest-user unforgeable (as long as the original
scheme is randomized which holds for most signature schemes).

Insecurity with probabilistic verification. Most interactive and non-interactive
signature schemes have a deterministic verification algorithm. In general, however,
having a deterministic verification is not a necessity. Yet, when we allow a
probabilistic verification algorithm (and this is usually not excluded), both the
definition of unforgeability as well as the definition of honest-user unforgeability
are subject to an attack: Consider again our video store example. Let λ denote
the security parameter. Fix a polynomial p = p(λ) > λ. Assume that the
parental control server and the client are malicious and collude. The parental
control server interacts with the reseller λ times, and produces p “half-signatures”
on movie names X1, . . . ,Xp. Here, a half-signature means a signature that
passes verification with probability 1

2 . Then the client can download the movies
X1, . . . ,Xn from the content provider. (If in some download request, a half-
signature does not pass verification, the client just retries his request.) Thus the
client got p movies, even if his flatrate only allows for downloading λ movies.

Can this happen? It seems that unforgeability would exclude this because
p > λ signatures were produced using λ queries to the signer. In the definition of
unforgeability, however, the adversary succeeds if it outputs p > λ signatures such
that all signatures pass verification. However, the signatures that are produced
are half-signatures: That is, the probability that all p > λ signatures pass
the verification simultaneously is negligible! Thus, producing more than λ half-
signatures using λ queries would not be considered an attack by the definition
of unforgeability. In Section 5, we show that blind signature schemes exist that
allow such attacks but that satisfy the definition of unforgeability. The same
applies to honest-user unforgeability as described so far; we thus need to augment
the definition further.

There are two solutions to this problem. One is to explicitly require that the
verification algorithm is deterministic. Since most schemes have deterministic
verification, this is not a strong restriction. To cover the case of probabilistic
verification, we propose an augmented definition of honest-user unforgeability
in Section 5: This definition considers a list of signatures as a successful forgery
if each of them would pass verification with noticeable probability (roughly
speaking).

We do not propose a generic transformation that makes schemes with proba-
bilistic verification secure according to our definition. Yet, since most schemes
have a deterministic verification anyway; these schemes will automatically satisfy
our augmented definition.
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Related work. Many blind signature schemes have been proposed in the literature,
these schemes differ in their round complexity, their underlying computational
assumptions, and the model in which the proof of security is given. For example,
some schemes rely on the random oracle heuristic [25,2,5,7,4], some constructions
are secure in the standard model [11,24,21,23,17,3,27] ([17,3] assume the existence
of a common reference string), and some constructions are based on general
assumptions [22,14,20,18,27]. Only a few works consider the security of blind
signatures [22,25,15] or their round complexity [16].

Notations. Before presenting our results we briefly recall some basic definitions.
In what follows we denote by λ ∈ N the security parameter. Informally, we say
that a function is negligible if it vanishes faster than the inverse of any polynomial.

We call a function non-negligible if it is not negligible. If S is a set, then x
$← S

indicates that x is chosen uniformly at random over S (which in particular
assumes that S can be sampled efficiently).

2 Blind signatures

To define blind signatures formally we introduce the following notation for
interactive executions between algorithms X and Y . By (a, b)← 〈X (x),Y(y)〉 we
denote the joint execution of X and Y, where x is the private input of X and y
defines the private input of Y . The private output of X equals a and the private
output of Y is b. We write Y〈X (x),·〉∞(y) if Y can invoke an unbounded number
of executions of the interactive protocol with X in arbitrarily interleaved order.
Accordingly, X 〈·,Y(y0)〉1,〈·,Y(y1)〉1(x) can invoke arbitrarily ordered executions with
Y(y0) and Y(y1), but interact with each algorithm only once.

The invoking oracle machine does not see the private output of the invoked
machine. In the above definition this means that Y does not learn a and X does
not learn b0 (resp. b1).

Definition 2 (Interactive signature scheme). We define an interactive sig-
nature scheme as a tuple of efficient5 algorithms BS = (KG, 〈S,U〉 ,Vf) (the
key-generation algorithm KG, the signer S, the user U , and the verification
algorithm Vf) where

Key Generation. KG(1λ) for parameter λ generates a key pair (sk, pk).

5 More precisely, KG and Vf run in polynomial-time in the total length of their inputs.
The total running time of S is polynomial in the total length of its input (sk) plus
the total length of its incoming messages. The total running time of U is polynomial
in the total length of its input (pk,m). (But the running time of U may not depend
on its incoming messages.) The asymmetry between the running time of S and
U is necessary to ensure that (a) an interaction between U and S always runs in
polynomial-time, and (b) that the running-time of S may depend on the length of
the message m that only U has in its input.
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Signature Issuing. The execution of algorithm S(sk) and algorithm U(pk,m)
for message m ∈ {0, 1}∗ generates an output σ of the user (and some possibly
empty output out for the signer.), (out , σ)← 〈S(sk),U(pk,m)〉.

Verification. Vf(pk,m, σ) outputs a bit.

It is assumed that the scheme is complete, i.e., for any function f , with overwhelm-
ing probability in λ ∈ N the following holds: when executing (sk, pk)← KG(1λ),
setting m := f(λ, pk, sk), and letting σ be the output by U in the joint execution
of S(sk) and U(pk,m), then we have Vf(pk,m, σ) = 1.

3 Security of blind signatures

Security of blind signature schemes is defined by unforgeability and blindness
[22,25].

Unforgeability. An adversary U∗ against unforgeability tries to generate k + 1
valid message/signatures pairs with different messages after at most k completed
interactions with the honest signer, where the number of executions is adaptively
determined by U∗ during the attack. To identify completed sessions we assume
that the honest signer returns a special symbol ok when having sent the final
protocol message in order to indicate a completed execution (from its point
of view). We remark that this output is “atomically” connected to the final
transmission to the user.

Definition 3 (Unforgeability). An interactive signature scheme BS = (KG,
〈S,U〉 ,Vf) is called unforgeable if for any efficient algorithm A(the malicious
user) the probability that experiment UnforgeBSA (λ) evaluates to 1 is negligible (as
a function of λ) where

Experiment UnforgeBSA (λ)
(sk, pk)← KG(1λ)
((m∗1, σ

∗
1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(sk),·〉∞(pk)

Return 1 iff
m∗i 6= m∗j for i, j with i 6= j, and
Vf(pk,m∗i , σ

∗
i ) = 1 for all i, and

S has returned ok in at most k interactions.

An interactive signature scheme is strongly unforgeable if the condition “m∗i 6= m∗j
for i, j with i 6= j” in the above definition is substituted by “(m∗i , σ

∗
i ) 6= (m∗j , σ

∗
j )

for i, j with i 6= j”.
Observe that the adversary A does not learn the private output out of the

signer S(sk). We assume schemes in which it can be efficiently determined from
the interaction between signer and adversary whether the signer outputs ok. If
this is not the case, we need to augment the definition and explicitly give the
adversary access to the output out since out might leak information that the
adversary could use to produce forgeries.
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Blindness. The blindness condition says that it should be infeasible for a malicious
signer S∗ to decide which of two messages m0 and m1 has been signed first in
two executions with an honest user U . This condition must hold, even if S∗ is
allowed to choose the public key maliciously [1]. If one of these executions has
returned ⊥ then the signer is not informed about the other signature either.

Definition 4 (Blindness). A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is
called blind if for any efficient algorithm S∗ (working in modes find, issue and
guess) the probability that the following experiment BlindBSS∗(λ) evaluates to 1 is
negligibly close to 1/2, where

Experiment BlindBSS∗(λ)
(pk,m0,m1, stfind)← S∗(find, 1λ)

b
$← {0, 1}

stissue ← S∗〈·,U(pk,mb)〉1,〈·,U(pk,m1−b)〉1(issue, stfind)
and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pk,mb) resp. U(pk,m1−b).

set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

4 Honest-user unforgeability

In this section we introduce a stronger notion of unforgeability that we call
honest-user unforgeability. In the traditional definition of unforgeability due to
[22,25], the adversary fulfills the role of the user. This means that the attacker
may choose all messages that are exchanged during the signature issue protocol
at will. In particular, the attacker may sample random message without fixing a
specific message and a certain randomness for the user algorithm. Even if the
adversary runs the honest user algorithm, due to the blindness, it is impossible to
tell which message has been used. Thus, from a definitional perspective, one has
to count the number of executions and produced signatures in order to determine
the success condition for the attacker.

This, however, might not be sufficient. Consider an attacker that queries twice
the same message m (through, say, some third party honestly implementing the
user’s algorithm) and is then able to compute a valid signature on some message
m′ 6= m. Since this adversary queried twice the same message, it still has to
output three distinct messages in order to succeed in the unforgeability game.

In this section we show that giving the attacker, in addition to controlling
the user, access to a protocol oracle (that takes as input a message and returns
the signature and the user’s transcript) yields a strictly stronger definition.

4.1 Defining honest-user unforgeability

Before proposing the new definition, we fix some notation. Let P(sk, pk, ·) be
an oracle that on input a message m executes the signature issue protocol
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〈S(sk),U(pk,m)〉 obtaining a signature σ. Let trans denote the transcript of the
messages exchanges in that interaction. We assume that the transcript consists of
all messages exchanged between the parties.6 This oracle then returns (σ, trans).

Definition 5 (Honest-user unforgeability). An interactive signature scheme
BS = (KG, 〈S,U〉 ,Vf) is honest-user unforgeable if Vf is deterministic and the
following holds: For any efficient algorithm A the probability that experiment
HUnforgeBSA (λ) evaluates to 1 is negligible (as a function of λ) where

Experiment HUnforgeBSA (λ)
(sk, pk)← KG(1λ)
((m∗1, σ

∗
1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(sk),·〉∞,P(sk,pk,·)(pk)

Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗i 6= mj for all i, j
m∗i 6= m∗j for i, j with i 6= j, and
Vf(pk,m∗i , σ

∗
i ) = 1 for all i, and

S has returned ok in at most k interactions.

(When counting the interactions in which S returns ok, we do not count the
interactions simulated by P.)

An interactive signature scheme is strongly honest-user unforgeable if the
condition “m∗i 6= mj for all i, j” in the above definition is substituted by
“(m∗i , σ

∗
i ) 6= (mj , σj) for all i, j” and if we change the condition “m∗i 6= m∗j

for i, j with i 6= j” to “(m∗i , σ
∗
i ) 6= (m∗j , σ

∗
j ) for i, j with i 6= j”.

Notice that we require Vf to be deterministic. When we drop this requirement,
the definition does not behave as one would intuitively expect. We explain this
problem in detail in Section 5. Note further that this definition can be further
strengthened by giving the adversary also the randomness of the honest user.
Notice that all our results and proofs also hold for this stronger definition.

4.2 Unforgeability does not imply honest-user unforgeability

We show that unforgeability does not imply honest-user unforgeability. The
high-level idea of our counterexample is to change the verification algorithm of
an interactive signature scheme such that it accepts a message m′ if it obtains as
input two distinct and valid signatures on some message m 6= m′ (in addition
to accepting honestly generated signatures). More precisely, fix an unforgeable
and blind signature scheme BS = (KG, 〈S,U〉 ,Vf) that is strongly unforgeable.
Fix some efficiently computable injective function f 6= id on bitstrings (e.g.,
f(m) := 0‖m). We construct a blind signature scheme BS1 = (KG1, 〈S1,U1〉 ,Vf1)
as follows:

6 The definition of honest-user unforgeability could be easily strengthened by including
the randomness of U in trans. Our results also hold with respect to that strengthened
definition. However, it is not clear that giving the honest-user’s randomness to the
adversary models any realistic attacks.
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– KG1 := KG, S1 := S, and U1 := U .
– Vf1(pk,m, σ) executes the following steps:
• Invoke v := Vf(pk,m, σ). If v = 1, return 1.
• Otherwise, parse σ as (σ1, σ2). If parsing fails or σ1 = σ2, return 0.
• Invoke vi := Vf(pk, f(m), σi) for i = 1, 2. If v1 = v2 = 1, return 1.

Otherwise return 0.

Lemma 6. If BS is complete, strongly unforgeable, and blind, then BS1 is com-
plete, unforgeable, and blind.

We omit both the proof of blindness and completeness of BS1 since they follow
directly from the blindness and completeness of BS. The unforgeability follows
directly from the unforgeability of the underlying scheme. The main idea behind
unforgeability is the following: The only possibility for the adversary to forge a
signature is to obtain two different signatures σ1, σ2 on the same message f(m).
Then (σ1, σ2) is a valid signature on m. However, since the underlying scheme
BS is strongly unforgeable, the adversary can only get σ1, σ2 by performing two
signing queries. Thus, using two queries, the adversary gets two signatures on the
message f(m) and one on m. This is not sufficient to break the unforgeability of
BS1 since the adversary would need to get signatures on three different messages
for that. The full proof is given in [28].

Before proving the next lemma, we need to define what a randomized (inter-
active) signature is. Roughly speaking, schemes that have this property output
the same signature in two independent executions with same message only with
negligible probability.

Definition 7 (Randomized signature scheme). An interactive signature
scheme BS = (KG, 〈S,U〉 ,Vf) is randomized if with overwhelming probability
in λ ∈ N the following holds: for any (sk, pk) in the range of KG(1λ), any
message m ∈ {0, 1}∗, we have σ1 6= σ2 where σ1 ← 〈S(sk),U(pk,m)〉 and
σ2 ← 〈S(sk),U(pk,m)〉.
Note that any scheme can easily be modified such that is satisfies this definition
by letting the user algorithm pick some random value r, setting m′ ← m‖r, and
by including r in the signature. It is easy to see that, given any randomized
interactive signature scheme, we can construct an adversary that queries the
oracle P twice on some message m with f(m) 6= m, receives two signatures,
σ1, 6= σ2 and outputs the pair (m, (σ1, σ2)). This pair is a valid forgery for the
message f(m) because our adversary has never queried this message to P and
never invoked S directly. Thus, we immediate get the following lemma (the full
proof can be found in [28]).

Lemma 8. If BS is complete and randomized, then BS1 is not honest-user
unforgeable.

By Lemmas 6 and 8 we immediately get:

Theorem 9. If complete, blind, and strongly unforgeable interactive signature
schemes exist, then there are complete, blind, and unforgeable interactive signature
schemes that are not honest-user unforgeable.
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Strong honest-user unforgeability The following lemma shows that strong un-
forgeability implies strong honest-user unforgeability.

Lemma 10. Assume that BS is complete,7 randomized, and strongly unforgeable.
Then BS is strongly honest-user unforgeable.

The full proof is delegated to [28]. This lemma shows that for strongly unforgeable
schemes, the traditional (non-honest-user) definition of unforgeability is sufficient.
Note, however, that most known blind signature schemes (e.g., [20,15,3,26,19,18])
are not strongly unforgeable. It can also easily be shown that strong unforgeability
is strictly stronger than honest-user unforgeability. The separating example
appends a bit b to the signature that is ignored by the verification algorithm.
Then the signature can easily be changed by flipping the bit. Thus honest-user
unforgeability lies strictly between unforgeability and strong unforgeability.

5 Probabilistic verification

In this section we show that, if we allow for a probabilistic verification algorithm,
both the definition of honest-user unforgeability, as well as the usual definition of
unforgeability will consider schemes to be secure that do not meet the intuitive
notion of unforgeability.

One may argue that discussing problems in the definition of blind signature
schemes in the case of probabilistic verification is not necessary because one
can always just use schemes with deterministic verification. We disagree with
this point of view: Without understanding why the definition is problematic
in the case of probabilistic verification, there is no reason to restrict oneself
to schemes with deterministic verification. Only the awareness of the problem
allows us to circumvent it. We additionally give a definition that works in
the case of probabilistic verification. This is less important than pointing out
the flaws, since in most cases one can indeed use schemes with deterministic
verification. But there might be (rare) cases where this is not possible (note that
no generic transformation outside the random oracle model is known that makes
the verification deterministic).

First, we give some intuition for our counterexample and formalize it af-
terwards. Assume an interactive signature scheme BS3 that can distinguishes
two kinds of signatures: A full-signature that will pass verification with prob-
ability 1, and a half-signature that passes verification with probability 1

2 . An
honest interaction between the signer S3 and the user U3 will always produce

7 Completeness is actually necessary to show this lemma: For example, let BS′ be a
scheme derived from a complete and strongly unforgeable scheme BS in the following
way: All machines except for the user are the same in BS and BS′. When the user U ′

should sign a message m, he signs m+ 1 instead. Since the user does not occur in the
definition of strong unforgeability, the strong unforgeability of BS implies the strong
unforgeability of BS′. Yet BS′ is not strongly honest-user unforgeable: By performing
a signature query for m from the user U ′, the adversary can get a valid signature for
m+ 1.
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a full-signature. A malicious user, however, may interact with the signer to get
a half-signature for arbitrary messages. Furthermore, the malicious user may,
by sending λ half-signatures to the signer (λ is the security parameter) and
executing a special command, get two half-signatures instead of one. (“Buy λ+ 1
signatures, get one free.”) At the first glance, one would expect that such a
scheme cannot be honest-user unforgeable or even unforgeable. But in fact, the
adversary has essentially two options: First, he does not request λ half-signatures.
Then he will not get a signature for free and thus will not win in the honest-user
unforgeability game. Second, he does request λ half-signatures and then performs
the extra query and thus gets λ+ 2 half-signatures using λ+ 1 queries. Then, to
win, he needs that all λ+ 2 signatures pass verification (since the definition of
unforgeability/honest-user unforgeability requires that Vf3(pk,m∗i , σ

∗
i ) evaluates

to 1 for all signatures (m∗i , σ
∗
i ) output by the adversary) However, since each

half-signature passes verification with probability 1
2 , the probability that all sig-

natures pass verification is negligible (≤ 2−λ). Thus, the adversary does not win,
and the scheme is honest-user unforgeable. Clearly, this is not what one would
expect; so Definition 5 should not be applied to the case where the verification is
probabilistic (and similarly the normal definition of unforgeability should not be
applied either in that case).

More precisely, let BS = (KG, 〈S,U〉 ,Vf) be a randomized, complete, blind,
and honest-user unforgeable interactive signature scheme. Let Q be an efficiently
decidable set such that the computation of arbitrarily many bitstrings m ∈ Q
and m′ /∈ Q is efficiently feasible.

We define the scheme BS3 = (KG3, 〈S3,U3〉 ,Vf3) as follows:

– KG3 := KG.
– S3(sk) behaves like S(sk), except when the first message from the user is

of the form (extrasig,m◦1, . . . ,m
◦
λ, σ
◦
1 , . . . , σ

◦
λ,m

′
1, . . . ,m

′
q) where λ is the

security parameter. Then S3 executes the following steps:
• Check whether m◦1, . . . ,m

◦
λ ∈ Q are pairwise distinct messages, and

for all i = 1, . . . , q we have m′i /∈ Q, and for all i = 1, . . . , λ we have
Vf(pk, 1‖m◦i , σ◦i ) = 1.8 If not, ignore the message.
• If the check passes, run 〈S(sk),U(pk, 1‖m′i)〉 for each i = 1, . . . , q, resulting

in signatures σ̃i, and set σ′i := 1‖σ̃i.
• Then S3 sends (σ′1, . . . , σ

′
n) to the user, outputs ok and does not react to

any further messages in this session.
– U3(pk,m) runs σ ← U(pk, 0‖m) and returns 0‖σ.
– Vf3(pk,m, σ) performs the following steps:
• If σ = 0‖σ′ and Vf(pk, 0‖m,σ′) = 1, Vf3 returns 1.
• If σ = 1‖σ′ and Vf(pk, 1‖m,σ) = 1, Vf3 returns 1 with probability p := 1

2
and 0 with probability 1− p.

• Otherwise, Vf3 returns 0.

Lemma 11. If BS is blind and complete, so is BS3.

8 Without loss of generality, we assume that the public key pk can efficiently be
computed from the secret key sk.
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Proof. Blindness and completeness of BS3 follow directly from that of BS. The
only difference between the schemes is that instead of a message m, a message
0‖m is signed and 0 is prepended to the signatures (as long as the user is honest
as is the case in the definitions of blindness and completeness).

Lemma 12. If BS is honest-user unforgeable, so is BS3.

The proof idea was already explained at the beginning of this section. The
complete proof is given in [28].

The following lemma shows that, although BS3 is honest-user unforgeable
(and thus also unforgeable), it should not be considered secure! Namely, an
adversary can, given λ queries, produce λ+ 1 message/signature pairs, each of
which passes verification with probability 1

2 . In particular in a setting where the
machine which verifies the signatures is stateless and where the adversary may
thus just resubmit a rejected signature, such signatures are as good as signatures
that pass verification with probability 1. Thus, the adversary has essentially
forged one signature.

An adversary that queries the signer λ times on distinct messages (from Q) is
able to execute the special command that allows to produce an arbitrary number
of half-signatures. Thus, we immediate get (see [28] for the full proof):

Lemma 13. We call (m,σ) a half-signature (with respect to some implicit public-
key pk) if the probability that Vf(pk,m, σ) = 1 is 1/2. If BS is complete, then for
any polynomial p, there is an adversary A that performs λ+ 1 interactions with
S3 and does not query P and that, with overwhelming probability, outputs p(λ)
half-signatures (m∗1, σ

∗
1), . . . , (m∗p(λ), σ

∗
p(λ)) such that all m∗i are distinct.

5.1 Adapting the definition

We have shown that, if we allow for a probabilistic verification algorithm in
the definition of honest-user unforgeability (and similarly in the definition of
unforgeability), schemes that are intuitively insecure will be considered secure by
the definition. There are two possible ways to cope with this problem.

The simplest solution is to require that the verification algorithm is determin-
istic. This is what we did in Section 4.1 (Definition 5). This choice is justified
since almost all known blind signature schemes have a deterministic verification
algorithm anyway. Thus restricting the verification algorithm to be deterministic
may be preferable to getting a more complicated definition.9

In some cases, however, it might not be possible to make the verification
deterministic. In such cases, it is necessary to strengthen the definition of honest-
user unforgeability. Looking back at our counterexample, the problem was the
following: If the adversary produces many signatures that each pass verification

9 Notice that one could weaken the requirement and only require that two invocations
of the verification algorithm output the same value with overwhelming probability.
This would allow for verification algorithms that essentially compute a deterministic
function but have to solve problems in BPP during that computation.
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with non-negligible but not overwhelming probability, this is not considered an
attack: The probability that all signatures pass verification simultaneously is
negligible. In order to fix this problem, we thus need to change the definition
in such a way that a signature that is accepted with non-negligible probability
is always considered a successful forgery. More precisely, if a signature passes
verification at least once when running the verification algorithm a polynomial
number of times, then the signature is considered valid. This idea leads to the
following definition:

Definition 14 (Honest-user unforgeability with probabilistic verifica-
tion). Given a probabilistic algorithm Vf and an integer t, we define Vft as
follows: Vft(pk,m, σ) runs Vf(pk,m, σ) t-times. If one of the invocations of Vf
returns 1, Vft returns 1. If all invocations of Vf return 0, Vft returns 0.

A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is called honest-user un-
forgeable (with probabilistic verification) if the following holds: For any efficient
algorithm A and any polynomial p, the probability that experiment HUnforgeBSA (λ)
evaluates to 1 is negligible (as a function of λ) where

Experiment HUnforgeBSA (λ)
(sk, pk)← KG(1λ)
((m∗1, σ

∗
1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(sk),·〉∞,P(sk,pk,·)(pk)

Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗i 6= mj for all i, j
m∗i 6= m∗j for i, j with i 6= j, and

Vfp(λ)(pk,m∗i , σ
∗
i ) = 1 for all i, and

S has returned ok in at most k interactions.

(When counting the interactions in which S returns ok, we do not count the
interactions simulated by P.)

Notice that the only difference to Definition 5 is that we additionally quantify
over a polynomial p, and use Vfp(λ) instead of Vf. If a signature is accepted with
non-negligible probability, then there is a polynomial p such that Vfp(λ) will accept
that signature with overwhelming probability. (For our counterexample BS3, one
can choose p(λ) := λ to show that it does not satisfy Definition 14.)

Notice that there is no obvious transformation for taking a signature scheme
satisfying the regular unforgeability definition and constructing a scheme secure
with respect to Definition 14 out of it. One obvious approach would be to
include the randomness for verification in the message and thus to make the
scheme deterministic. This might, however, make the scheme totally insecure
because in this case a forger might include just the right randomness to get a
signature accepted (if that signature would be accepted with negligible but non-
zero probability otherwise). Another obvious approach would be to change the
verification algorithm such that it verifies each signature p times (for a suitable
polynomial p) and only accepts when all verifications succeed. This would make,
e.g., half-signatures into signatures with negligible acceptance probability. But
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Signer S(sk) User U(pk,m)

r
$← {0, 1}λ

m′ ← m‖r

S ′(sk) U ′(pk,m′)
msg1←−−−−−−−−−−−−−−

...
msgn−−−−−−−−−−−−−−→ compute σ = σ(m′)

output m,σ′ = (σ, r)

Fig. 2. Issue protocol of the blind signature scheme

also this approach does not work in general: For any p, the adversary might be
able to produce signatures that fails each individual verification with probability
1/2p and thus passes the overall verification with constant probability.

6 From unforgeability to honest-user unforgeability

In this section we show how to turn any unforgeable interactive signature scheme
into an honest-user unforgeable one. Our transformation is extremely efficient
as it only adds some randomness to the message. Therefore, it not only adds
a negligible overhead to original scheme, but it also preserves all underlying
assumptions. The construction is formally defined in Construction 1 and depicted
in Figure 2.

Construction 1 Let BS′ = (KG′, 〈S ′,U ′〉 ,Vf ′) be an interactive signature scheme
and define the signature scheme BS through the following three procedures:

Key Generation. The algorithm KG(1λ) runs (sk′, pk′)← KG′(1λ) and returns
this key-pair.

Signature Issue Protocol. The interactive signature issue protocol for mes-
sage m ∈ {0, 1}∗ is described in Figure 2.

Signature Verification. The input of the verification algorithm Vf is a public
key pk, a message m, and a signature σ′ = (σ, r). It sets m′ ← (m‖r) and
returns the result of Vf ′(pk,m‖r, σ).

We first show that our transformation preserves completeness and blindness.

Lemma 15. If BS′ is a complete and blind interactive signature scheme, so
is BS.

Since the proof follows easily, we omit it here.
Now, we prove that our construction turns any unforgeable scheme into an

honest-user unforgeable one.
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Lemma 16. If BS′ is an unforgeable interactive signature scheme, then BS is
secure with respect to Definition 5.

Proof. Assume for the sake of contradiction that BS is not honest-user unforgeable.
Then there exists an efficient adversary A that wins the honest-user unforgeability
game with non-negligible probability. We then show how to build an attacker B
that breaks the unforgeability of BS′.

The input of the algorithm B is a public pk. It runs a black-box simulation of
A and simulates the oracles as follows. Whenever A engages in an interactive
signature issue protocol with the signer, i.e., when the algorithm A plays the role
of the user, then B relays all messages between A and the signer. If A invokes the

oracle P on a message m, then B picks a random r
$← {0, 1}λ, sets m′ ← m‖r,

and engages in an interactive signature issue protocol where B runs the honest
user algorithm U ′. At the end of this protocol, the algorithm B obtains a signature
σ on the message m′. It sets σ′ ← (σ, r), stores the pair (m′, σ′) in a list L and
returns σ′ together with the corresponding transcript trans to the attacker A.

Eventually, the algorithm A stops, outputting a sequence of message/signature
pairs (m∗1, σ

∗
1), . . . , (m∗k+1, σ

∗
k+1). In this case, B recovers all message/signature

pairs (m′1, σ
′
1), . . . , (m′n, σ

′
n) stored in L, it parses σ∗i as (σ′i, r

′
i), it sets m̃i ←

m∗i ‖r∗i and σ̃ ← σ′i for all i = 1, . . . , k + 1 and outputs (m′1, σ
′
1), . . . , (m′n, σ

′
n),

(m̃1, σ̃1), . . . , (m̃k+1, σ̃k+1).

Analysis. For the analysis first observe that B runs in polynomial time because A
is efficient and because the handling of all queries can be done efficiently. Suppose
that A succeeds with non-negligible probability. Then it outputs (k + 1) mes-
sage/signature pairs that verify under Vf. Since B runs the honest user algorithm
to compute the signatures σ′1, . . . , σ

′
n it follows (from the completeness) that all

message/signature pairs that B returns, verify with overwhelming probability.
It is left to show that a) the algorithm B output one more message/signature
pair (than queries to the signing oracle with output ok took place) and b) all
messages are distinct.

The distinctness property follows immediately from the definition of the success
probability in the honest-user unforgeability game and from the construction.
More precisely, consider the messages (m′1, . . . ,m

′
n) and (m̃1, . . . , m̃k+1), where

m′i = mi‖ri and m̃j = m∗j‖r∗j . According to our assumption that A succeeds, it
follows that all message pairs m∗r and m∗s (for all r 6= s) differ from each other.
But then it follows easily that m̃∗r and m̃∗s are also distinct (for all r 6= s). Since
the ri are chosen randomly, the messages (m′1, . . . ,m

′
n) also differ from each

other with overwhelming probability. Now, consider the messages (m1, . . . ,mn)
that A sends to the oracle P. Note that all these messages must differ from the
messages (m∗1, . . . ,m

∗
k+1) returned by A by definition. This means, however, that

m̃∗r differs from m′i for all i, r.
Finally we have to show that B returns one more message/signature pair

(property (a)) than protocol executions with the signer S ′ took place (and that
produced output ok). Since A wins the game, it follows that in at most k of
the protocol executions that B forwarded between A and its external signer, the

15



signer returned ok. B itself has executed n user instances to simulate the oracle
P. Since A outputs k + 1 message signature pair (s.t. mi 6= m∗j for all i, j) it
follows that B has asked at most n+ k queries in which the signer S ′ returned
ok, but B returned n+ k + 1 message/signature pairs. This, however, contradicts
the assumption that BS is unforgeable.

Putting together the above results, we get the following theorem.

Theorem 17. If complete, blind, and unforgeable interactive signature schemes
exist, then there are complete, blind, unforgeable, and honest-user unforgeable
interactive signature schemes (with respect to Definition 5).

The proof of this theorem follows directly from Lemmas 15 and 16.
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