
DDH-like Assumptions Based on Extension
Rings

Ronald Cramer∗, Ivan Damg̊ard†, Eike Kiltz‡, Sarah Zakarias†, Angela
Zottarel†?

∗ CWI and Leiden University, †Aarhus University ‡ RU Bochum

Abstract. We introduce and study a new type of DDH-like assumptions
based on groups of prime order q. Whereas standard DDH is based on
encoding elements of Fq “in the exponent” of elements in the group,
we ask what happens if instead we put in the exponent elements of
the extension ring Rf = Fq[X]/(f) where f is a degree-d polynomial.
The decision problem that follows naturally reduces to the case where
f is irreducible. This variant is called the d-DDH problem, where 1-
DDH is standard DDH. We show in the generic group model that d-
DDH is harder than DDH for d > 1 and that we obtain, in fact, an
infinite hierarchy of progressively weaker assumptions whose complexities
lie “between” DDH and CDH. This leads to a large number of new
schemes because virtually all known DDH-based constructions can very
easily be upgraded to be based on d-DDH. We use the same construction
and security proof but get better security and moreover, the amortized
complexity (e.g, computation per encrypted bit) is the same as when
using DDH. We also show that d-DDH, just like DDH, is easy in bilinear
groups. We therefore suggest a different type of assumption, the d-vector
DDH problems (d-VDDH), which are based on f(X) = Xd, but with
a twist to avoid problems with reducible polynomials. We show in the
generic group model that d-VDDH is hard in bilinear groups and that
the problems become harder with increasing d. We show that hardness
of d-VDDH implies CCA-secure encryption, efficient Naor-Reingold style
pseudorandom functions, and auxiliary input secure encryption. This can
be seen as an alternative to the known family of k-LIN assumptions.

1 Introduction

The computational Diffie-Hellman assumption (CDH, proposed by Diffie and
Hellman in [DH76]), says that if one chooses random g in a finite group G and
random exponents a, b, then given g, ga, gb it is hard to compute gab. The assump-
tion was introduced as basis for the well-known Diffie-Hellman key exchange.

? The second, fourth and fifth author acknowledge support from the Danish National
Research Foundation and The National Science Foundation of China (under the
grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Compu-
tation, and also from the CFEM research center (supported by the Danish Strategic
Research Council) within which part of this work was performed.

However, to get efficient cryptographic constructions one needs the stronger
Decisional Diffie-Hellman assumption (DDH, studied by Naor and Reingold in
[NR97]). It says that given g, ga, gb, the group element gab is pseudorandom, i.e.,
cannot be efficiently distinguished from gc for a random c. In some groups, the
DDH assumption is clearly false, but it is widely conjectured to hold when G is,
for instance, a large prime order subgroup of F∗p or an elliptic curve group.

DDH has been used as the basis for a very wide range of efficient crypto-
graphic primitives, such as pseudorandom functions (PRF) [NR97], hash-proof
systems and CCA-secure public-key encryption [CS98], leakage resilient cryp-
tography (in particular, auxiliary input security [DGK+10]), and circular secure
encryption [BHHO08].

Similar efficient constructions are not known under the weaker CDH assump-
tion (unless one assumes random oracles) and this has motivated a large body
of research studying weaker variants of DDH that would still enable crypto-
graphic constructions. A well-known example is a family of assumptions called
the k-LIN assumptions (where k = 1 is simply the standard DDH assump-
tion) [BBS04,HK07,Kil07,Sha07]. In the generic group model, these assumptions
are known to become progressively weaker for increasing k.

In this paper we initiate a study of a new family of assumptions that form
natural extensions of DDH in prime order groups: if G has prime order q, and we
fix a generator h, then an element g ∈ G “encodes” an element a ∈ Fq namely
the a for which g = ha. Intuitively we can think of a copy of Fq sitting in the
exponent, and we can add field elements by multiplying in G, and multiply by
known constants by doing exponentiation. However, if CDH is hard, we cannot do
general multiplication, i.e., compute gab from ga, gb. If DDH is hard, we cannot
even distinguish the correct result from random. Now, let us instead consider the
extension ring Rf = Fq[X]/(f) where f is a degree-d polynomial. It is well-known
that an element w ∈ Rf can be represented as a vector (w0, ..., wd−1) ∈ Fdq . We

can therefore represent w by a tuple of d group elements (hw0 , ..., hwd−1) ∈ Gd.
Addition in Rf now becomes multiplication in Gd, and multiplication by a known
constant a ∈ Rf can be done (as we shall see) by applying a linear function in
the exponent. This is simply because in Rf multiplication by a constant a acts as
a linear mapping on the vector (w0, ..., wd−1). More details will be given below,
but the essence is that if we set g = (hw0 , ..., hwd−1) ∈ Gd and take any a ∈ Rf ,
we can define ga in a completely natural way, namely as the d-tuple of elements
in G that represent wa. This leads to defining the f -DDH problem as follows:
given

(
g,ga,gb,gc

)
, where a,b,c ∈ Fqd ,g ∈ Gd, decide if c is random or c = ab.

It is not hard to see that f1-DDH and f2-DDH are equivalent whenever Rf1
is isomorphic to Rf2 , and also that f2-DDH is no harder than f1-DDH where f1
is an irreducible factor in f2. So it is natural to consider only the case where f is
irreducible of degree d, in which case Rf = Fqd . This variant is called d-DDH1.
We show that if d1 divides d2, so that Fqd1 is a subfield of Fqd2 , then d2-DDH is

1 The d-DDH assumption should not be confused with the previously known k-
DDH assumption which is completely different and is stronger than DDH (see, e.g.,
[BB04,DY05,BMR10] for details on and applications of this assumption).

at least as hard as d1-DDH. Conversely, we show in the generic group model that
d-DDH for d > 1 is harder than DDH, and that d2-DDH is harder than d1-DDH
if d1|d2 and d2 > 4(3d1 − 2). Thus we get an infinite hierarchy of progressively
weaker assumptions whose complexities lie “between” DDH and CDH.

From a basic research point of view, we believe this result is interesting
because it contributes to understanding a very natural class of assumptions.
Moreover, the proof is interesting from a technical point of view: proofs in the
generic group model usually work by arguing that the adversary fails because
he cannot compute expressions “in the exponent” of sufficiently high degree.
This approach completely fails in our case, instead we have to solve a much
harder task, namely we show that the ability to verify whether certain degree-2
equations are satisfied, does not allow verification of a different class of degree-2
equations.

From a more practical point of view, d-DDH gives us a large number of
new schemes “for free” because virtually all known cryptographic constructions
based on DDH can very easily be upgraded to be based on d-DDH: exactly
the same construction and security proof applies but we get better security.
Moreover, the amortized complexity of resulting schemes (e.g., computation per
encrypted bit) is the same as when using DDH. We explain this in more detail in
Section 5. In contrast, using the family of k-LIN assumptions is less attractive:
The known DDH-based primitives have to be generalized to k-LIN and reproved
from scratch, and one suffers a loss of efficiency that increases with k (also in
the amortized sense).

How significant is the security advantage of using d-DDH? Given that in
appropriately chosen groups, we do not know how to attack even the weakest
variant, this can only be a matter of opinion. One may of course take the position
that extending DDH is not useful: one can choose to believe that if DDH turns
out to be easy, the algorithm will “probably” be so general that it can solve
d-DDH for any d. This, on the other hand, is an argument that can made in
exactly the same way against any known class of assumptions that generalize
DDH, such as the k-LIN assumptions. With current state of the art, there is no
way to settle this question. What our result does guarantee, however, is that if
someone finds an efficient algorithm for DDH, even a non-generic one, there is
no generic black-box reduction that turns it into an algorithm for 2-DDH, for
instance. To render the d-DDH assumptions useless, one needs to solve the entire
hierarchy using a non-generic reduction or a completely general algorithm.

We believe that in applications of cryptography, one should always minimize
the risk of ones assumption being broken. And if the risk can potentially be
made smaller at very little extra cost by modifying the application, there is
good reason to do this. We therefore believe that using, e.g, 2-DDH instead of
DDH is a ‘good deal” in practice.

Everything we said so far applies to groups where no bilinear map is available,
such as prime order subgroups of Z∗p or compact elliptic curve based groups. In
bilinear groups, however, it turns out that d-DDH, just like DDH, is easy. This
fact motivates our suggestion of an alternative family of problems: we observe

that by omitting some group elements from an instance of f -DDH, one can
obtain a problem that is hard, even if f is reducible. Based on this, we propose
the d-vector DDH (d-VDDH) assumptions, based on f(X) = Xd. We show in the
generic group model that the d-VDDH assumption holds even in bilinear groups.
In fact, it holds even given a d-linear map, which can be thought of as an oracle
allowing the adversary to compute expressions of degree d in the exponent. This
means that the d-VDDH assumptions become progressively weaker for increasing
d. We show that the d-VDDH assumption implies CCA-secure encryption and
efficient Naor-Reingold style pseudorandom functions. We also construct another
cryptosystem based on the d-VDDH assumption, very similar to the BHHO
scheme [BHHO08]. We show that this scheme is auxiliary input secure, a strong
form of leakage resilience where full information on the secret key can be leaked,
as long as the key remains hard to compute.

In bilinear groups, the family of d-VDDH assumptions can therefore be seen
as an alternative to the (incomparable) family of k-linear assumptions.

A final related work that should be mentioned is [HYZX08] in which an
assumption called EDDH is proposed, which is our 2-DDH assumption. This is
the only prior work we know of that mentions a DDH variant based on ring
extensions. It is claimed in [HYZX08] that DDH reduces to EDDH and that in
the generic group model EDDH is hard, even in bilinear groups. The first result
is correct, but we could not verify the proof. In this paper, we give a different
proof of a more general statement. The second claim is false, and is refuted by
our result that d-DDH for any d is easy in bilinear groups.

2 Preliminaries

2.1 Notation

If S is a set, we write x ← S meaning that x is sampled uniformly from S. If
x ∈ Fmq is a vector, we write x[i] for the ith entry of x. We say that a function
f : N→ R is negligible if, for every polynomial p, there exists an integer np ∈ N
such that f(n) < 1/p(n) for every n > np. If X and Y are two random variables,

we say that X and Y are computationally indistinguishable (X
c
≈ Y) if their

computational distance is negligible. Furthermore, throughout the paper, vectors
are denoted by bold lowercase letters.

A d-linear map e : Gd → GT is an efficiently computable map such that
e(g, . . . , g) 6= 1 and e(ga11 , . . . , gadd) = e(g1, . . . , gn)

∏
ai , for all gi in G and for all

ai in Fq. A d-linear group G is a group G together with a d-linear map.

3 Extension Rings and DDH

We consider here a finite field Fq of prime order q and its extension with a
polynomial f of degree d. By this we obtain the ring Rf = Fq[X]/(f), where an
element v can be written as v0 + · · · + vd−1X

d−1 + (f). However, we can also

represent v by the matrix V = v0Id + v1Af + · · ·+ vd−1A
d−1
f , where Id is the d-

dimensional identity matrix and Af is the so-called companion matrix of f . The
companion matrix of a monic polynomial f = Xd+αd−1X

d−1 + · · ·+α1X
1 +α0

is given by the d× d matrix

Af =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...
0 0 · · · 1 −αd−1

 .

Action of matrices on Gd Given a group G of order q and a tuple of elements
g = (g0, . . . , gd−1) ∈ Gd, any matrix M = (mij) of dimension n × d defines a
mapping Gd → Gn as follows:

gM :=

 d∏
j

g
m1j

j , . . . ,

d∏
j

g
mnj

j

 . (1)

In particular this means that Rf can act on Gd: we write the element v ∈ Rf
in its matrix representation V and compute gv := gV as above. It is straight-
forward to verify that this map behaves according to the standard rules for
exponentiation:

(ga)b = gab, gagb = ga+b.

Note that this action can also be understood as implementing a product in Rf
in a slightly different way: if we choose a generator h of G, then we can write any
g as (g0, . . . , gd−1) = (hw0 , . . . , hwd−1). Once we fix h, we can therefore think of
g as representing an element w in Rf , namely w = wd−1X

d−1 + . . .+w0 + (f).
We will write this as g = h(w). It now turns out that we have

gv = h(w)v = h(wv).

This follows because we can think of Rf as a d-dimensional vector space over
Fq. In that interpretation, multiplication by v is a linear mapping which has a
matrix, namely V . Since the action gv is defined to be multiplication by V “in
the exponent”, it follows that by computing gv = (hw0 , . . . , hwd−1)v, we are in
fact multiplying w by v.

3.1 The f-DDH Problem

Given the above, we can now define an new variant of the DDH problem:

Definition 1 (The f-DDH Problem). Let f be a d-degree polynomial. Let G
be a PPT algorithm, which given the security parameter λ, outputs the descrip-
tion of a group G of order q = q(1λ). Let A be a probabilistic algorithm that

takes as input (a description of) G and a 4-tuple of elements in Gd, and outputs
0 or 1. We say that A solves the f -DDH problem with advantage εA(λ), where

εA(λ) = |Pr[A(G, (g, ga, gb, gc)) = 1]− Pr[A(G, (g, ga, gb, gab)) = 1]|

where g← Gd and a← Rf , b← Rf , c← Rf . In other words, given
(
g, ga, gb, gc

)
,

the problem is to decide whether c = ab or c is a random element in Rf .

Equivalently, we can think of the problem instance as being given in the al-
ternative representation (h(w), h(wa), h(wb), h(wc)). This makes no difference
to the adversary, as he would not be given w – but he knows that such a w
exists. From the above we construct the following assumption.

Definition 2 (The f-DDH Assumption). For any probabilistic polynomial
time algorithm A as in Definition 1, it holds that εA(λ) is negligible as a function
of λ.

Note that this is a generalization of the DDH problem: for a polynomial f of
degree 1, Rf = Fq and f -DDH is just the standard DDH problem in G.

Now we look a bit closer at the polynomial f . We can distinguish between
two different cases: one where f is reducible and one where f is irreducible. For
the first case we have the following theorem:

Theorem 1 (f-DDH for reducible f). Let f be a d-degree reducible polyno-
mial and suppose f0 divides f , then solving f -DDH is polynomial time reducible
to solving f0-DDH.

Proof. Let d0 and d be the degrees of f0 and f respectively. Let us consider an
element w in Rf . We know that w can be written as wd−1x

d−1+ · · ·+w0+(f). If
we map w to Rf0 by reducing modulo f0 we get an element v = vd0−1x

d0−1+· · ·+
v0 + (f0). In fact, reduction modulo f0 is a ring homomorphism φ : Rf → Rf0 .
It particular, it is linear and therefore has a matrix M . By (1) we can let M
act on w, so we get h(w)M = h(φ(w)) = h(v). Hence, M can be used to
efficiently map an f -DDH instance (h(w), h(wa), h(wb), h(wc)) to an f0-DDH
instance (h(φ(w)), h(φ(wa)), h(φ(wb)), h(φ(wc))) = (h(v), h(vφ(a)), h(vφ(b)),
h(vφ(c))). If c = ab, then φ(c) = φ(a)φ(b), while if c is uniform in Rf , then
φ(c) is uniformly chosen in Rf0 . Thus, if we can solve f0-DDH, we can solve
f -DDH with the same advantage.

4 The d-DDH Problem

Theorem 1 implies that f -DDH is no harder than f0-DDH, where f0 is the
smallest irreducible factor in f . The natural conclusion is therefore that we
should only look at the irreducible polynomials. In this case we know that our
ring Rf is a field, namely the extension field Fqd where d is the degree of f .
In fact, since all fields with qd elements are isomorphic, f -DDH is equivalent
f ′-DDH for any f ′ which is also irreducible and of the same degree as f . This is

because the isomorphism can be implemented as a linear mapping in the same
fashion as in the proof of Theorem 1. We can thus efficiently map an f -DDH
instance to an f ′-DDH instance and hence the only thing that may matter to the
hardness of the problem is the degree of the extension. In the following, we will
talk about d-DDH. In this definition we do not fix f ; we can use any d-degree
irreducible polynomial and otherwise the game is the same as in Definition 1.

Theorem 2. Let d1 divide d2, so Fqd1 is a subfield of Fqd2 , then d1-DDH is no
harder than d2-DDH.

The proof can be found in the full version [CDK+11]. We now show that d-DDH
for d > 1 is, in fact, harder than DDH in the generic group model. Moreover, we
show that if d1 divides d2 and d2 > 4(3d1−2), then d2-DDH is generically harder
than d1-DDH, giving in this way a hierarchy of progressively strictly weaker
assumptions. For this, we need two auxiliary results. The first is a standard
result, known as the Schwartz-Zippel lemma [Sch80,Zip79]:

Theorem 3. For a non-zero multivariate polynomial over a finite field K of
degree at most t, if uniformly random and independent values are assigned to
the variables, the probability that this produces a root is at most t/|K|.

The second is our main technical result supporting the hardness of d-DDH.
In the following, for a,b ∈ Fqd1 we will use Ck(a,b) ∈ F to denote the k-th
component of the product ab ∈ Fqd1 . Moreover, for ease of notation, whenever we
have P1, . . . , Pd affine functions from (Fqd2)3 to Fq, we will denote by P the vector
consisting of all the Pi’s. Namely P (X,Y, Z) = (P1(X,Y, Z), . . . , Pd(X,Y, Z)).
Note that here we think of Fqd2 as a d2-dimensional vector space over F. With this
notation, an expression like Ck(P, T)(X,Y, Z) can be understood in a natural
way as a degree-2 polynomial in the 3d2 coordinates of X,Y and Z.

Theorem 4. For i = 1, . . . , d1, let Pi, Ri, Si, Ti : (Fqd2)3 → Fq be affine func-
tions, with d2 > 4(3d1 − 2). Assume Fk(P,R, S, T)(X,Y,XY) := (Ck(P, T) −
Ck(R,S))(X,Y,XY) is the zero polynomial. Then also Fk(P,R, S, T)(X,Y, Z)
is the zero polynomial. In particular, if d1 = 1, the above is true for any d2 > 1.

The point of this theorem is that X,Y, Z ∈ Fqd2 represent the input that the
adversary gets in the generic group model game. Once he receives these inputs,
the P,R, S, T represent new group elements he can compute. They are affine
functions since the adversary can only compute sums and scalar multiplications
“in the exponent”. The adversary is trying to decide whether Z = XY or if
Z is random. He can try to do this by submitting a tuple of group elements
(represented by P,R, S, T) to the oracle which answers back whether this tuple
is an Fqd1 -DDH tuple or not. In the theorem, the functions Fk represent the
oracle’s answer, as for each component k = 1, . . . , d1, Fk tests if the tuple is
“good” or not. What the theorem says is that, no matter how the adversary
computes his oracle queries, if the tuple he is submitting is “good”, this was
already obvious without asking the oracle because the corresponding polynomials
Fk are identically zero.

The idea behind the proof is writing the functions Pi, Ri, Si, Ti from (Fqd2)3

to Fq as sums of affine functions mapping Fqd2 to Fq. Such affine functions can
be expressed via the trace function Tr : Fqd2 → Fq, leading to an expression
which is much easier to handle. We can then start looking at the implications
of Fk(P,R, S, T)(X,Y,XY) being zero. We show that Fk(P,R, S, T)(X,Y,XY)
vanishing in (Fd2)2 implies several terms of Fk(P,R, S, T)(X,Y, Z) vanish as
well. Proceeding in this way, we simplify our expression further and obtain a
polynomial which is a sum of products of trace functions. We show that the
intersection of the kernels of these trace functions is not empty, and thus we
prove that the last term surviving in Fk(P,R, S, T)(X,Y, Z) actually does not
depend on Z and so must be zero as well.

The complete proof of the theorem can be found in the full version [CDK+11].

Theorem 5. In the generic group model, the d2-DDH assumption holds even
when the adversary is given an oracle allowing him to solve the d1-DDH problem,
for d2 > 4(3d1 − 2). In particular, if d1 = 1, we have that d2-DDH holds even
when an adversary has access to a DDH oracle, for any d2 > 1.

Proof. Recall that an instance to the d2-DDH problem can be written as (h(w),
h(wa), h(wb), h(wc)) for a fixed generator h of G and random w,a,b, c in Fqd2 .
We will show, in the generic group model, that the problem remains hard even
if the adversary is given w. From w, it is easy to compute w−1. So we can
equivalently think of the problem as being given instead as (h(x), h(y), h(z)),
where the adversary now has to decide whether z = xy.

We will assume that a random bit b is chosen by the simulator, and when
b = 0 the adversary sees z = xy, while if b = 1, the adversary will see a uniform
z. The theorem is proved if we can show that a polynomial-time adversary cannot
guess b with non-negligible advantage over 1/2.

Let A be a polynomial-time generic group adversary. As usual, A has ac-
cess to an oracle computing the group operation and inversion. In our case,
we also give A access to an oracle solving d1-DDH problem. More formally, on
input gw0 , . . . , gwd1−1 , ga0 , . . . , gad1−1 , gb0 , . . . , gbd1−1 , gc0 , . . . , gcd1−1 , the oracle
outputs 1 if w2c = wawb in Fqd1 .

We consider an algorithm B playing the following game with A. Algorithm
B chooses 3d2 + 2 bit strings σ0, . . . , σ3d2+1 uniformly in {0, 1}m, for a suf-
ficiently large m. These strings represent the encoded elements which algo-
rithm A will work with. Internally, B keeps track of the encoded elements us-
ing polynomials in the ring Fq[X1, . . . , Xd2−1, Y0, . . . , Yd2−1, Z0, . . . , Zd2−1, T0].
Externally, the elements that B gives to A are just bit strings in {0, 1}m.
To maintain consistency, B creates a list L consisting of pairs (F, σ) where
F is a polynomial in the ring specified above and σ is a bit string. Initially,
L is set to {(1, σ0), (X1, σ1), . . . , (Xd2−1, σd2−1), (Y0, σd2), . . . , (Yd2−1, σ2d2−1),
(Z0, σ2d2), . . . , (Zd2−1, σ3d2−1)}.
Algorithm B starts the game providing A with σ0, . . . , σ3d2−1. The simulation
of the oracles goes as follows:

Group action: Given two strings σi, σj , B recovers the corresponding polyno-
mials Fi and Fj and computes Fi+Fj . If Fi+Fj is already in L, B returns to A
the corresponding bit string; otherwise it returns a uniform element σ in {0, 1}m
and stores (Fi + Fj , σ) in L.

Inversion: Given an element σ in G, B recovers its internal representation F and
computes −F . If the polynomial −F is already in L, B returns the corresponding
bit string; otherwise it returns a uniform string σ and stores (−F, σ) in L.

d1-DDH: Given 4d1 strings π1, . . . , πd1 , ρ1, . . . , ρd1 , σ1, . . . , σd1 , τ1, . . . , τd1 in G,
adversary B recovers the polynomials P1, . . . , Pd1 , R1, . . . , Rd1 , S1, . . . , Sd1 , T1,
. . . , Td1 and returns 1 iff Ci(P1, . . . , Pd1 , T1, . . . , Td1) = Ci(R1, . . . , Rd1 , S1, . . . , Sd1)
for every i = 1, . . . , d1, where Ci represents the i-th component of the product
in Fqd1 .

After A queried the oracles, it outputs a bit b′. At this point, B chooses
uniform values x = (x1, . . . , xd2−1), y = (y0, . . . , yd2−1), z = (z0, . . . , zd2−1) in
Fq2d and sets X1 = x1, . . . , Xd2−1 = xd2−1, Y0 = y0, . . . , Yd2−1 = yd2−1. Finally
B chooses a bit b and, if b = 1 it sets Z0 = z0, . . . , Zd2−1 = zd2−1, otherwise it
sets Z0 = C0(x,y), ..., Zd2−1 = Cd2(x,y).

If the simulation provided by B is consistent, it reveals nothing about b. This
means that the probability of A guessing the correct value for b is 1/2. The only
way in which the simulation could be inconsistent is if, after we choose value for
x,y, z, either two different polynomials in L happen to produce the same value
or some query to the d1-DDH oracle is such that Ci(P1, . . . , Pd1 , T1, . . . , Td1) −
Ci(R1, . . . , Rd1 , S1, . . . , Sd1) is not the 0 polynomial, but produces 0 after assign-
ing values.

If b = 1, all values for x,y, z are chosen independently, so Theorem 3
applies to show that for a single oracle query Ci(P1, . . . , Pd1 , T1, . . . , Td1) −
Ci(R1, . . . , Rd1 , S1, . . . , Sd1) or a single difference Fi − Fj , the probability of
having 0 after assigning values is negligible because q is exponentially large and
all polynomials involved have degree at most 2. Further, by the union bound,
since we only have a polynomial number of polynomials to consider, the overall
probability of having 0 after assigning values is also negligible.

If b = 0, there are two extra possibilities for inconsistency between simulation
and real attack. The first is if some query to the d1-DDH oracle satisfies that

Ci(P1, . . . , Pd1 , T1, . . . , Td1)− Ci(R1, . . . , Rd1 , S1, . . . , Sd1)(X,Y, Z) 6= 0,

but

Ci(P1, . . . , Pd1 , T1, . . . , Td1)− Ci(R1, . . . , Rd1 , S1, . . . , Sd1)(X,Y,XY)

is the 0-polynomial. This is ruled out by Theorem 4, since all the polynomials
involved have degree at most 1 and can therefore be thought of as affine functions.
The second potential inconsistency is if two distinct polynomials Fi, Fj in L
satisfy that (Fi − Fj)(X,Y,XY) is the 0 polynomial. To see that this cannot

happen, note that since each Fi has degree at most 1, it can be decomposed
uniquely as as Fi(X,Y, Z) = F xi (X) + F yi (Y) + F zi (Z) + ci for a constant ci
and polynomials F xi (X), F yi (Y), F zi (Z) of degree at most 1 and constant term
0. A collision as described here can only happen if (F zi −F zj)(Z) 6= 0, but (F zi −
F zj)(XY) = 0. This leads to a contradiction: we can assign values Y0 = 1, Y1 =
0, ..., Yd−1 = 0, corresponding to the 1-element in Fqd . With this assignment,
we get that (F zi − F zj)(X) = 0, contradicting that (F zi − F zj)(Z) 6= 0. Having
ruled out these two possibilities for inconsistency, the only remaining possibility
is that an unfortunate choice of values for the variables lead to collisions, as in
the b = 1 case. Again by Theorem 3, this happens with negligible probability
since the involved polynomials have degree at most 4.

We now look at what happens to d-DDH in a bilinear group. In such a group
it is well-known that DDH is easy, and we show that this is also the case for
d-DDH. The EDDH assumption presented in [HYZX08] is equivalent to d-DDH
for d = 2. It was claimed that EDDH is hard also in generic bilinear groups,
which is however refuted by the following result:

Theorem 6. d-DDH over any bilinear group can be solved in polynomial time.

Proof. We assume that the extension field Fqd has been constructed using some
fixed irreducible polynomial f . Consider any two elements x,y ∈ Fqd as vectors
x = (x0, ..., xd−1),y = (y0, ..., yd−1) and write the product as xy = (z0, ..., zd−1).
Now, multiplication of x and y takes place by multiplying the polynomials x0 +
... + xd−1X

d−1 and y0 + ... + yd−1X
d−1 and reducing modulo f(X). From this

it follows that we can write

zk =
∑

αkijxiyj

for coefficients αkij ∈ Fq that depend only on f(x). Now, if we are given d-
tuples h(x), h(y), it follows from the above that we can efficiently compute a
representation in the target group GT of xy. Namely, for every k, we have

e(h, h)zk =
∏
ij

(e(h, h)xiyj)α
k
ij =

∏
ij

e(hxi , hyj)α
k
ij

and hxi , hyj can be taken directly from h(x), h(y). So if we define

e(h, h)(xy) = (e(h, h)z0 , ..., e(h, h)zd−1)

what we have shown is that we can compute e(h, h)(xy) efficiently from h(x), h(y).
Now, consider an input instance of d-DDH, in the form h(w), h(wa), h(wb),

h(wc). Observe that we have c = ab if and only if wa wb = w wc = w2ab.
It now follows immediately from the above that we can decide if ab = c by
computing e(h, h)(wa wb) and e(h, h)(w wc) and comparing the two.

Although of course not all groups are bilinear, this result nevertheless mo-
tivates looking for alternative assumptions with similar properties that can be
assumed to be hard in bilinear groups. We do this in Section 6.

5 Applications of d-DDH

In this section we present a number of applications for the d-DDH assumption.

5.1 Pseudorandom Functions

We construct pseudorandom functions (PRF) from d-DDH by taking the con-
struction from [NR97] and showing that the natural modification where we work
in the extension field also gives a PRF.

Definition 3. Let F = {Fk} be a family of keyed functions where Fk : Ak → Bk,
for every k in the key space K. We say that F is a family of pseudorandom
functions if for all PPT algorithms D, any polynomial p and large enough λ,

|Pr[DFk(·)(1λ) = 1]− Pr[Df(·)(1λ) = 1]| < 1/p(λ),

where k is chosen uniformly in K and f is chosen uniformly from the set of
functions mapping Ak to Bk.

PRF Construction We construct a function family F = {fk} as follows. The
index k specifies a tuple (q,Gd,g,a0, . . . ,an) where q is a prime number, G is
a group of order q, g is an element of Gd and a0, . . . ,an are random in Fqd .

Finally, we define fk : {0, 1}n → Gd, fk(x1, . . . , xn) = ga0
∏

xi=1 ai .

Theorem 7. Under the d-DDH assumption, the family F = {fk} defined above
is a family of pseudorandom functions.

The proof of the theorem follows the exact same line as in [NR97]. Essentially
the proof is done by a hybrid argument in which we define a sequence of functions
{hi} where h0 is fk and hn is a uniformly random function. An adversary that
distinguishes between h0 and hn will also distinguish between hi and hi+1, for
some i, which reduces to the d-DDH problem.

5.2 Public Key Encryption

We now apply d-DDH to public key encryption. If we modify in the natural
way the Elgamal [Gam84] scheme, we obtain CPA secure encryption based on
d-DDH.

– Gen(1λ): Let G ← G(1λ). Choose a random element g ← Gd and random
x ← Fqd . Compute h = gx. The secret key is then sk = x and the public
key is pk = (h), where G can be considered a public parameter.

– Enc(pk ,M): Let the message be M ∈ Gd. Choose randomly r← Fqd . Output
the ciphertext CT = (gr,hr ·M).

– Dec(sk ,CT): Write the ciphertext as CT = (e, c). Output M ′ = c · (ex)
−1

The proof of correctness and security follows immediately as for standard
Elgamal.

5.3 Applications in general

Having seen the two examples above, it should not be surprising that all DDH-
based cryptographic schemes we are aware of can be based on d-DDH instead.
This is basically because all involved algorithms (such as key generation, encryp-
tion, and security reduction) will work given only black-box access to a group
G and a finite field K. We just need that for g ∈ G and x ∈ K, gx ∈ G is well-
defined and standard “axioms” such as gx+y = gxgy and (gx)y = gxy hold. The
exact same scheme and security proof can be run, based on (G,K) = (G,Fq)
or based on (G,K) = (Gd,Fqd). The only difference is that we need the d-DDH
assumption in the latter case. Thus, for instance, CCA secure encryption [CS98]
and circular secure or auxiliary input secure encryption [BHHO08] follow imme-
diately from d-DDH.

5.4 Efficiency

For all constructions mentioned here, we can define a notion of amortized com-
plexity. For a PRF, this is the computation time needed to produce a single
pseudorandom group element; for an encryption scheme it is the computation
time needed to encrypt a group element.

An important point is that in all applications we are aware of, the amortized
complexity is essentially the same for constructions based on DDH and on d-
DDH. This is because for g ∈ Gd and a ∈ Fqd , ga corresponds to a tuple of
length d where each entry is an expression of the form

∏
gαi
i . By a well-known

algorithm (see [Pip76]) such a value can be computed in time roughly what you
need for a single exponentiation in G.

As a concrete example, computing the PRF defined above requires essentially

a single exponentiation: g(a0
∏

xi=1 ai). This produces d pseudorandom elements
at amortized cost roughly 1 exponentiation in G, which is the same cost as the
DDH based version.

Various optimizations are known that save computation in the constructions
we consider here. However, all the optimizations we are aware of can be applied
to both variants based on DDH and d-DDH, and therefore do not affect our
conclusion on the amortized complexities.

6 The Vector DDH Problem

The main observation in this section is that we can construct a problem that is
generically harder than DDH by revealing only the last entry of the final vector
in an f -DDH instance. In the following, we study in detail what happens if we
choose f to be xd. It turns out that there is a simple way of expressing products
in Rd = Fq[X]/(xd). If we take x = (x0, . . . , xd−1) and y = (y0, . . . , yd−1) in Rd,
we have:

xy =

(
x0y0, . . . ,

i−1∑
k=0

xkyi−1−k, . . . ,

d−1∑
k=0

xkyd−1−k

)
. (2)

We define the d-VDDH problem just like d-DDH, except that the problem in-
stance is now of the form (h(w), h(wa), h(wb), h(wc)[d]), where we recall that
x[d] is the dth entry of the vector x, that is xd−1 if we start numbering from 0.

Definition 4 (The d-VDDH Problem). Let d be an integer. Let G be a PPT
algorithm, which given the security parameter λ, outputs the description of a
group G of order q = q(1λ). Let A be a probabilistic algorithm that takes as input
(a description of) G and a 3-tuple in Gd plus an element in G, and outputs 0
or 1.

We say that A solves the d-VDDH problem with advantage εA(λ), where

εA(λ) = |Pr[A(G, (g, ga, gb, gc[d])) = 1]− Pr[A(G, (g, ga, gb, gab[d])) = 1]|

where g← Gd and a← Rd, b← Rd, c← Rd.

Definition 5 (The d-VDDH Assumption). For any probabilistic polynomial
time algorithm A as in Definition 4, it holds that εA(λ) is negligible as a function
of λ.

Recall the notation from Section 3: g = (g0. . . . , gd−1) = (hw0 , . . . , hwd−1).
Note that we WLOG can choose w0 = 1, so h(w) = (g0, g

w1
0 . . . , g

wd−1

0). To prove
that d-VDDH is generically hard, even in d-linear groups, it is useful to do the
following parameter substitution: set x = wa, y = wb. The d-VDDH problem
now becomes deciding whether the last element is the dth coordinate of xyw−1

or is random.
Now, set w−1 = (z0, z1, ..., zd−1) and consider the zi as unknowns. Since

ww−1 = 1 = (1, 0, ..., 0) we get d − 1 equations involving the zi’s, using the
product introduced in (2):

z0 = 1, z1 = −w1, . . . , zi = −wi−
∑
j+l=i

zlwj , . . . , zd−1 = −wd−1−
∑

j+l=d−1

zlwj

In particular, zi = −w1zi−1−· · ·−wi−1z1−wi. Hence, it can be proved by simple
induction that zi has degree i as a function of the wj ’s. Now, let pi(w,x,y) be
the ith entry of w−1xy. Then pd(w,x,y) has degree d+ 1 in w,x, and y.
We are now ready to prove the generic hardness of d-VDDH.

Theorem 8. Even given a d-linear mapping, the d-VDDH holds in the generic
group model.

The proof can be found in the full paper [CDK+11].
Later, we will need a lemma stating that a generalization of the d-VDDH

which considers several generators is equivalent to the original assumption.

Lemma 1. If d-VDDH is hard for G, then for any positive integer m{
(g1, . . . , gm, g

r
1[d], . . . , grm[d]) | gi ← Gd, r← Rd

} c
≈ (3){

(g1, . . . , gm, g
r1
1 [d], . . . , grmm [d]) | gi ← Gd, ri ← Rd

}
. (4)

The proof can be found in the full paper [CDK+11].

7 Applications of d-VDDH

In this section we discuss a number of natural application of our d-VDDH as-
sumption. Throughout this section we will use the ring Rd = Fq[X]/(f) for
f = Xd.

7.1 Public Key Encryption

It is immediate how to construct a CPA-secure encryption schemes from the
d-VDDH assumption family. We now show how to extend them to chosen-
ciphertext (CCA) secure schemes. Let us first recall the definition of chosen-
ciphertext security for encryption schemes.

Definition 6. A scheme PKE is CCA secure if for any PPT adversary A =
(A1,A2), any polynomial p and large enough λ,

AdvA,h :=
∣∣Pr[CCA0(PKE,A, 1λ)]− Pr[CCA1(PKE,A, 1λ)]

∣∣ < 1/p(λ),

where CCAb(PKE,A, 1λ) is output from the following experiment:

(pk , sk)←G(1λ)

(m0,m1, state)←ADec(sk ,·)
1 (1λ, pk) with |m0| = |m1|

CT ∗ ←Encpk (mb),

Output b′ ←ADec(sk ,·)
2 (1λ, state, CT ∗)

In the second phase the decryption oracle Dec(sk , ·) returns ⊥ when queried on
the challenge ciphertext CT ∗.

We now give the construction of our CCA secure encryption scheme. Let
(E,D) be a symmetric encryption scheme with key-spaceK ∈ G. Let T : Gd → Fq
be a target collision resistant hash function (see [HK07] for a definition) and

define T̂(x) := (T(x), 0, . . . , 0) ∈ Rd. (Note that for two elements x 6= y we have

that T̂(x)− T̂(y) is invertible in Rd unless T(x) = T(y)).

– Gen(1λ): Let G← G(1λ). Choose a random generator g1 ← Gd and random
indices w,x,y ← Rd. Compute g2 = gw,u = gx,v = gy. The secret key is
then sk = w,x,y and the public key is pk = (G,g1,g2,u,v).

– Enc(pk ,M): Choose randomly r ← Rd. Compute c1 = gr and c2 = (utv)r,

where t = T̂(c1) ∈ Rd. Compute the symmetric part as C = EK(m), where
K = gr

2[d]. Output the ciphertext CT = (c1, c2, C).
– Dec(sk ,CT): Write the ciphertext as CT = (c1, c2, C). If cx·t+y

1 6= c2 then
return ⊥. Otherwise return DK(C), where K = cw1 [d].

It is easy to see that correctness follows by the definition of the public/secret key
and by the correctness of the symmetric scheme. To prove the theorem we need
that symmetric scheme is secure in the sense of authenticated encryption. That
is, it acts as a one-time pad plus any decryption query (with respect to a uniform
random key) is rejected. We refer again to [HK07] for a formal definition.

Theorem 9. If (E,D) is a symmetric encryption scheme secure in the sense of
authenticated encryption, T is a target collision resistant hash function and the
d-VDDH holds in G, then the encryption scheme is IND-CCA secure.

The proof is exactly the same as Theorem 2 in [HK07] where an encryption
scheme is proved CCA secure from the DDH assumption. We give some intuition
about the proof.

The difficulty in the security reduction is that an adversary against the d-
VDDH assumption has to answer the decryption queries and hence has to dis-
tinguish between consistent ciphertexts (i.e., ciphertexts for that cxt+y

1 = c2
holds) and inconsistent ones, without knowing w = logg1

g2. The simulator in-

puts (g1,g2, c
∗
1 = gr

1,K
∗) and wants to distinguish K∗ = gr∗

2 [d] from a uniform
element in G. In the simulation the values u,v from the public-key are set-up
such that the tuple c∗1, c

∗
2 can be used as the challenge ciphertext for some effi-

ciently computable c∗2 and the value K∗ as the symmetric key. More precisely,

we define u = gx1
1 gx2

2 ,v = g
y1
1 g−t

∗·x2
2 for uniform x1,y1 ∈ Rd, x2 ∈ R∗d and

t∗ = T̂(c∗1). By construction, the corresponding real session key is gr∗

2 [d] so break-
ing the indistinguishability of the scheme is equivalent to solving the d-VDDH
problem. It leaves to deal with the decryption queries for CT = (c1, c2, C).
The simulator is not able to distinguish consistent from inconsistent ciphertexts.
However, for ciphertexts with t = T̂(c1) 6= t∗ (these are the interesting cases)
the simulator implements an alternative decryption algorithm by computing the
symmetric key as K = (c1c

−x1t+y1
2)(x2(t−t∗))−1

[d]. (Note that by the proper-

ties of T̂, x2(t − t∗) ∈ R∗ so its inverse is well-defined.) This has the following
consequences.

It is easy to verify that if the queried ciphertext is consistent then the al-
ternative decryption algorithm yields the correct symmetric key K = cw1 . If the
queried ciphertext is inconsistent then the alternative decapsulation algorithm
yields one single symmetric key K that is uniformly distributed over G. (The
probability space is taken over all possible x1,x2,y1 that yield u,v from the
public-key given to the adversary.) Returning this key K to the adversary would
completely determine the simulator’s secret key and hence also the virtual sym-
metric key K ′ for the next decapsulation query. However, this key K is used to
decrypt the symmetric part C of the decryption query and by the authenticity
property of the latter this will always lead to a rejection. Hence the decryption
query is answered correctly and no information about the secret key is leaked
which makes it possible to apply the same argument again.

7.2 Generalized BHHO Encryption

In this section we define a public-key encryption scheme which is heavily inspired
by the scheme in [BHHO08]. Here, however, the cryptosystem is based on d-
VDDH, instead of DDH.

Let λ be the security parameter and m = m(λ) be a parameter of the scheme.
The encryption scheme is PKE = (Gen,Enc,Dec).

– Gen(1λ): Let G ← G(1λ). Choose a vector of uniformly random genera-
tors g = (g1, . . . ,gm),gi ← Gd and random bit string s = (s1, . . . , sm) ←
{0, 1}m. Compute y =

∏m
i=1 g

(si,0,...,0)
i , where (s1, 0, . . . , 0) is viewed as

an element in Rd. The secret key is then sk = s and the public key is
pk = (G,g,y), where G and g can be considered public parameters.

– Enc(pk ,M): Let the message be M ∈ G. Choose randomly r← Rd. Compute
fi = gr

i [d] and output the ciphertext CT = (f1, . . . , fm,y
r[d] ·M).

– Dec(sk ,CT): Write the ciphertext as CT = (f1, . . . , fm, c). Output M ′ =

c · (
∏m
i=1 f

si
i)
−1

Correctness of decryption follows since

m∏
i=1

fsii =

m∏
i=1

(gr
i [d])

si =

m∏
i=1

(
grdi1 · g

rd−1

i2 · · · gr1id
)si

=

m∏
i=1

(
grdsii1 · grd−1si

i2 · · · gr1siid

)
=

m∏
i=1

(gsii1 , . . . , g
si
id)

(r1,...,rd) [d] =

m∏
i=1

(gi1, . . . , gid)
(si,0...,0)(r1,...,rd) [d]

=

m∏
i=1

g
(si,0,...,0)r
i [d] = yr[d]

CPA security in the usual sense follows immediately from Lemma 1. We will,
however, argue that the scheme is also leakage resilient in the auxiliary input
model.

Auxiliary Input Security The definition of security w.r.t auxiliary inputs is
exactly as in [DGK+10].

Definition 7. A scheme PKE is CPA secure w.r.t. auxiliary inputs from a func-
tion class H if for any function h ∈ H, any PPT adversary A = (A1,A2), any
polynomial p and large enough λ,

AdvA,h :=
∣∣Pr[CPA0(PKE,A, 1λ, h)]− Pr[CPA1(PKE,A, 1λ, h)]

∣∣ < 1/p(λ),

where CPAb(PKE,A, 1λ, h) is output from the following experiment:

(pk, sk)←Gen(1λ)

(m0,m1, state)←A1(1λ, pk, h(sk , pk)) with |m0| = |m1|
CT ∗ ←Encpk (mb),

Output b′ ←A2(1λ, state,CT ∗)

The functions we will consider are those where the secret key is hard to com-
pute even given the leakage. More precisely, How(f(k)) consists of all PT func-
tions h : {0, 1}|sk |+|pk | → {0, 1}∗ s.t. given h(sk , pk) (for (sk , pk)← Gen(1λ)), no
PPT algorithm can find sk with probability greater that f(k). A scheme secure
w.r.t auxiliary inputs from How(f(k)) is called f(k)-AI-CPA secure.

We are now ready to state the theorem about the security of our scheme.

Theorem 10. Let m = (4 log qd)1/ε, for some ε > 0. Assuming that d-VDDH
is hard for G, the scheme above is

(
2−m

ε)
-AI-CPA secure.

The complete details of the proof of Theorem 10 are given in the appendix
of the full version [CDK+11]. Based on Lemma 1, it follows the exact same lines
as in the proof in [DGK+10].

There is a trade-off between the ciphertext size and the hardness of the
leakage functions that we can protect against. Obtaining security against func-
tions that are 2−m

ε

-hard to invert, requires that m = (4 log qd)1/ε instead of
m = (4 log q)1/ε, which is a polynomial overhead in the ciphertext size.

We point out that, even though this generalized version of BHHO schemes is
auxiliary input secure, KDM security does not follow using our implementation
with d-VDDH assumption.

7.3 Pseudorandom Functions

In this section we present a construction for pseudorandom functions (see Defi-
nition 3) based on the d-VDDH assumption. This construction is a modification
of the DDH-based one in [NR97].

PRF Construction We construct a function family F = {fk} as follows. The
index k specifies a tuple (q,G, g1, g2, e,a0, . . . ,an) where q is a prime number,
G is a group of order q, g1, g2 are two generators of G, e : G2 → GT is a
bilinear map and a0, . . . ,an are random in R2. For any such index k we denote
t1 = e(g1, g1), t2 = e(g2, g1) and t = (t1, t2). Finally, we define fk : {0, 1}n → GT ,

fk(x1, . . . , xn) = ta0
∏

xi=1 ai [2].

Theorem 11. Under the 2-VDH assumption, the family F = {fk} defined above
is a family of pseudorandom functions.

We refer to the full version [CDK+11] for the proof of this theorem.

References

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based en-
cryption without random oracles. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science,
pages 223–238. Springer, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in
Computer Science, pages 41–55. Springer, 2004.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-
secure encryption from decision diffie-hellman. In David Wagner, editor,
CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 108–
125. Springer, 2008.

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Al-
gebraic pseudorandom functions with improved efficiency from the aug-
mented cascade. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov, editors, ACM Conference on Computer and Communications
Security, pages 131–140. ACM, 2010.

[CDK+11] Ronald Cramer, Ivan Damgaard, Eike Kiltz, Sarah Zakarias, and Angela
Zottarel. Ddh-like assumptions based on extension rings. Cryptology ePrint
Archive, Report 2011/280, 2011. http://eprint.iacr.org/.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, 1998.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and
Vinod Vaikuntanathan. Public-key encryption schemes with auxiliary in-
puts. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in
Computer Science, pages 361–381. Springer, 2010.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In Serge Vaudenay, editor, Public Key Cryptog-
raphy, volume 3386 of Lecture Notes in Computer Science, pages 416–431.
Springer, 2005.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In CRYPTO, pages 10–18, 1984.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened
key encapsulation. In CRYPTO, pages 553–571, 2007.

[HYZX08] Huawei Huang, Bo Yang, Shenglin Zhu, and Guozhen Xiao. Generalized
elgamal public key cryptosystem based on a new diffie-hellman problem. In
Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec,
volume 5324 of Lecture Notes in Computer Science, pages 1–21. Springer,
2008.

[Kil07] Eike Kiltz. Chosen-ciphertext secure key-encapsulation based on gap hashed
diffie-hellman. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key
Cryptography, volume 4450 of Lecture Notes in Computer Science, pages
282–297. Springer, 2007.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In FOCS, pages 458–467, 1997.

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems
(preliminary version). In FOCS, pages 258–263, 1976.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27:701–717, October 1980.

[Sha07] Hovav Shacham. A Cramer-Shoup encryption scheme from the Linear As-
sumption and from progressively weaker Linear variants. Cryptology ePrint
Archive, Report 2007/074, February 2007. http://eprint.iacr.org/.

[Sta96] Markus Stadler. Publicly verifiable secret sharing. In EUROCRYPT, pages
190–199, 1996.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EU-
ROSAM, pages 216–226, 1979.

