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Abstract. Lossy Trapdoor Functions (LTFs) were introduced by Peik-
ert and Waters in STOC ’08 and since then have found many applications
and have proven to be an extremely useful and versatile cryptographic
primitive. Lossy trapdoor functions were used to build the first injective
trapdoor functions based on DDH, the first IND-CCA cryptosystems
based on lattice assumptions, and they are known to imply determinis-
tic encryption, collision resistant hash-functions, oblivious transfer and
a host of other important primitives. While LTFs can be instantiated
under most known cryptographic hardness assumptions, no construc-
tions until today existed based on generic cryptographic primitives. In
this work, we show that any Homomorphic Smooth Hash Proof System,
introduced by Cramer and Shoup in EUROCRYPT ’02, can be used
to construct LTFs. In addition to providing a connection between two
important cryptographic primitives – our construction implies the first
construction of LTFs based on the QR assumption.

Smooth Hash Proof Systems (SHPs) can be seen as a generalization of the
DDH assumption, yet can be built on other cryptographic assumptions,
such as the DCR or QR assumptions. Yet, until today, a “translation”
of results proven secure under DDH to results under DCR or QR has
always been fraught with difficulties. Thus, as our second goal of this
paper, we ask the following question: is it possible to streamline such
translations from DDH to QR and other primitives? Our second result
formally provides this connection. More specifically, we define an Ex-
tended Decisional Diffie Hellman (EDDH) assumption, which is a simple
and natural generalization of DDH. We show that EDDH can be in-
stantiated under both the DCR and QR assumptions. This gives a much
simpler connection between the DDH and the DCR and QR assumptions
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and provides an easy way to translate proofs from DDH to DCR or QR.
That is, the advantage of the EDDH assumption is that most schemes
(including LTFs) proven secure under the DDH assumption can easily be
instantiated under the DCR and QR assumptions with almost no change
to their proofs of security.

1 Introduction

The first practical IND-CCA secure cryptosystem was built by Cramer and
Shoup under the Decisional Diffie-Hellman (DDH) assumption [CS98]. In a fol-
low up work, Cramer and Shoup introduced projective hash proofs as a means of
generalizing their original DDH-based construction [CS02]. This generalization
allowed them to create unified constructions of IND-CCA secure cryptosystems
based on Paillier’s Decisional Composite Residuosity (DCR) assumption and the
Quadratic Residuosity (QR) assumption.

Since their introduction, projective hash proof systems have proven to be an
effective tool for generalizing constructions that were originally proven secure
under the DDH assumption. Indeed, many important results use the framework
of projective hash proofs to take a system built using the DDH assumption and
instantiate it using the DCR or QR assumptions.

Cramer and Shoup [CS02] converted the DDH-based construction of IND-
CCA encryption [CS98] to one based on the DCR or QR assumptions. Kalai
and Halevi [Kal05,HK07] converted the DDH-based construction of OT given by
Naor and Pinkas [NP01] to one based on the DCR or QR assumptions. Brakerski
and Goldwasser [BG10] converted the DDH-based construction of circular secure
encryption given by Boneh, Halevi, Hamburg and Ostrovsky [BHHO08] to one
based on the DCR or QR assumptions3.

This series of works generalizing DDH-based constructions suggests the heuris-
tic that “anything that can be done with DDH can be done with DCR or QR.”
Like any heuristic it is not completely accurate, but it appears to provide the
right intuition.

While projective hash proof systems suggest a means for converting a DDH-
based scheme to a DCR or QR based scheme, the generality of projective hash
proof systems framework often means that converting the actual proofs of secu-
rity can be fairly technical. This is evidenced in the works of [CS02,Kal05,HK07,BG10]
which provided significant technical contributions beyond the original construc-
tions of [CS98,NP01,BHHO08].

This work makes two contributions: First, we show that Lossy Trapdoor
Functions (LTFs) of Peikert and Waters [PW08] can be built under general as-
sumptions, namely any homomorphic smooth hash proof system. This provides
a connection between two important cryptographic primitives. Second, we in-
troduce the Extended Decisional Diffie-Hellman (EDDH) assumption, and show
how it can be instantiated using the DCR and QR assumptions. This second

3 Brakerski and Goldwasser did not explicitly use the language of projective hash
proofs, but their construction fits the framework exactly.



result provides a justification for the heuristic noted above that the DCR and
QR assumptions “imply” the DDH assumption. While the EDDH assumption
does not appear to be as general as the notion of projective hash proof systems,
its simplicity gives it some advantages. In particular, the EDDH assumption
provides a much simpler method for identifying which DDH-based constructions
can be instantiated under the DCR or QR assumptions, and proofs of security
under the EDDH assumption are almost identical to those under the DDH as-
sumption. Using the framework of EDDH, it becomes almost immediate that
the DDH constructions of [NP01,BHHO08,PW08] can be instantiated under the
DCR or QR assumptions with almost no modifications to the proofs of security.

As mentioned above, our first result is a construction of lossy trapdoor func-
tions (LTFs) from general assumptions. Lossy trapdoor functions were intro-
duced by Peikert and Waters [PW08]. LTFs provided the first injective trap-
door functions based on the Decisional Diffie-Hellman (DDH) assumption, and
the first chosen ciphertext (IND-CCA) secure cryptosystem based on lattice as-
sumptions. In addition to providing natural constructions of injective trapdoor
functions and IND-CCA secure cryptosystems, Peikert and Waters went on to
show that LTFs provide very natural constructions of many cryptographic prim-
itives, including pseudo-random generators, collision-resistant hash functions,
and oblivious transfer. The extremely intuitive nature of these many construc-
tions provided early evidence of the value of LTFs as a cryptographic primitive.
Since the original work of Peikert and Waters, lossy trapdoor functions have been
shown to imply many other important cryptographic primitives. In [BFO08],
Boldyreva, Fehr and O’Neill showed that LTFs imply deterministic encryption.
Deterministic encryption was introduced in [BBO07], and captures the strongest
notion of security possible for a deterministic function. In contrast to one-way
functions, which do leak the parity of a random subset of the bits of its input
[GL89], deterministic encryption does not leak any fixed function4 of its input.
Deterministic encryption has applications to efficiently searchable encryption,
and securing legacy systems. Lossy trapdoor functions were then shown to im-
ply correlated product secure functions by Rosen and Segev in [RS09]. Roughly
a family of correlated product secure functions is a family of functions that re-
main one-way even when the output of multiple functions is given on the same
input. In [MY09], Mol and Yilek introduced a relaxation of lossy trapdoor func-
tions called slightly lossy trapdoor functions, and showed that even slightly lossy
trapdoor functions are sufficient to achieve correlated product secure functions.
Lossy functions, (without the need for a trapdoor) have been shown to imply
leaky pseudo-entropy functions [BHK11].

Lossy trapdoor functions have been constructed from a variety of concrete
hardness assumptions. In [PW08], Peikert and Waters constructed LTFs from the
DDH assumption and lattice assumptions, and an efficient construction of LTFs
from Paillier’s Decisional Composite Residuosity (DCR) assumption was given
independently in [BFO08] and [RS08]. In concurrent, independent work, Freeman

4 independent of the choice of the key for the deterministic encryption.



et al. [FGK+10] give constructions of LTFs from the D-Linear Assumption and
constructions of slightly lossy trapdoor functions from the QR assumption.

While we have seen a wide variety of important consequences of lossy trap-
door functions, there remains a lack of general constructions. This work provides
the first constructions of LTFs from generic primitives (in this case homomor-
phic smooth hash proof systems, and diverse group systems) as well as the first
construction of fully lossy trapdoor functions from the well-known Quadratic
Residuosity (QR) assumption.

This result has a number of other consequences. Applying our construction
to the results of [BFO08], we achieve the first construction of deterministic en-
cryption from smooth homomorphic hash proof systems. Applying our results
to those of [RS09], we give the only known construction of correlated product
secure functions from a generic primitive other than lossy trapdoor functions,5

and the first known construction of correlated product secure functions from
the QR assumption.6 Applying the separation of Rosen and Segev, we provide a
black-box separation of smooth homomorphic hash proof systems and one-way
trapdoor permutations.

The second contribution of this work is a development of the connection
between the DDH, DCR and QR assumptions. Projective hash proof systems
[CS02] showed that many properties of DDH-based protocols could be achieved
using the DCR or QR assumptions. In this work, we introduce the Extended
DDH (EDDH) assumption, and show how the EDDH assumption is implied by
the DDH, DCR and QR assumptions. One formulation of the DDH assump-
tion is that the distributions {g, ga, gb, gab}, {g, ga, gb, gc} are computationally
indistinguishable. Equivalently, {g, ga, gb, gab} ≈c {g, ga, gb, gabr} for some uni-
formly chosen element r in the group. The EDDH assumption is the same, except
that r is chosen from a subgroup instead of the entire group. Thus the EDDH
assumption states that {g, ga, gb, gab} and {g, ga, gb, gabr} are computationally
indistinguishable when r is chosen uniformly from a given subgroup of the uni-
verse group. See Definition 6 for the formal definition. The value of the EDDH
assumption is that it provides a very simple method for converting constructions
based on the DDH assumption into constructions which can be proven secure
under the DCR or QR assumptions. Since the semantics of the EDDH assump-
tion are very similar to those of the DDH assumption in many cases proofs of
security under the DDH assumption go through almost unchanged under the
EDDH assumption.

5 There are two concrete constructions of correlated product secure functions that
are not lossy trapdoor functions. A construction based on the Learning With Error
(LWE) problem given by Peikert in [Pei09], and a construction based on the hardness
of syndrome decoding given by Freeman et al. in [FGK+10].

6 A completely different construction of correlated product secure functions from the
QR assumption is given in the concurrent, independent work of Freeman et al.
[FGK+10].



1.1 Previous Work

Lossy Trapdoor Functions (LTFs) were introduced by Peikert and Waters in
[PW08], simultaneously providing the first construction of one-way trapdoor
functions from the Decisional Diffie Hellman and the first IND-CCA secure cryp-
tosystem based on lattice assumptions.

Roughly, a family of lossy trapdoor functions is a family of functions with
two computationally indistinguishable branches. An injective branch with a trap-
door, and a lossy branch which statistically loses information about its input, in
particular the image size of the lossy branch is required to be much smaller than
its domain size. If the lossy branch is lossy enough, this immediately implies
that the injective branch is an injective one-way trapdoor function. Peikert and
Waters gave constructions of lossy trapdoor functions from the DDH assumption
and lattice-based assumptions. In [BFO08], [RS08], Boldyreva et al. and Rosen
and Segev gave efficient constructions of lossy trapdoor functions from Paillier’s
DCR assumption. A construction of lossy trapdoor functions from the D-Linear
assumption, and slightly lossy trapdoor functions from the QR assumption are
given in the concurrent, independent work of [FGK+10].

Lossy trapdoor functions are known to imply IND-CCA secure encryption.
In addition to IND-CCA secure encryption, LTFs were shown to imply collision-
resistant hash functions [PW08], deterministic encryption [BFO08], lossy en-
cryption [PVW08] and correlated product secure functions [RS09].

Projective Hash Proof Systems were introduced by Cramer and Shoup in
[CS02], generalizing their construction of IND-CCA encryption from the Deci-
sional Diffie-Hellman (DDH) assumption given in [CS98]. In [CS02], Cramer and
Shoup defined two types of hash proof systems, smooth projective hash fami-
lies, which immediately implied IND-CPA secure encryption, and universal hash
families, which could be used as a type of designated verifier proof system for
the specific class of language given by smooth projective hash families. They
went on to show that universal hash proof systems imply smooth projective
hash proof systems, so it was sufficient to construct only universal hash proof
systems. Their general construction, however, was fairly inefficient, and in all of
their constructions they were able to avoid the general construction of smooth
projective hash proof systems, and create efficient smooth projective hash proof
systems directly. In this work, we will deal only with smooth projective hash
proof systems.

In order to construct explicit hash proof systems, Cramer and Shoup defined
another primitive called a Diverse Group System. Diverse Group Systems seemed
to capture the essential part of the algebraic structure of a cyclic group, and they
gave a very natural construction of projective hash proof systems from Diverse
Group Systems. They went on to construct diverse group systems from the DDH
assumption, the Quadratic Residuosity (QR) assumption and the Decisional
Composite Residuosity (DCR) assumption.

The first result of this work is a proof that smooth homomorphic hash proof
systems imply lossy trapdoor functions. By providing a link between smooth
homomorphic hash proof systems, and lossy trapdoor functions, we provide a



number of new connections as well. This work provides the first construction
of lossy trapdoor functions from a generic primitive. Additionally, it provides
the first construction of deterministic encryption from smooth homomorphic
projective hash proof systems.

Our first result uses the framework of smooth projective hashing to generalize
the DDH-based construction of LTFs from [PW08]. Smooth projective hash
proof systems have been used to generalize DDH-based constructions in the past.
Kalai and Halevi [Kal05,HK07] used them to generalize Naor and Pinkas’s OT
protocol [NP01], and Brakerski and Goldwasser [BG10] generalized the circular
secure encryption of Boneh, Halevi, Hamburg and Ostrovsky [BHHO08] using
the same framework. This series of results indicates a close relationship between
the DDH, DCR and QR assumptions.

The second result of this work is a development of the connection between the
DDH, DCR and QR assumptions. One of the most useful features of projective
hash proof systems is that they provide a framework for converting cryptographic
schemes designed under the DDH assumption into cryptographic schemes that
are provably secure under the DCR or QR assumptions. While projective hash
proof systems showed a close connection between the DDH, DCR and QR as-
sumptions, generality of projective hash proof systems makes this connection dif-
ficult to see. To make the connection between these three hardness assumptions
clearer, we introduce the EDDH assumption and show how it can be realized
under the DCR and QR assumptions. The benefit of the EDDH assumption is
that it is semantically very similar to the DDH assumption, so many existing
constructions whose security rests on the DDH assumption (including the con-
struction of LTFs by Peikert and Waters) can immediately be instantiated under
the DCR or QR assumptions. In particular, we note that the proof of [PW08]
can be instantiated using the EDDH assumption. This gives a novel construction
of LTFs from the DCR assumption and the first construction of LTFs from the
QR assumption.

1.2 Our Contributions

In this work, we show that smooth homomorphic hash proof systems imply
lossy trapdoor functions (LTFs). It was shown in [BFO08] that lossy trapdoor
functions imply deterministic encryption, so our results give the first construction
of deterministic encryption from smooth homomorphic hash proof systems.

In [RS09], Rosen and Segev introduced correlated product secure functions,
and showed that lossy trapdoor functions are correlated product secure. Apply-
ing their results to our construction, we have a construction of correlated product
secure functions from smooth homomorphic hash proof systems. Finally, com-
bining our results with the black-box separations of Rosen and Segev [RS09], we
find that there is a black-box separation between one-way trapdoor permutations
and smooth homomorphic hash proof systems.

Our primary results are summarized as follows:

Theorem. Smooth Homomorphic Projective Hash Proof Systems imply Lossy
Trapdoor Functions.



This theorem has a number of immediate Corollaries. Since Boldyreva et
al. [BFO08] showed that LTFs imply deterministic encryption (as defined in
[BBO07]), we have

Corollary. Smooth Homomorphic Projective Hash Proof Systems imply deter-
ministic encryption.

Since Rosen and Segev [RS09] showed that LTFs imply correlated product
secure encryption, and a black-box separation between one-way trapdoor per-
mutations and lossy trapdoor functions, we have

Corollary. Smooth Homomorphic Projective Hash Proof Systems imply corre-
lated product secure functions.

Corollary. There is a black-box separation between Smooth Homomorphic Pro-
jective Hash Proof Systems and one-way trapdoor permutations, i.e. there exists
an oracle, relative to which the latter exists but the former does not.

In addition to the new constructions outlined above, in Section 4 we introduce
the Extended Decisional Diffie Hellman (EDDH) assumption, which provides a
simple way to achieve a DDH-like property under the DCR and QR assump-
tions. This serves to unify many of the previous constructions (e.g. [NP01] and
[Kal05,HK07], [BHHO08] and [BG10]), and provides a more familiar alternative
to projective hash proof systems.

Applying these results yields lossy trapdoor functions from the DDH, DCR
and QR assumptions. When applied to DDH, the construction achieved in this
way is identical to the construction of LTFs given by Peikert and Waters in
[PW08], however the constructions from the DCR and QR assumptions are new.
While our construction of LTFs from the DCR assumption is less efficient than
that given by [BFO08] and [RS08], our results provide the first construction of
lossy trapdoor functions from the QR assumption.

2 Preliminaries

2.1 Notation

If A is a Probabilistic Polynomial Time (PPT) machine, then we use a
$← A to

denote running the machine A and obtaining an output, where a is distributed

according to the internal randomness of A. If R is a set, we use r
$← R to denote

sampling uniformly from R.
We use the notation

Pr[r
$← R;x

$← X : A(x, r) = c],

to denote the probability that A outputs c when x is sampled uniformly from X
and r is sampled uniformly from R. We define the statistical distance between
two distributions X,Y to be

∆(X,Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|



If X and Y are families of distributions indexed by a security parameter λ, we
use X ≈s Y to mean the distributions X and Y are statistically close, i.e.,
for all polynomials p and sufficiently large λ, we have ∆(X,Y ) < 1

p(λ) . We

use X ≈c Y to mean X and Y are computationally close, i.e., for all PPT
adversaries A, for all polynomials p, then for all sufficiently large λ, we have
|Pr[AX = 1]− Pr[AY = 1]| < 1/p(λ).

2.2 Lossy Trapdoor Functions

We briefly recall the definition of lossy trapdoor functions given in [PW08].
A tuple (Sltdf, Fltdf , F

−1
ltdf) of PPT algorithms is called a family of (n, k)-Lossy

Trapdoor Functions if the following properties hold:

– Sampling Injective Functions: Sltdf(1
λ, 1) outputs s, t where s is a func-

tion index, and t its trapdoor. We require that Fltdf(s, ·) is an injective
deterministic function on {0, 1}n, and F−1

ltdf(t, Fltdf(s, x)) = x for all x.
– Sampling Lossy Functions: Sltdf(1

λ, 0) outputs (s,⊥) where s is a func-
tion index and Fltdf(s, ·) is a function on {0, 1}n, where the image of Fltdf(s, ·)
has size at most 2n−k.

– Indistinguishability: The first outputs of Sltdf(1
λ, 0) and Sltdf(1

λ, 1) are
computationally indistinguishable.

2.3 Subset Membership Problems

In this section we recall the definition of of a subset membership problem as
formalized in [CS02]. Roughly, given sets L ⊂ X, we want L and X to be
computationally indistinguishable.

Formally, given a family of sets (X,L,W ) indexed by a security parameter
λ, we require L ⊂ X, and there is a binary relation R : X ×W → {0, 1}. If
R(x,w) = 1, we say that w is a witness for x. In this work, we will restrict our
attention to relations R such that for all x ∈ L, there exists a w ∈W such that
R(x,w) = 1, and for all x 6∈ L, and all w ∈W , R(x,w) = 0.

We also need the following efficient sampling algorithms.

– Instance Sampling: Given a security parameter λ, we can sample (X,L,W )
and R.

– Sampling Without Witness: Given (X,L,W ) we can sample (statistically-
close to) uniformly on X.

– Sampling With Witness: Given (X,L,W ) we can sample x (statistically-
close to) uniformly on L, along with a witness w such that R(x,w) = 1.

Definition 1. A subset membership problem is called hard if for all PPT dis-
tinguishers,

|Pr[x
$← X : D(x) = 1]− Pr[x

$← L : D(x) = 1]| < ν(λ),

for some negligible function ν.



As in [CS02], the security of all of our constructions will rely on the security
of some underlying hard subset membership problem. In fact, the hardness as-
sumptions DDH, DCR and QR all have natural formulations in terms of hard
subset membership problems [CS02].

2.4 Smooth Hash Proof Systems

We briefly recall the notion of smooth projective hash families as defined by
Cramer and Shoup in [CS02]. Let H be a function family indexed by keys in
the a keyspace K, i.e. for each k ∈ K, Hk : X → Π. Let L ⊂ X and a
“projection” α : K → S. We require efficient evaluation algorithms such that, for
any x ∈ X, Hk(x) is efficiently computable using k ∈ K. Using the terminology
of [CS02], this is called the private evaluation algorithm. Finally we require
efficient sampling algorithms to sample uniformly from X, uniformly from K,
and uniformly from L along with a witness. The security properties of the system
will follow from the indistinguishability of X and L.

Definition 2. The set HPS = (H,K,X,L,Π, S, α) is a projective hash family
if, for all k ∈ K, the action of Hk on the subset L is completely determined by
α(k).

For a projective hash family, α(k) determines the output of Hk on L. Ad-
ditionally, if x ∈ L and a witness w for x ∈ L is known, then we require that
Hk(x) is efficiently computable given x,w, α(k). This is called the public eval-
uation algorithm. A smooth projective hash family is one in which α does not
encode any information about the action of Hk on X \ L.

Definition 3. Let (H,K,X,L,Π, S, α) be a projective hash family, and define
two distributions Z1, Z2 taking values on the set X \ L × S × Π. For Z1, we

sample k
$← K, x

$← X \ L, and set s = α(k), π = Hk(x), for Z2 we sample

k
$← K, x

$← X \ L, and π
$← Π, and set s = α(k). The projective hash family

is called ν-smooth if ∆(Z1, Z2) < ν.

This means that, given α(k) and x ∈ X \ L, Hk(x) is statistically close to
uniform on Π.

In [CS02], they showed that smooth projective hash families immediately
imply IND-CPA secure encryption by taking sk = k, pk = α(k), and to encrypt
a message m ∈ Π, we sample x ∈ L along with randomness and output E(m) =
(x,Hk(x) +m).

We extend the definition of smooth projective hash proof systems slightly

Definition 4. If HPS = (H,K,X,L,Π, S, α) is a projective hash family, we say
that HPS is a homomorphic projective hash family if X is a group, and for all
k ∈ K, and x1, x2 ∈ X, we have Hk(x1) +Hk(x2) = Hk(x1 + x2), that is to say
Hk is a homomorphism for each k.

In [CS02] Cramer and Shoup provide smooth homomorphic projective hash
families based on the DDH, DCR and QR assumptions.



3 Lossy Trapdoor Functions from Smooth Homomorphic
Hash Proof Systems

Peikert and Waters [PW08] gave a construction of lossy trapdoor functions from
the Decisional Diffie-Hellman (DDH) assumption. In this section, we show that a
similar construction goes through with smooth homomorphic hash proof systems.
This extends the intuition given in [CS02] that projective hashing provides a
good generalization of the DDH assumption. We note, however, that although
our construction is very similar that of [PW08], the proofs of security are quite
different.

Let (X,L,W ) be a hard subset membership problem. For notational con-
venience, we suppress the dependence on the security parameter λ. Let H =
(H,K,X,L,Π, S, α) be an associated smooth homomorphic projective hash fam-
ily.

• Key Generation:
Pick x1, . . . , xn ∈ L.
Fix b ∈ Π \ {0}.
Generate the matrix B = (Bij) ⊂ Πn×n, where Bij = 0 if i 6= j, and
In lossy mode Bii = 0 for all i.
In injective mode Bii = b.

Sample k1, . . . , kn ← K, and output

R =

 x1
...
xn

 A =

Hk1(x1) +B11 · · · Hk1(xn) +B1n

...
. . .

...
Hkn(x1) +Bn1 · · · Hkn(xn) +Bnn


The trapdoor will be (k1, . . . , kn).

• Evaluation:
Given a message z = z1, . . . , zn ∈ {0, 1}n
Given a function index R,A, calculate

FR,A(z) = (Rz,Az) =

 n∑
i=1

zixi,


∑n
i=1 zi(Hk1(xi) +B1i)

...∑n
i=1 zi(Hkn(xi) +Bni)


 .

• Trapdoor:
Given a value (Rz,Az), and a trapdoor (k1, . . . , kn), we begin by noting that
the homomorphic property of Hk guarantees that

FR,A(z) = (Rz,Az) =

 n∑
i=1

zixi,


∑n
i=1 zi(Hk1(xi) +B1i)

...∑n
i=1 zi(Hkn(xi) +Bni)






=

 n∑
i=1

zixi,

Hk1 (
∑n
i=1 zixi) +

∑n
i=1 ziB1i)

...
Hkn (

∑n
i=1 zixi) +

∑n
i=1 ziBni)




Since
∑n
i=1 zixi, and ki is known, we can calculate Hki (

∑n
i=1 zixi) and sub-

tract it from each component to recover the vector(
n∑
i=1

ziB1i, · · · ,
n∑
i=1

ziBni

)t
.

Now, in injective mode, Bij = 0 ∈ Π for i 6= j, and Bij = b for i = j, so(
n∑
i=1

ziB1i, · · · ,
n∑
i=1

ziBni

)t
= (z1b, · · · , znb) .

Since the zi ∈ {0, 1}, and since b is known, we can recover the zi by inspection.

Remark: Notice that we do not make use of the projection α in our construc-
tion, it will appear, however, in the proof of security. Unlike in [CS02], we do
not require that α be efficiently computable, merely that it exists.

We now examine the security of this construction.

Lemma 1. In Lossy Mode, the image of F has size at most |X|.

Proof. Notice that in Lossy Mode, since Bij = 0 for all i, j,

FR,A(z) =

 n∑
i=1

zixi,

Hk1 (
∑n
i=1 zixi))
...

Hkn (
∑n
i=1 zixi))




which depends only on the sum
∑n
i=1 zixi ∈ X. Thus the size of the image is

bounded by |X|.

Thus by taking n > log(|X|), we can make the lossy mode of F as lossy as
desired.

Lemma 2. The Injective and Lossy Modes are computationally indistinguish-
able.

The proof can be found in the full version of this work. We remark that this
construction does not make use of the projection α. The projective property is
used, however, since we condition on Hk(x) for x ∈ L, which leaves at least as
much entropy in k as conditioning on α(k), since α(k) determines Hk(x).

A similar construction and proof goes through for Diverse Group Systems
(see the full version of this work for details). Thus we arrive at

Theorem 1. Smooth Homomorphic Projective Hash Proof Systems imply Lossy
Trapdoor Functions, and Diverse Group Systems imply Lossy Trapdoor Func-
tions.



This theorem has a number of immediate Corollaries. Since Boldyreva et
al. [BFO08] showed that LTFs imply deterministic encryption (as defined in
[BBO07]), we have Corollary 1. Since Rosen and Segev [RS09] showed that LTFs
imply correlated product secure encryption, we have Corollary 2. Since Rosen
and Segev showed a black-box separation between one-way trapdoor permuta-
tions and lossy trapdoor functions, we have Corollary 3.

Corollary 1. Smooth Homomorphic Projective Hash Proof Systems imply de-
terministic encryption.

Corollary 2. Smooth Homomorphic Projective Hash Proof Systems imply cor-
related product secure functions.

Corollary 3. There is a black-box separation between Smooth Homomorphic
Projective Hash Proof Systems and one-way trapdoor permutations, i.e. there
exists an oracle, relative to which the latter exists but the former does not.

4 The Extended DDH Assumption

In this section, we introduce the Extended Decisional Diffie Hellman (EDDH)
assumption. Let G be commutative group (written multiplicatively). The DDH
assumption states that

Definition 5 (The DDH Assumption). Assume G is a group with an ef-
ficient sampling algorithm, and K = {1, . . . , |G|}. Then the DDH assumption
states that

{(g, ga, gb, gab) : g
$← G, a, b

$← K} ≈c {(g, ga, gb, gc) : g
$← G, a, b, c

$← K, }

When G is a cyclic group, this can be rephrased as

{(g, ga, gb, gab) : g
$← G, a, b

$← K} ≈c {(g, ga, gb, gabh) : g
$← G, a, b

$← K,h
$← G}

We introduce a slight modification of the DDH assumption, called the Ex-
tended Decisional Diffie Hellman (EDDH) assumption.

Definition 6 (The EDDH Assumption). For a group G, and a (samplable)
subgroup H /G, the extended decisional diffie hellman (EDDH) problem is said
to be hard if there exists a samplable set G ⊂ G and samplable sets K ⊂ Z such
that the following two distributions are computationally indistinguishable:

{(g, ga, gb, gab) : g
$← G, a, b

$← K} ≈c {(g, ga, gb, gabh) : g
$← G, a, b

$← K,h
$← H}

It is not hard to see:

Lemma 3. If K = {1, . . . , |G|}, and H = G, then the EDDH assumption is just
the DDH assumption in the group G.



The utility of this assumption is that it extracts the essential properties of
the DDH assumption, yet it can be instantiated under the QR assumption and
the DCR assumption. See the full version of this work for example applications
of the EDDH assumption.

We begin by showing that the DCR assumption [Pai99] implies the EDDH
assumption.

Theorem 2 (DCR implies EDDH). Let p, q be safe primes7 and define:

– N = pq,

– G = {x : x
$← Z∗

N2 ,
(
x
N

)
= 1},

– G = {g2N mod N2 : g
$← ZN2},

– K = {0, . . . ,
⌊
N2/4

⌋
} = {0, . . . , (N2 − 1)/4},

– H = {(1 + aN) : a ∈ ZN} = {(1 +N)a mod N2 : a ∈ ZN}.

Then under the DCR assumption the EDDH assumption is hard in the group
G.

Proof. Define the following distributions Let Ĝ = {g2N (1 + N) mod N2 : g
$←

ZN2}.

Λ1 = {(g, ga, gb, gab) : g
$← G, a

$← K, b
$← K}

Λ2 = {(g, x, gb, xb) : g
$← G, x

$← Ĝ, b
$← K}

Λ3 = {(g, x, gb, xbh) : g
$← G, x

$← Ĝ, b
$← K,h

$← H}

Λ4 = {(g, ga, gb, gbh) : g
$← G, a

$← K, b
$← K,h

$← H}

1. The DCR assumption says {g2 mod N2 : g
$← ZN2} ≈c {g2N mod N2 :

g
$← ZN2}. Thus

G = {g2N mod N2 : g
$← ZN2}

≈c {g2 mod N2 : g
$← ZN2}

= {g2(1 +N) mod N2 : g
$← ZN2}

≈c {g2N (1 +N) mod N2 : g
$← ZN2}

= Ĝ.

Now, notice that for a fixed generator g of G,

{ga mod N2 : a
$← K} ≈s {ga mod N2 : a

$← {0, 1, . . . , ϕ(N)/4}} ≈s G
7 Choosing p, q safe primes makes the analysis slightly simpler. See the full version of

this work for a complete discussion.



(See the full version of this work for a rigorous proof of this fact). We also
know that with all but negligible probability a uniformly chosen element

g
$← G will be a generator for G, so this implies Λ1 ≈c Λ2.

2. If x = g2N1 (1 + N), then xb = g2Nb1 (1 + N)b = g
2N(b mod Nϕ(N)/4)
1 (1 +

N)b mod N mod N2. Since the distribution of b is statistically close to uni-
form modulo Nϕ(N)/4, we have that b is statistically close to uniform mod-
ulo N even conditioned on any value of b modulo ϕ(N)/4. Since the order
of g is ϕ(N)/4, the distribution of b modulo N is statistically close to uni-
form conditioned on gb. Thus, even conditioned on gb, the distribution of

xb is statistically close to g1h where g1
$← G, and h

$← H, which shows
{(g, x, gb, xb)} ≈s {(g, x, gb, xbh)}. Thus Λ2 ≈s Λ3.

3. We have already observed that G ≈c Ĝ, so Λ3 ≈c Λ4.

It is standard to conserve randomness by sampling a
$← {0, . . . , (N − 1)/4},

and b
$← {0, . . . , (N2 − 1)/4}. It is easy to see that security is preserved in this

case as well. Since the exposition is cleaner if they are sampled from the same
space, and a few DDH applications require it, our scheme samples them from
the same larger space.

Next, we show that the QR assumption implies the EDDH assumption.

Theorem 3 (QR Implies EDDH). Let p, q be safe primes with p = q = 3
mod 4, and define:

– N = pq,

– G = {x : x
$← Z∗

N ,
(
x
N

)
= 1},

– G = {g2 mod N : g
$← ZN},

– K = {0, . . . , bN/2c},
– H = {±1}.

Then under the QR assumption the EDDH assumption is hard in the group
G.

Proof. Since p = q = 3 mod 4, −1 is a quadratic non-residue modulo N with
jacobi symbol 1.

Define the following distributions

Λ1 = {(g, ga, gb, gab) : g
$← G, a

$← K, b
$← K}

Λ2 = {(g, x, gb, xb) : g
$← G, x

$← G, b $← K}

Λ3 = {(g, x, gb, xbh) : g
$← G, x

$← G, b $← K,h
$← H}

Λ4 = {(g, ga, gb, gbh) : g
$← G, a

$← K, b
$← K,h

$← H}



1. The QR assumption says

G = {x : x
$← Z∗

N ,
( x
N

)
= 1} ≈c {g2 mod N : g

$← ZN} = G

Now, notice that for a fixed generator g of G,

{ga mod N : a
$← K} ≈s {ga mod N : a

$← {0, 1, . . . , ϕ(N)/4}} ≈s G

(See the full version for a rigorous proof of this fact.) We also know that

with all but negligible probability a uniformly chosen element g
$← G will be

a generator for G, so this implies Λ1 ≈c Λ2.

2. If x = −g21 , then xb = g2b1 (−1)b = g
2(b mod ϕ(N)/4)
1 (−1)b mod 2 mod N.

Since the distribution of b is statistically close to uniform modulo ϕ(N)/2, we
have that b is statistically close to uniform modulo 2 even conditioned on any
value of b modulo ϕ(N)/4. Since the order of g is ϕ(N)/4, the distribution
of b modulo 2 is statistically close to uniform conditioned on gb. Thus, even
conditioned on gb, the distribution of xb is statistically close to g1h where

g1
$← G, and h

$← {±1}, which shows {(g, x, gb, xb)} ≈s {(g, x, gb, xbh)}.
Thus Λ2 ≈s Λ3.

3. We have already observed that G ≈c G, so Λ3 ≈c Λ4.

As in the case of the DCR based schemes, it is standard to conserve random-
ness by sampling a from a smaller space than b. In particular, we can sample

a
$← {0, . . . , (N − 1)/4}, and b

$← {0, . . . , (N2 − 1)/4}. For the reasons outlined
above we present this simpler (though slightly less efficient) variant.

It is not too hard to see that the construction of LTFs given by Peikert and
Waters in [PW08] carries through under the EDDH assumption. This imme-
diately gives new constructions of LTFs based on the QR assumption and the
DCR assumption. See the full version of this work for details.

This provides the first construction of full LTFs from the QR assumption,
and a novel construction of LTFs from the DCR assumption.

5 Conclusion

In this work, we showed that the intuition that hash proof systems are a natural
generalization of the Decisional Diffie-Hellman (DDH) assumption holds in the
case of lossy trapdoor functions as well. In particular, we showed that the con-
struction of lossy trapdoor functions from DDH given in [PW08] can be made
to work with any smooth homomorphic projective hash (or any diverse group
system). This shows an interesting connection between these two powerful prim-
itives and provides the first generic8 construction of lossy trapdoor functions
from any primitive.

8 i.e. not based on specific number theoretic assumptions



When applied to the results of [BFO08], we obtain the first construction of
deterministic encryption from smooth homomorphic hash proof systems. Com-
bining our work with the negative results of [RS09], we obtain a black-box sepa-
ration between one-way trapdoor permutations and smooth homomorphic hash
proof systems.

To reinforce the intuition that the DCR and QR assumptions can be used
to replace the DDH assumption, we introduced the Extended Decisional Diffie
Hellman (EDDH) assumption and showed that the DCR and QR assumptions
imply the EDDH assumption. This provides a simple method for converting most
DDH-based protocols into protocols whose security can be based on either the
DCR or QR assumptions. In particular, this framework gives novel constructions
of LTFs from the DCR assumption, and the first known constructions of fully
lossy trapdoor functions from the QR assumption.
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