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51 Boulevard de la Tour-Maubourg - 75700 Paris 07 SP, France

aurelie.bauer@ssi.gouv.fr
2 École normale supérieure – C.N.R.S. – I.N.R.I.A.

45, rue d’Ulm, f-75230 Paris Cedex 05, France
3 INRIA Rennes – Bretagne Atlantique

Campus de Beaulieu, 35042, Rennes, France
jean-christophe.zapalowicz@inria.fr

Abstract. Number-theoretic pseudorandom generators work by iterat-
ing an algebraic map F (public or private) over a residue ring ZN on a
secret random initial seed value v0 ∈ ZN to compute values vn+1 =
F (vn) mod N for n ∈ N. They output some consecutive bits of the
state value vn at each iteration and their efficiency and security are
thus strongly related to the number of output bits. In 2005, Blackburn,
Gomez-Perez, Gutierrez and Shparlinski proposed a deep analysis on
the security of such generators. In this paper, we revisit the security of
number-theoretic generators by proposing better attacks based on Cop-
persmith’s techniques for finding small roots on polynomial equations.
Using intricate constructions, we are able to significantly improve the
security bounds obtained by Blackburn et al..

Keywords: Nonlinear Pseudorandom number generators, Euclidean lat-
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1 Introduction

This paper aims to present new cryptanalytic results on some nonlinear number-
theoretic pseudorandom number generators. We show that several generators are
insecure if sufficiently many bits are output at each clocking cycle. In particular,
this provides an upper bound on the generators’ security. The attacks used the
well-known Coppersmith methods for finding small roots on polynomial equa-
tions and outperform previously known results [2–4, 10, 11].

Prior work. One of the most fundamental cryptographic primitives is the pseu-
dorandom bit generator. It is a deterministic algorithm that expands a few truly
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random bits to a longer sequence of bits that cannot be distinguished from uni-
formly random bits by a computationally bounded algorithm. It has numerous
uses in cryptography, e.g. in signature schemes or public-key encryption schemes.

Number-theoretic pseudorandom generators work by iterating an algebraic
map F (public or private) over a residue ring ZN on a secret random initial seed
value v0 ∈ ZN to compute the intermediate state values vi+1 = F (vi) mod N
for i ∈ N and outputting (some consecutive bits of) the state value vi at each
iteration. The input v0 of the generator (and possibly the description of F ) is
called the seed and the output is called the pseudorandom sequence. The case
where F is an affine function is known as the linear congruential generator.
This generator is efficient and has good statistical properties. Unfortunately, it
is cryptographically insecure: Boyar [7] proved that - with a sufficiently long run
of the pseudorandom sequence - one can recover the seed in time polynomial
in the bit-size of N and Stern [17] proved that this is also the case even if one
outputs only the most significant bits of each vi (see also [6, 15]).

It was suggested to use a non-linear algebraic map F in order to avoid these
attacks but several works [2–4, 10, 11] showed that not too many bits can be
output at each stage. Blackburn, Gomez-Perez, Gutierrez and Shparlinski [3, 4]
proved that some generators are polynomial time predictable if sufficiently many
bits of some consecutive values of the pseudorandom sequence are revealed (even
when F is kept private).

Blackburn et al.’s results are based on a lattice basis reduction attack, using a
certain linearization technique. A natural idea – already stated in [3] – is instead
of using only linear relations in the attack, to use also relations that are derived
by taking products of them. This technique was proposed by Coppersmith to find
small roots on polynomial equations [8, 9]. In Coppersmith’s method, a family
of polynomials is first derived from the polynomial whose root is wanted. This
family naturally gives a lattice basis and short vectors of this lattice possibly
provide the wanted root. Blackburn et al. claimed that “this approach does not
seem to provide any advantages” and that “it may be very hard to give any
precise rigorous or even convincing heuristic analysis of this approach”. Our
goal in this paper is to investigate this issue.

Our contributions. We show that if a sufficient number of the most signifi-
cant bits of several consecutive values vi of non-linear algebraic pseudorandom
generator are given, one can recover the seed v0 (even in the case where the coeffi-
cients of F are unknown). We tackle these issues with Coppermith’s lattice-based
technique for calculating the small roots of multivariate polynomials modulo an
integer. This method is heuristic, which is also the case of some arguments of
Blackburn et al. showing that their basic results could be strengthened if the
number of pseudorandom bits known to the attacker is increased. If F is a poly-
nomial of degree d known to the attacker, Blackburn et al.’s result [4] proved
that the generator can be predicted if one outputs a proportion (d2−1)/d2 of the
most significant bits of two consecutive intermediate state values. We improve
this result (cf. Section 3) by showing that this is also the case if one outputs
a proportion as large as d/(d + 1) of the most significant bits of two consec-



utive intermediate state values (or (d − 1)/d for sufficiently many consecutive
intermediate state values).

Blackburn et al. [2, 3] then focused on the well-known following number-
theoretic pseudorandom generators (where p is a prime, a ∈ Z∗p and b ∈ Zp):

– The Quadratic generator corresponding to the map F (x) = ax2 + b mod p
– The Pollard generator, a special case of the quadratic generator when a = 1
– The Inversive generator corresponding to the map F (x) = ax−1 + b mod p

Our generic results apply to these settings and improve the previous bounds.
The theoretical data complexity (i.e. the minimum keystream length) of our
attack is decreased compared to the attack from [2–4, 10, 11]. Therefore a secure
use of these generators requires the output of much fewer bits at each iteration
and the efficiency of the schemes is thus degraded.

The table below shows a comparison between our results and what is known
in the literature. It gives the proportion of most significant bits output from each
consecutive state values necessary to break the generator in (heuristic) polyno-
mial time. The basic proportion corresponds to the case where the adversary
knows bits coming from the minimum number of intermediate states leading to
a feasible attack; while the asymptotic proportion corresponds to the case when
the bits known by the adversary come from an infinite number of values.

Basic proportion Asymptotic proportion

Prior result Our result Prior result Our result

Quadratic a,b known 3/4 2/3 2/3 1/2
generator a,b unknown 18/19 11/12 11/12 2/3

Pollard b known 9/14 3/5 9/14 1/2
generator b unknown 3/4 5/7 2/3 3/5

Inversive a,b known 3/4 2/3 2/3 1/2
generator a,b unknown 14/15 11/12 11/12 2/3

The results on the quadratic generator (and the inversive generator) are
described in Section 3.3 (and Section 3.4) and are direct applications of our gen-
eral results. Those on the Pollard generator relies on the unravelled linearization
technique introduced by Hermann and May in 2009 [12] and are described in
Section 4.

2 Preliminaries

2.1 Lattices

Definition. If (b1, . . . , bd) are d linearly independent vectors over Zn, then the
lattice L = 〈b1, . . . , bd〉 generated by these vectors is defined as the set of all
integer linear combination of the bi’s. The set B = {b1, . . . , bd} is called a basis
of L and d is the dimension of L. We restrict ourselves to full-rank lattices
corresponding to the particular case d = n. The quantity |det(B)| is called the
determinant of the lattice L.



LLL-reduced bases. In 1982, Lenstra, Lenstra and Lovász [16] defined LLL-
reduced bases of lattices and presented a deterministic polynomial-time algo-
rithm, called LLL to compute such a basis. If (b1, . . . , bn) is an LLL-reduced
basis of L, the first vector b1 is close to be the shortest non-zero vector of
the lattice. Moreover, if (b?1, . . . , b

?
n) are the corresponding vectors coming from

Gram-Schmidt’s orthogonalization, then:

‖b?n‖2 ≥ 2−(n−1)/4(detL)1/n (1)

2.2 Coppersmith’s techniques

In 1996, Coppersmith introduced lattice-based techniques [8, 9] for finding small
roots on univariate and bivariate polynomial equations. As these techniques had
a wide range of cryptanalytic applications, some reformulations and generaliza-
tions to more variables have been proposed [1, 5, 13, 14].

All these methods have allowed to attack many instances of public-key cryp-
tosystems (e.g. [12, 15]). In the following, we give more details explaining how
such techniques work in practice for the multivariate modular case.

Definition of the problem. Let f(y1, . . . , yn) be an irreducible multivariate
polynomial defined over Z, having a root (x1, . . . , xn) modulo a known integer
N such that |x1| < X1, . . . , |xn| < Xn. The question is to determine the bounds
Xi allowing to recover the desired root in polynomial time.

Collection of polynomials. One has to generate a collection of polynomials
f1, . . . , fr having (x1, . . . , xn) as a modular root. Usually, we consider multiples

and powers of the polynomial f , namely f` = y
α

(`)
1

1 . . . y
α(`)

n
n fk` , for ` in {1, . . . , r}.

By definition, such polynomials satisfy the relation f`(x1, . . . , xn) ≡ 0 mod Nk` ,
i.e. there exists an integer c` such that f`(x1, . . . , xn) = c`N

k` . From now, let us
denote as M the set of monomials appearing in the collection {f1, . . . , fr}. We
then construct a matrix M by extracting the polynomial coefficients as follows:

M =



1

X−1
1

. . .

X
−a1
1 . . . X−an

n

0

f1 . . . fr
↓ ↓ ↓

Nk1

. . .

Nkr



1
y1
.
.
.

y
a1
1 . . . yan

n

Every row of the upper part is related to one monomial of the set M . The
left-hand side contains the bounds corresponding to these monomials (e.g. the
coefficient X−11 X−22 is put in the row related to the monomial y1y

2
2). Each col-

umn of the right-hand side contains a vector coming from the initial collection
{f1, . . . , fr}. We define as L the lattice generated by M’s rows and we have:

|det(L)| = Nk1+···+kr∏
(y

a1
1 ...yan

n ∈M)X
a1
1 . . . Xan

n
.



A short vector in the lattice L. Let us consider the vectors r0 and s0 defined
by r0 = (1, x1, . . . , x

a1
1 . . . xann ,−c1, . . . ,−cr) and s0 =M · v0 ∈ L, such that

s0 = (1, (x1/X1) , . . . , (x1/X1)
a1 . . . (xn/Xn)

an , 0, . . . , 0) .

One has ‖s0‖2 ≤
√

#M and the knowledge of s0 is sufficient to compute the
root of f . Since in practice, we will not always recover s0, the method consists in
looking for a vector which is orthogonal to it. We compute an LLL-reduced basis
B = (b1, . . . , bt) of (a sublattice of) L and a Gram-Schmidt’s orthogonalization
on B. As s0 belongs to L, it can be expressed as a linear combination of the b?i ’s
and if its norm is smaller than those of b?t , then the dot product 〈s0, b?t 〉 = 0.

Extracting the coefficients in b?t leads to a polynomial p1 defined over M such
that p1(x1, . . . , xn) = 0 and iterating the process with b?t−1, . . . , b

?
t−n+1, one gets

a multivariate polynomial system {p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}.
Under the (heuristic) assumption that these polynomials are algebraically inde-
pendent, the system can be solved in polynomial time.

Conditions on the bounds Xi’s. Since s0 is small and we have an upper
bound on ‖b?t ‖2, (cf. (1)), the condition

√
#M < 2−(t−1)/4(det(L))1/t implies

〈s0, b?t 〉 = 0. Removing parameters that do not influence the asymptotic result,
this relation can be simplified to |det(L)| > 1, leading to the following final
condition: ∏

(y
a1
1 ...yan

n ∈M)

Xa1
1 . . . Xan

n < Nk1+···+kr (2)

The most complex step of the method is the choice of the collection of polyno-
mials, what could be a difficult task when working with multiple polynomials.

3 Attacking a non-linear generator

For N an integer of size π, we denote by ZN the residue ring of N elements. A
pseudorandom non-linear generator can be defined by the following recurrence
sequence:

vi+1 = F (vi) mod N (3)

where F (X) =
∑d
j=0 cjX

j is a polynomial of degree d in ZN [X] and v0 is the
secret seed. We assume that this generator outputs the k most significant bits of
vi at each iteration (with k ∈ {1, . . . , π}), i.e. if vi = 2π−kwi+xi, wi is output by
the generator and xi < 2π−k = Nδ stays unknown. We want to recover xi < Nδ

for some i ∈ N from consecutive values of the pseudorandom sequence (with δ
as large as possible) knowing F or not.

3.1 Case F known

Any non-linear pseudorandom generator defined by a known iteration function
F can be broken when sufficiently many bits are output at each iteration. In the
following, we determine that amount of output bits when two (Theorem 1) then
more (Theorem 2) consecutive outputs are known to the attacker.



Theorem 1 (Two consecutive outputs). Let G be a non-linear pseudoran-
dom generator defined by a known iteration function F (X) of degree d. If an
adversary has access to two consecutive outputs of G then it will be able to pre-
dict the entire sequence that follows ; under the condition that at least d

d+1π most
significant bits are output at each iteration, that is:

δ <
1

d+ 1

Proof. Suppose the adversary is given two approximations w0 and w1 of two
consecutive values v0 and v1 that satisfy (3). By denoting v0 as 2π−kw0 +x0 and
v1 = 2π−kw1 + x1, we obtain:

2π−kw1 + x1 −
d∑
j=0

cj(2
π−kw0 + x0)j = 0 mod N

Let f(y0, y1) be the polynomial y1+a0+a1y0+· · ·+adyd0 defined by this equation,
where the values ai, that explicitly depend on w0, w1 and the coefficients ci, are
known to the adversary. The goal is to compute efficiently the (small) modular
root (x0, x1) of f(y0, y1). To do so, let us consider the following collection of
polynomials:

{yj0f i(y0, y1) | di+ j ≤ dm ∧ i > 0}

where m ≥ 1 is a fixed integer. Knowing the shape of f , the list of monomials
appearing within this collection can be described as:

{yi1y
j
0 | di+ j ≤ dm}

Using Coppersmith’s method, the right-hand side (resp. the left-hand side) of
(2) is then equal to:

m∏
i=1

d(m−i)∏
j=0

N i = N
1
6m(m+1)(dm−d+3)

resp.

m∏
i=0

d(m−i)∏
j=0

N iδN jδ

 .

Thus, the algorithm (heuristically) outputs the root of f in polynomial time as
soon as:

δ <
1
6m(m+ 1)(dm− d+ 3)

1
12m(m+ 1)(2d2m+ 2dm+ 6 + d2 + d)

−−−−−→
m→+∞

1

d+ 1
(4)

ut

This bound is better than those previously obtained by Blackburn et al. [3].
Indeed, their result was approximately δ < 1/d2 when two consecutive outputs
are known to the attacker.

Theorem 2 (More consecutive outputs). Let G be a non-linear pseudoran-
dom generator defined by a known iteration function F (X) of degree d. If an



adversary has access to n+ 2 (with n ≥ 1) consecutive outputs of G then it will
be able to predict the entire sequence that follows ; under the condition that at

least dn+2−dn+1

dn+2−1 π most significant bits are output at each iteration, that is:

δ <
dn+1 − 1

dn+2 − 1

Proof. Let us assume that the attacker knows n+ 2 consecutive outputs of the
generator w0, . . . , wn+1. Writing vi as 2π−kwi+xi (for i ∈ {0, . . . , n+1}), we want
to recover the solution (x0, . . . , xn+1) of the multivariate polynomial system:

f0(y0, y1) = y1 + a00 + a01y0 + · · ·+ a0dy
d
0 mod N

...
fn(yn, yn+1) = yn+1 + an0 + an1yn + · · ·+ andy

d
n mod N

where each polynomial fi is constructed in the same way as for the “two consec-
utive outputs” case. From now, we use the following collection of polynomials:{
yj0f

i0
0 . . . f inn | d(i0 + di1 + · · ·+ dnin) + j ≤ dm ∧ i0 + · · ·+ in > 0

}
where m ≥ 1 is a fixed integer. As it seems to be a difficult task to describe the
set of monomials appearing in that collection for the general case, we first focus
on what happens with two polynomials f0 and f1. In that case, the set can be
described by the powers of these polynomials, that is{

(yj0y
i
1) · (yk1yl2) | di+ j ≤ dm ∧ dl + k ≤ dm− di− j

}
Another way of expressing this set is

{
yj0y

i
1y
l
2 | di+ j + dl ≤ dm

}
. From that

point, by induction on n, we can show that the monomials appearing in the
collection can be described as:{

yj0y
i0
1 . . . yinn+1 | d(i0 + di1 + · · ·+ dnin) + j ≤ dm

}
The right-hand side and the left-hand side of (2) is then equal to NA(m,n)

and NB(m,n) respectively, where:

A(m,n) =

m∑
i0=0

bm−i0
d c∑

i1=0

. . .

d(m−
∑n

p=0 d
pip)∑

j=0

i0 + · · ·+ in

B(m,n) =

m∑
i0=0

bm−i0
d c∑

i1=0

. . .

d(m−
∑n

p=0 d
pip)∑

j=0

i0 + · · ·+ in + j

Our goal is to obtain an asymptotic expression of the multiples sums A(m,n)
and B(m,n) which depends on the number of outputs n, when m goes to +∞.
It is quite clear that the floor function appearing in the upper bound of the sums



can be omitted and we will use several times a trick from [12] which consists in
letting indices of a sum run over a larger range in order to obtain a symmetric
formula that is easier to evaluate. Basically, it relies on the following observation
which holds for any function f :

N∑
i=0

f(i) =
1

d

dN∑
i=0

f(b i
d
c).

Applying this trick n times on A(m,n), one obtains:

A(m,n) ' 1

d
. . .

1

dn

m∑
i0=0

m−i0∑
i1=0

. . .

d(m−
∑n

p=0 ip)∑
j=0

i0 +
1

d
i1 + · · ·+ 1

dn
in

' d · 1

d
. . .

1

dn

m∑
i0=0

m−i0∑
i1=0

. . .

m−
∑n

p=0 ip∑
j=0

i0 +
1

d
i1 + · · ·+ 1

dn
in

and similarly

B(m,n) = d · 1

d
. . .

1

dn

m∑
i0=0

m−i0∑
i1=0

. . .

m−
∑n

p=0 ip∑
j=0

i0 +
1

d
i1 + · · ·+ 1

dn
in + dj.

We get for A(m,n) and B(m,n):

A(m,n) ' 1

d2
. . .

1

dn

(
dn+1 − 1

dn(d− 1)

)
p1 and B(m,n) ' 1

d2
. . .

1

dn

(
dn+2 − 1

dn(d− 1)

)
p1

where

p1 =

m∑
i0=0

m−i0∑
i1=0

· · ·
m−

∑n
p=0 ip∑

j=0

i0.

We obtain in consequence the following bound:

δ <
A(m,n)

B(m,n)
' dn+1 − 1

dn+2 − 1

ut

When the number of consecutive values known by the adversary tends to infinity,
this condition becomes δ < 1/d. Knowing that d is the degree of the iteration
function, this result seems to be the optimal one when using Coppersmith’s
technique.

3.2 Case F unknown

We show that a non-linear pseudorandom generator defined by an unknown iter-
ation function F can also be broken. In order to apply Coppersmith’s technique,



one needs to construct a polynomial P (from the unknown iteration function
F ) with a root encoding the secret seed. We will see in the forthcoming sections
that one could use elimination techniques to find such a P . Let us denote D the
degree of P (depending on d = degF and on the elimination technique used)
and we consider a monomial order such that the leading coefficient1 of P is equal
to 1 modulo N . Since there are d + 1 unknown coefficients in F , one requires
d + 2 consecutive equations of the form vi+1 = F (vi) mod N , and thus d + 3
consecutive outputs of the generator.

Theorem 3 (d + 3 consecutive outputs). Let G be a non-linear pseudoran-
dom generator defined by an unknown iteration function F (X) of degree d. We
consider an adversary that has access to d+ 3 consecutive outputs of G and can
compute a polynomial P of degree D and a monomial order as above.

It will be able to predict the entire sequence that follows ; under the condition

that at least D2(d+3)−1
D(d+3) π most significant bits are output at each iteration, that is

δ < 1
D2(d+3) . Moreover, if one assumes that the degree of the leading monomial

of P is equal to D, then this bound can be improved to:

δ <
1

D(d+ 3)
.

Proof. Let us assume that the adversary knows w0, . . . , wd+2. By manipulating
the system

(
vi+1 = F (vi) mod N, i ∈ {0, . . . , d+ 1}

)
one obtains a polynomial

P satisfying P (x0, . . . , xd+2) = 0 mod N . Since the shape of P and its degree D
both depend on the technique used to manipulate the initial system, describing
the monomials appearing in P and therefore in Pm is an impossible task. Con-
sequently, the only way to perform Coppersmith’s method is to choose a simpler
but larger set of monomials which necessarily contains those of Pm:{

yj00 . . . y
jd+2

d+2 | j0 + j1 + · · ·+ jd+2 ≤ Dm
}

The leading monomial of P , LM(P ), can be described as yα0
0 . . . y

αd+2

d+2 where at
least one of the αi is non negative. Without loss of generality, we can assume
for now that α0 > 0. In that case, one can apply Coppersmith’s method on the
following collection of polynomials:{

yj11 . . . y
jd+2

d+2 P
i | Di+ j1 + · · ·+ jd+2 ≤ Dm ∧ 1 ≤ i ≤ m

}
As y0 only comes from the powers of P , the prohibition of the multiplication by
y0 ensures that the collection of polynomials will be linearly independent. The
right-hand side (resp. the left-hand side) of (2) is then equal to N to the power:

∑
1≤i≤m

∑
j1+···+jd+2≤Dm−Di

i

resp.
∑

j0+···+jd+2≤Dm

δ(j0 + · · ·+ jd+2)

 .

1 In the general case, this condition is almost always satisfied and this is obviously
true when N is prime



We can show that this formula leads to the following condition:

δ <
1

D2(d+ 3)

In fact, this result can be improved if one assumes that the degree of LM(P )
is equal to D. Indeed, this monomial can be described as yα0

0 . . . y
αd+2

d+2 with∑d+2
i=0 αi = D. In order to keep the linear independency between the polynomials,

one should only consider polynomials of the form Mon × P i such that Mon 6=
LM(P ). This leads to the following collection:yj00 yj11 . . . y

jd+2

d+2 P
i

∣∣∣∣∣∣
Di+ j0 + j1 + · · ·+ jd+2 ≤ Dm
∧ 1 ≤ i ≤ m
∧ (j0 < α0) ∪ · · · ∪ (jd+2 < αd+2)


Using the same kind of tricks as in the proof of Theorem 2, the resulting asymp-
totic bound becomes:

δ < α0
1

D2(d+ 3)
+ · · ·+ αd+2

1

D2(d+ 3)
=

1

D(d+ 3)

ut

More consecutive outputs. We want to generalize the previous attack when
the adversary is given access to more consecutive outputs. Let us assume, for
instance, that it has access to d+ n+ 2 consecutive values w0, . . . , wd+1+n ; its
goal is then to compute the (small) solution (x0, . . . , xn+d+1) of the multivari-
ate polynomial system (P1(y0, . . . , yd+2), . . . , Pn(yn−1, . . . , yn+d+1)) where the
polynomials Pi of degree D, are defined as in the previous section. As before,
finding a general description of the monomials appearing in these polynomials is
a challenging task. Thus we consider a larger set of monomials, easier to describe:{

yj00 . . . y
jd+1+n

d+1+n | j0 + j1 + · · ·+ jd+1+n ≤ Dm
}

Let us express the leading monomial of P1 as yα0
0 . . . y

αd+2

d+2 with at least one

of the αi ≥ 1, the leading monomial of P2 as yα0
1 . . . y

αd+2

d+3 and those of Pn as

yα0
n−1 . . . y

αd+2

n+d+1, using a monomial order such as lex or hlex with y0 < · · · <
yd+1+n. Without loss of generality, we can assume that α0 > 0. From that, one
can apply Coppersmith’s method on the following collection of polynomials:{
yj1n . . . y

jd+2

n+d+1P
i1
1 . . . P inn

∣∣∣∣ D(i1 + · · ·+ in) + j1 + · · ·+ jd+2 ≤ Dm
∧ 1 ≤ i1 + · · ·+ in ≤ m

}
The prohibition of the multiplication by y0, . . . , yn−1 ensures that all the polyno-
mials of the collection are linearly independent. Thus, the right-hand side (resp.
the left-hand side) of (2) is equal to N to the power:

∑
1≤i1+···+in≤m

j1+···+jd+2≤Dm−D(i1+···+in)

i1+· · ·+in

resp.
∑

j0+···+jn+d+1≤Dm

δ(j0 + · · ·+ jn+d+1)

 .



We can show that the resulting asymptotic bound is δ <
n

Dn+1(n+ d+ 2)
(details can be found in the full version).

Remark 1. This bound is not interesting as its value decreases when the ad-
versary is given access to more outputs. However, we are convinced that it can
significantly be improved. Indeed, using the same kind of techniques as in the
previous case, we might be able to gain a factor D for each involved polynomial
and get:

δ <
n

D(n+ d+ 2)
−−−−−→
m→+∞

δ <
1

D

In practice we notice that this conjecture seems to be true, see for instance the
analysis of the quadratic generator in Section 3.3.

3.3 Application: Attacking the quadratic generator

For p a prime of size π, the notation Zp refers to the field of p elements. The
quadratic generator is defined by the following recurrence sequence:

vi = av2i−1 + b mod p (5)

In that particular case, the iteration function F (x) is defined as F (x) = ax2 + b
where a ∈ Z∗p and b ∈ Zp are constant values. Exactly as before, we denote the
secret seed as v0 ∈ Zp and we assume that the generator outputs the k most
significant bits of vi at each iteration (with k ∈ {1, . . . , π}). In other words, each
value vi can be written as 2π−kwi + xi where wi is output by the generator and
xi < 2π−k = pδ stays unknown. Our goal consists in recovering the value xi < pδ

for some i ∈ N by using some consecutive values output by the pseudorandom
sequence (with δ as large as possible).

Case F known. If the adversary is given access to two consecutive outputs of
the generator, then it can break the scheme under the condition that sufficiently
many bits are output by the generator at each iteration. More precisely, for a
fixed value m (that will define the size of the corresponding lattice), the bound
on δ should respect the following condition, directly coming from Equation (4)
in Theorem 1:

δ <
1

6
· 2m+ 1

m+ 1

In particular, taking m = 1 leads to the bound δ < 1/4 previously reached by
Blackburn et al. [3]. This bound can be improved to δ < 1/3 when the quantity
m goes to infinity. This value is exactly the same as those previously obtained by
Blackburn et al. [3] when the authors assume that the adversary is given access
to an infinite number of outputs, whereas it only requires here two outputs of
the generator. Finally, when increasing the number of known outputs to infinity,
the condition becomes δ < 1/2 (see Theorem 2).



Case F unknown. Knowing that the coefficients a and b appearing in the
iteration function F (x) = ax2 + b are unknown to the attacker, the first step
consists in expressing the relations between the outputs of the generator exclu-
sively in terms of known quantities. More precisely, by using four consecutive
outputs, the adversary is able to eliminate the quantities a and b by considering
the following polynomial P of degree 3:

P = c + c0y0 + c1y1 + c2y2 + c3y3 + d0(y2
0 − y2

1) + d1(y2y0 − y0y3) + d2(y2
1 − 3y2

2)
+2d2y1y2 + d3(y2

2 − 3y2
1 + 2y1y3) + e(y2

2y1 − y3
1 + y2

1y3 − y3
2 − y2

0y3 + y2
0y2) mod p

As each coefficient in this polynomial is inversible modulo p, one can consider
that LM(P )) = 1. Thus, applying Theorem 3, one reaches the bound δ < 1/15,
knowing that the degree d of the iteration function F is equal to 2 and those
of the polynomial P is 3. In fact, this bound can be improved as the coefficient
related to x in the iteration function, is equal to zero. Indeed, the denominator
in the formula given by Theorem 3 can in fact be expressed as D.`(n) where
`(n) is the number of required outputs. In this particular case, as `(n) is equal
to four, the bound thus becomes δ < 1/12. In the same scenario, Blackburn et
al. [3] reached the value δ < 1/19.

We assume that the adversary is given access to more consecutive outputs
and generalize the previous construction using the fact that the iteration function
F contains one zero coefficient. In that case, if the set of monomials stays easy
to formulate, namely {yj00 . . . y

jn+2

n+2 | j0 + · · · + jn+2 ≤ 3m}, this is not the case
for the collection of polynomials which becomes:y

j0
0 y

j1
1 y

a2
2 . . . y

an+1

n+1 y
jn+2

n+2 P
i1
1 . . . P inn

∣∣∣∣∣∣∣∣∣
0 < i1 + · · ·+ in ≤ m

0 ≤a` ≤min(2, 3m− 3
∑n

t=1 ip −
∑`−1

t=2 ap)
(for ` ∈ {2, . . . , n + 1})
j0 + j1 + jn+2 ≤ 3m− 3(i1 + · · ·+ in)

− (a2 + · · ·+ an+1)


The estimation of the “weight” of these two sets allows to reach the asymptotic
bound δ < 1/3 when bothm (related to the dimension of the involved lattice) and
n go to infinity (cf. the full version of the paper). This value seems to confirm the
conjecture δ < 1/D discussed in Remark 1. Moreover, it significantly improves
the bound δ < 1/12 previously obtained by Blackburn et al. in [3] and it provides
interesting asymptotic bounds for small values of n (when m goes to infinity):

Number of outputs 4 5 6 7 8 9 10 11 12

Asymptotic bound 1/12 2/15 1/6 4/21 5/24 2/9 7/30 8/33 1/4

3.4 The Inversive Generator

The inversive generator is defined by the recurrence sequence vi = av−1i−1 + b
mod p where p is a prime and a,b ∈ Zp. As usual, we assume that this generator
outputs the k most significant bits at each iteration. When a and b are known,
the polynomial h(y0, y1) = y0y1 + c0y0 + c1y1 + c can be constructed, using two
consecutive outputs, where c, c0, c1 are constant values.



Let us now look at the link between the geometrical representation of the
polynomial h(y0, y1), namely a square, and those of f(y0, y1) = y1−c0y0−ay20+c
mod p, which corresponds to the polynomial defined for the quadratic generator
with two outputs when a and b are known, that can be represented as a triangle.
The denominator appearing in the value δ, coming from Equation (2), can be

m

h
x0

x1

m

f
x0

x1

Inversive generator

m

h
x0

x1
1 2 . . . m

1

2

...

m

Quadratic generator

m

f
x0

x1

1

2

...

m

Fig. 1. Geometrical link between f and h

seen as the sum of the coordinates of each point belonging to the form defined
by the polynomial. For the inversive generator, this sum can be expressed as:

m∑
x0=0

m∑
x1=0

x0 + x1 = m(m+ 1)2 =

m∑
x1=0

2m−x1∑
x0=0

x0 + x1

The collection of polynomials involved in the quadratic generator case, gives the
following formula, corresponding to the numerator:

m∑
x1=1

2(m−x1)∑
x0=0

x1 =
1

6
m(m+1)(2m+1) =

m∑
x1x0=1

m−x1x0∑
x1=0

x1x0+

m−1∑
x1x0=1

m−x1x0∑
x0=1

x1x0.

Figure 1 shows the geometrical link between these two generators (on the top,
the set of monomials ; on the bottom, the collection of polynomials). When
working with more polynomials, the situation is identical. Moreover, when a
and b are unknown, the polynomial used to build the collection in the inversive
generator case is similar to those used in the quadratic generator’s one. The
obtained bound is also 1/12 and with more consecutive outputs, it tends to 1/3,
similarly to the quadratic generator.



2 outputs 3 outputs 4 outputs 5 outputs 6 outputs 7 outputs

previous bound 0.25 0.286 0.3 0.308 0.313 0.316

new achievable bound 0.321 0.39 0.40 0.401 0.401 0.401
m = 13 m = 9 m = 8 m = 8 m = 8 m = 8

new asymptotic bound 1/3 3/7 7/15 15/31 31/63 63/127

Table 1. Some bounds for the inversive generator, a,b known

4 The Pollard generator

The recursive sequence of the Pollard generator is defined as vi = v2i−1+b mod p
with b ∈ Zp (i.e. it is a particular instance of the quadratic generator where the
constant a is equal to 1). As a consequence, the attack scenario is exactly the
same as in the previous section when b is known to the attacker. However, if
one takes advantage of the fact that a is fixed to 1, a specific analysis can be
made and a better bound can be obtained. To reach such a result, we use a novel
technique, called unravelled linearization whose description is provided below.

Unravelled linearization. In 2009, Hermann and May introduced a new tech-
nique called unravelled linearization [12] that allows to work with smaller lattices
by optimizing the way the initial polynomial is written. It consists in improving
the bounds, see Equation (2), by reducing the number of monomials in M while
keeping the same amount of powers of N in the right hand side of the equation.

Let us show what happens on a toy example, say f(x, y) = x2 + x + y
having a root (x0, y0) modulo N where |x0| < X and |y0| < Y with X = Y . The
idea is to find the better way of linearizing f before proceeding to Coppersmith’s
construction. If we fix u = x2, the polynomial f becomes g(u, x, y) = u+x+y and
the bounds on the root can be determined by the following formula UXY < N .
Knowing that U = X2, this leads to X = N1/4. Now, let us take another smarter
linearization, say u = x2+y, leading to the polynomial g(u, x) = u+x. This time,
the formula becomes UX < N , what leads to the improved bound X = N1/3.
In this case, the “weight” of y is hidden in u by the weight of x2.

One need to use another tricky manipulation to conclude. Let us go back
to our toy example g(u, x) = u + x and construct the original matrix defined
by Coppersmith taking the collection {g, g2}. This leads to the matrix M that
follows, thus reaching the asymptotic bound U4X4 < N3, what gives X < N1/4.



1/U
1/X

1/X2

1/UX
1/U2

0

1 0
1 0
0 1
0 2
0 1
N
N2


︸ ︷︷ ︸

M

u
x
x2

ux
u2



1/U
1/X

1/Y
1/UX

1/U2

0

1 1
1 0
0 −1
0 2
0 1
N
N2


︸ ︷︷ ︸

M′

u
x
y
ux
u2



But here is the point: by definition of u, the monomial x2 can easily be written
as u− y, thus allowing to express the polynomial g2 as g2 = u2 + 2ux + u − y.
Such a manipulation leads to the matrix on the right hand side, sayM′. In this
case, the obtained bounds on the root can be reformulated as U4X2Y < N3

what gives the improved result X < N3/11. This benefit can be understood by
the fact that we have managed to decrease the weight of the monomials in the
set M by 1 while keeping the exact number of powers of N appearing in the right
hand side of Equation (2). Such manipulations are quite hard to proceed, they
strongly rely on the linearization chosen for the initial polynomial f (a more
detailed discussion on the importance of the choice of the linearization can be
found in the full version of the paper).

4.1 Case F known

Attack with two consecutive outputs. Let us first assume that the adver-
sary is given access to two consecutive outputs of the generator, namely w0 and
w1. Knowing that v0 = 2π−kw0 + x0 and v1 = 2π−kw1 + x1, we reach the same
relation as those previously obtained for the quadratic case:

x1 − 2π−k+1w0x0 − x20−b+ 2π−kw1 − 4π−kw2
0 = 0 mod p

Let us denote by f(y0, y1) the polynomial y1−c0y0−y20+d0 where the coefficients
c0 = 2π−k+1w0 and d0 = −b+ 2π−kw1 − 4π−kw2

0 are known to the attacker. As
usual, its goal consists in recovering the small modular root (x0, x1) of f(y0, y1).

To solve this problem, we use the unravelled linearization technique. As al-
ready stated, the first step consists in choosing a good linearization for f . In
this particular case, we set u = y1 − y20 , what leads to the following polynomial
g(y0, u) = u−c0y0+c mod p. In that case, the bound on u can thus be expressed
as U = X2

0 .
Let us now consider the collection of polynomials defined as yj0g

i(y0, u) with
i+ j ≤ m and i > 0. The list of monomials appearing in that collection can be

described as M =
{
yj0u

i | i+ j ≤ m
}

. Initially, we use this set of polynomials

to construct the matrix defined by Coppersmith, as in Section 2.2. In that case,
the right-hand side (resp. the left-hand side of) of (2) can easily be expressed as
p to the power

m∑
i=1

m−i∑
j=0

i =
1

6
m3 + o(m3)

resp. δ

m∑
i=0

m−i∑
j=0

2i+ j =
δ

2
m3 + o(m3)


The idea of the unravelled linearization technique is to improve the bound on δ by
decreasing the weight of the monomials. To do so, one should proceed to a “back-
substitution” in the constructed matrix, as explained in the previous section. In
that particular case, knowing that y20 = y1−u, the following replacement is done
(for all monomials µ such that µ · y20 ∈ M): µ · y20 → µ · y1 − µ · u. It is obvious
that the presence of µ · y20 in the set M implies those of µ · u. As a consequence,



doing such a manipulation allows to replace the quantity µ · y20 by µ · y1 thus
decreasing by “1” the weight on the monomials. If we express the collection M
as M =

{
y2b+a0 ui | a ∈ {0, 1} ∧ a+ 2b+ i ≤ m

}
, after the back-substitution,

we obtain the set M ′ =
{
yb1y

a
0u

i | a ∈ {0, 1} ∧ a+ 2b+ i ≤ m
}

. In that case,
the new left-hand side in Equation (2) becomes p raised to the power:

δ

1∑
a=0

m−a∑
i=0

bm−i−a
2 c∑
b=0

(a+ b+ 2i) = δ
5

12
m3 + o(m3)

Thus, the corresponding asymptotic bound on δ becomes:

δ <
1/6m3 + o(m3)

5/12m3 + o(m3)
−−−−−→
m→+∞

2

5
.

This bound is better than δ < 5/14, previously obtained by Blackburn et al. [11]
when working with one polynomial. One can also notice that 2/5 is exactly the
bound obtained in [12] for attacking the Blum-Blum Shub generator.

More consecutive outputs. In that case, one can easily generalize the method
explained before in the same way as what has been done for the Blum-Blum Shub
generator, thus reaching the bound δ < 1/2. Details are left to the reader.

4.2 Case F unknown

Attack with three consecutive outputs. Let us now consider the case of an
adversary having access to three consecutive outputs of the generator. In that
case, writing two consecutive recurrence relations and subtracting both of them
leads to:

−x21 + x20 + x2 + 2π−k+1w0︸ ︷︷ ︸
c0

x0 − (2π−k+1w1 + 1)︸ ︷︷ ︸
c1

x1

+ 2π−kw2 − 2π−kw1 + 4π−kw2
0 − 4π−kw2

1︸ ︷︷ ︸
c

= 0 mod p.

The adversary wants to recover the small modular root (x0, x1, x2) of the poly-
nomial f(y0, y1, y2) = −y21 + y20 + y2 + c0y0 − c1y1 + c. To do so, we use
again the unravelled linearization technique. To linearize the polynomial f , we
set u = −y21 + y20 + y2, reaching the new following expression g(u, y0, y1) =
u + c0y0 − c1y1 + c. Let us now consider the collection of polynomials defined
as yk0y

j
1g
i with i+ j + k ≤ m and i > 0. In that case, the list of involved mono-

mials can easily be expressed as M =
{
uiyj1y

k
0 | i+ j + k ≤ m

}
. Thus, the

right-hand side of Coppersmith’s Equation (2) is given by p to the power:

m∑
i=1

m−i∑
j=0

m−i−j∑
k=0

i =
1

24
m4 + o(m4).



Before evaluating the weight of the monomials in M , we perform some back-
substitutions. In this case, the rule given by the linearization is (for all monomials
µ such that µ · y21 ∈ M): µ · y21 → µ · y20 + µ · y2 − µ · u. One can notice that
the presence of the monomial µ · y21 in the set M automatically implies those of
µ · y20 and µ · u. Thus, each monomial of the form µ · y21 can be replaced by one
of those µ · y2 in the constructed matrix, again decreasing by “1” the weight on
the involved monomials. The shape of the new constructed set M is then:{

uiyb2y
a
1y
k
0 | a ∈ {0, 1} ∧ i+ k + a+ 2b ≤ m

}
In that case, the new left hand side of Equation (2) becomes:

δ

1∑
a=0

m−a∑
i=0

bm−i−a
2 c∑
b=0

m−i−a−2b∑
k=0

(a+ b+ 2i+ k) =
7δ

48
m4 + o(m4)

which leads to the following bound on δ:

δ < (1/24m4 + o(m4))/(7/48m4 + o(m4)) −−−−−→
m→+∞

2/7.

More consecutive outputs. Let us assume that the attacker knows n + 2
consecutive outputs, for n ≥ 2. We denote fi the relation between two outputs:

fi = 2π−kwi + yi − (2π−kwi−1 + yi−1)2 − b mod p i ∈ {1, . . . , n}

These polynomials have (xi, xi−1) as a root modulo p and denoting gi = fi+1−fi
for i ∈ {1, . . . , n}, we have gi = −y2i + y2i−1 + yi+1 + ciyi−1 − diyi + ei mod p
for some constants ci, di, ei known to the adversary.

Knowing the set of polynomials {g1, . . . , gn}, the attacker wants to recover the
unknown values xi. To do so, we use again the unravelled linearization technique
by choosing ui = −y2i +y2i−1+yi+1, what leads to: gi = ui+ciyi−1−diyi+ei. Such
polynomials allows us to reach the asymptotic following bound δ < 2

5 (details
will be given in the full version). In that particular case, we think this bound
could be improved to δ < 1/2, following the discussion from Remark 1.

Number of outputs 3 4 5 6 7 8

Previous bound [3] 0.261 0.286 0.3 0.308 0.313 0.316

Our achievable bound 0.278 0.319 0.324 0.324 0.324 0.324

Our asymptotic bound 2/7 6/17 14/37 30/77 62/157 126/317

Table 2. Theoretical and experimental bounds for the Pollard generator, b unknown
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