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Abstract. It is well-known that the k-wise product of one-way func-
tions remains one-way, but may no longer be when the k inputs are
correlated. At TCC 2009, Rosen and Segev introduced a new notion
known as Correlated Product secure functions. These functions have the
property that a k-wise product of them remains one-way even under
correlated inputs. Rosen and Segev gave a construction of injective trap-
door functions which were correlated product secure from the existence of
Lossy Trapdoor Functions (introduced by Peikert and Waters in STOC
2008).
In this work we continue the study of correlated product security, and find
many differences depending on whether the functions have trapdoors.
The first main result of this work shows that a family of correlated prod-
uct secure functions (without trapdoors) can be constructed from any
one-way function. Because correlated product secure functions are triv-
ially one-way, this shows an equivalence between the existence of these
two cryptographic primitives.
In the second main result of this work, we consider a natural decisional
variant of correlated product security. Roughly, a family of functions is
Decisional Correlated Product (DCP) secure if f1(x1), . . . , fk(x1) is in-
distinguishable from f1(x1), . . . , fk(xk) when x1, . . . , xk are chosen uni-
formly at random.
When considering DCP secure functions with trapdoors, we give a con-
struction based on Lossy Trapdoor Functions, and show that any DCP
secure function family with trapdoor satisfies the security requirements
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for Deterministic Encryption as defined by Bellare, Boldyreva and O’Neill
in CRYPTO 2007. In fact, we also show that definitionally, DCP secure
functions with trapdoors are a strict subset of Deterministic Encryption
functions by showing an example of a Deterministic Encryption function
which according to the definition is not a DCP secure function.

Keywords: Correlated Product Security, Lossy Trapdoor Functions, Deter-
ministic Encryption

1 Introduction

If f and g are one-way functions on some domain X, it follows immediately
that (x, y) 7→ (f(x), g(y)) is a one-way function. On the other hand, it is well-
known that x 7→ (f(x), g(x)) may not be. The RSA function provides a simple
example of this observation. The RSA assumption posits that x 7→ xe mod n
is a one-way function. Given xe1 mod n, and xe2 mod n, the extended eu-
clidean algorithm provides an efficient means of computing xgcd(e1,e2) mod n,
so if gcd(e1, e2) = 1, the map x 7→ (xe1 , xe2) mod n, is trivially invertible, even
though its constituents are believed to be one-way.

In [RS09], Rosen and Segev formalized the notion of Correlated Product (CP)
Security. They called a family of one-way trapdoor functions CP secure if they
remained one-way when evaluated on correlated (and in particular, repeated)
inputs. Rosen and Segev were motivated by the construction of IND-CCA secure
encryption based on Lossy Trapdoor Functions (LTDFs) given by Peikert and
Waters in [PW08]. Rosen and Segev showed that CP security is exactly the
property needed to prove security of the Peikert and Waters construction.

Correlated Product security is an appealing notion because it is easy to
define and appears to be a significantly weaker property than the statistical
lossiness requirement of Lossy Trapdoor Functions. Despite this appearance of
relative simplicity there have been few examples of correlated product secure
functions that are not Lossy Trapdoor Functions. The notable exceptions are
the constructions given in [Pei09] and [FGK+10].

This work continues the study of Correlated Product Secure Functions. We
introduce a natural decisional variant of correlated product security, and show
how this notion of Decisional Correlated Product Security provides connections
to many areas in cryptography.

1.1 Our Results

In this work, we introduce (in Section 3) the notion of Decisional Correlated
Product (DCP) security, which strengthens the definition of Rosen and Segev.
We argue that this is a natural stepping-stone between Lossy Trapdoor Functions
and Correlated Product secure functions. Intuitively, these are families of func-
tions such that for any k functions f1, . . . , fk, the distributions {(f1(x1), . . . , fk(x1))}



and {(f1(x1), . . . , fk(xk))} are indistinguishable when x1, . . . , xk are chosen uni-
formly at random. Like correlated product security, decisional correlated product
security can be defined for distributions other than the repetition distribution.
We have focused on the case of the repetition distribution because it is concep-
tually simple while still capturing the essence of the problem. The repetition
distribution is also the distribution that is necessary for applications to IND-
CCA encryption [PW08,RS09].

Our results can be divided into three categories.

1. Connections to Correlated Product Security:

We begin by examining the connections between Correlated Product (CP)
and Decisional Correlated Product (DCP) security.

From the definition of DCP security, it is clear that a family of constant
functions is DCP secure, so for non-trivial results, we either specify that the
functions be (individually) one-way or that they be injective with large do-
main. It turns out that, under either one of these assumptions, these families
can be shown to also be Correlated Product secure. This is proven in Section
4 as the following lemmas:

Lemma 2. If F = (G,F ) is a family of k-DCP secure functions with super-
polynomial size domain that are injective, then F is k-correlated product
secure.

Lemma 3. If F = (G,F ) is a family of k-DCP secure one-way functions,
then F is k-correlated product secure.

2. DCP Secure Functions Without Trapdoors:

Our first main result considers families of one-way functions that are DCP se-
cure. We show that such families are automatically (plain) Correlated Prod-
uct secure, and demonstrate a construction from any pseudorandom function
family. Due to the celebrated fact that a PRF family can be constructed from
any one-way function ([GGM86,ILL89,HILL99]), we obtain an equivalence
between the existence of one-way functions, DCP secure one-way function
families, and CP secure function families. This is proven in Section 5 as the
following theorem:

Theorem 1. The following statements are equivalent:

(a) One-way functions exist.

(b) k-DCP secure families of one-way functions exist.

(c) k-CP secure families of one-way functions exist.

Theorem 1 shows that without a trapdoor, correlated product security essen-
tially, is no stronger than simple one-wayness. This is somewhat surprising
given the results of Vahlis [Vah10] that show that Correlated Product se-
cure functions with trapdoor cannot be constructed from enhanced one-way
trapdoor permutations. It is also somewhat surprising since lossy functions
(without trapdoor) have not proven to be significantly easier to construct
than lossy trapdoor functions.

3. DCP Secure Functions With Trapdoors:



Our second main result considers DCP secure function families which also
have trapdoor. We investigate the connection between this and other prim-
itives. In Section 6, we show a construction of these one-way trapdoor DCP
secure families from sufficiently lossy LTDFs. This is stated as the following
theorem:

Theorem 2. Let ε(λ) be any function such that 1/2ε(λ) is negligible in λ. Let
F = (G,F ) be a family of LTDFs on domain {0, 1}λ, with residual leakage4

at most λ+2−2 log(1/ε)
k . Then functions of the form Fs(h(x)) form a family

of k-DCP trapdoor functions, where h is an injective pairwise independent
hash function.

Finally, in Section 7, we show that these families definitionally satisfy the se-
curity requirements of Deterministic Encryption, but the converse is not true
in general. Using the notion of PRIV1 security for Deterministic Encryption,
which we will recall later, we have:

Theorem 3. DCP secure function families with trapdoor are also PRIV1
secure deterministic encryption schemes.

1.2 Previous Work

In [PW08] Peikert and Waters introduced a new paradigm for constructing IND-
CCA secure encryption based on the newly defined primitive Lossy Trapdoor
Functions (LTDFs). Their construction of IND-CCA was natural and appeal-
ing, but LTDFs proved difficult to construct because of their strong statistical
lossiness properties. Despite the power of LTDFs, in [PW08] they were able to
give constructions from DDH and Lattice-based assumptions, and the authors of
[BFO08] and [RS08,FGK+10] (independently) found identical efficient construc-
tions of LTDFs from Paillier’s Decisional Composite Residuousity Assumption.

In [RS09], Rosen and Segev examined which properties of LTDFs were neces-
sary to construct IND-CCA secure encryption via the methods in [PW08]. With
this goal, they defined Correlated Product secure functions, and gave a con-
struction of IND-CCA secure encryption from Correlated Product secure func-
tions with trapdoor paralleling the construction in [PW08]. One of the primary
difficulties in constructing Lossy Trapdoor Functions is creating functions the
necessary statistical lossiness property (i.e. that the image of the function is sig-
nificantly smaller than the domain). Correlated Product secure functions do not
have these statistical requirements, and thus should be easier to construct than
LTDFs. This intuition was reinforced in [RS09] where they showed that LTDFs
are Correlated Product secure, and showed a black-box separation in the op-
posite direction. Correlated Product secure functions remain difficult to realize,
however, and the recent results of Vahlis [Vah10], show a black-box separation
between (enhanced) one-way trapdoor permutations and Correlated Product
Secure functions.
4 Recall that the residual leakage is defined to be the average number of bits leaked

about the input when the function is in lossy mode. In particular, the residual leakage
is defined to be the log of the size of the image of the function in lossy mode.



In 2007, Bellare, Boldyreva, and O’Neill [BBO07] introduced a new notion
known as Deterministic Encryption (DE). The deterministic property of the
encryption affords the scheme many practical applications, such as searchable
encryption, but at the same time requires new security definitions. Subsequent
works [BFO08,BFOR08] demonstrate equivalences between various definitions of
DE and show that the existence of a sufficiently lossy LTDFs imply the existence
of deterministic encryption, which in turn implies the existence of IND-CCA
secure cryptosystems.

The works [BFO08,BFOR08] show many different relationships between DE
and other primitives. Indeed, they show that any LTDF is almost immediately a
DE scheme, and show how a weaker notion of DE can be constructed from any
one-way trapdoor permutation.

In [ABBC10] Acar et al. studied the notion of cryptographic agility, where
families of cryptographic primitives are said to be agile if they remain secure
when the same key is re-used across families. While this is also a notion re-
garding correlated security, it does not appear to be connected to DCP security.
Cryptographic agility refers to the security of correlated keys across different
families of primitives, while DCP security refers to the one-wayness of functions
from the same family when evaluated on correlated inputs.

The notion of security under correlated inputs has been studied in other
contexts as well. In [IKNP03], Ishai et al. defined the notion of correlation ro-
bustness and used correlation robust functions to efficiently extend the number
of independent oblivious transfer pairs available in a secure multiparty proto-
col. Correlation robustness was then used to create cryptosystems secure under
related key attacks [AHI11,GOR11]. The notion of correlation robustness is dis-
tinct from the notion of correlated product security that is studied in this work.
Correlation robustness studies the security of a single function applied on cor-
related inputs, while correlated product security studies the notion of different
functions applied to correlated inputs. This distinction makes the constructions
and applications quite different between the two areas.

2 Preliminaries

If A is a PPT machine, then we use a
$← A to denote running the machine A and

obtaining an output, where a is distributed according to the internal randomness
of A. For a PPT machine A, we use coins(A) to denote the distribution of the

internal randomness of A. So the distributions {a $← A} and {r $← coins(A) : a =

A(r)} are identical. If R is a set, we use r
$← R to denote sampling uniformly

from R. If X and Y are families distributions indexed by a security paramete
λ, we use X ≈s Y to mean the two distributions are statistically close i.e. the
statistical distance between X and Y is negligible in λ. We use X ≈c Y to mean
that the distributions are computationally close, i.e. no PPT distinguisher with
oracle access to the distribution has a non-negligible distinguishing advantage.
We will need an extension of the leftover hash lemma known as the Crooked
Leftover Hash Lemma [BFO08].



Lemma 1 (Crooked Leftover Hash Lemma [BFO08]). Let H be a pairwise
independent hash family, such that for all h ∈ H, h : X → X. Let f : X → Y ,
and let Z be any random variable independent of h and DX a distribution over
X such that the min entropy H̃∞(DX |Z) ≥ log |Y |+ 2 log(1/ε)− 2. Then if we

define Λ1 = {h $← H;x
$← DX : (h, f(h(x)), Z)}, and Λ2 = {h $← H; y

$← Y :
(h, f(h(UX), Z))}, we have ∆(Λ1, Λ2) ≤ ε.

Notice that the Crooked Leftover Hash Lemma does not imply that h(DX)
is close to UX , and indeed this may not be the case.

2.1 Correlated Product Security

In this section, we review the definition of Correlated Product security, first
defined in [RS09]. We begin by defining the k-wise product of a Function Family.

Definition 1 (k-wise product). Let F = (G,F ) be a collection of efficiently
computable functions. G is a (randomized) algorithm which takes as input a size
parameter 1λ and generates a key (or seed) s for F . Each function F (s, ·) takes
as input an element of some domain X and outputs some value in the range Y ,
both of which implicitly depend on the parameter λ. For notational purposes, we
also write Fs(·) = F (s, ·).
For k ≥ 2, we define a family of k-wise products Fk = (Gk, F k) as follows:

– Key Generation:

Gk(1λ) independently generates si
$← G(1λ), for i = 1, . . . , k.

– Evaluation:
To evaluate F k on input ((s1, . . . , sk), (x1, . . . , xk)), we define

F k((s1, . . . , sk), (x1, . . . , xk)) = (Fs1(x1), . . . , Fsk(xk)).

Definition 2 (Correlated Product Security). Let F = (G,F ) be a collec-
tion of efficiently computable functions. Let Ck = Ck(1λ) be a distribution. We
say that F is secure under Ck-correlated products if Fk is one-way with respect
to the input distribution Ck.

We remark that if the function family is very small, e.g. if it consists of
only a single function, then correlated product security can be trivially satisfied,
since s1 = · · · = sk and hence Fs1(x) = · · · = Fsk(x). This degenerate case only
arises when considering CP security for functions without trapdoor. Throughout
this work, we will focus on decisional correlated product security (Definition 3).
We note that a family with fewer than k functions can never be k-DCP secure.
Similarly, functions with trapdoor must also belong to a large (super-polynomial
size) family. Since all of our results deal with DCP security or DCP security with
trapdoor, we do not find it necessary to amend the definition of CP security
explicitly require the size of the function family to be large.

For the remainder of the paper, we will focus on the case where Ck is the uni-
form k-repetition distribution, i.e. k copies of a uniformly chosen input. We refer



the reader to the Appendix for reminders of the definitions of the Discrete Log
and DDH assumptions, Deterministic Encryption, Lossy Trapdoor Functions,
and Pseudorandom Functions.

3 Decisional Correlated Product Security

In this work we introduce the notion of Decisional Correlated Product (DCP)
security, which can be viewed as the decisional variant of Correlated Product
security introduced in [RS09]. In [RS09], Rosen and Segev focused on the case
where Ck was the uniform k-repetition distribution, i.e. Ck uniformly samples
x and outputs k copies of x. We will also focus on the k-repetition distribution,
although we will consider a decisional variant of the problem.

First, we remark that Correlated Product security seems to be a much
stronger notion than simply one-wayness. For example, the map fe : x 7→ xe

mod n, is one-way trapdoor permutation under the RSA assumption. However,
given fe1(x), fe2(x), if gcd(e1, e2) = 1, we can immediately recover x, by using the
extended Euclidean algorithm to calculate s, t such that se1+te2 = 1, and notic-
ing that (xe1)s(xe2)t = x. This example also shows that Decisional Correlated
Product security does not follow immediately from Computational Correlated
Product security, because if d1, d2, d3 are relatively prime, and ei = edi for some
fixed e, then fe1 , fe2 , fe3 will be Computationally Correlated Product secure un-
der the RSA assumption, but will not be Decisional Correlated Product secure
by a similar argument.

Definition 3 (Decisional Correlated Product Security). Let F = (G,F )
be a collection of efficiently computable functions. We say that Fk is k-wise
Decisional Correlated Product secure if for all efficient PPT adversaries A,∣∣Pr

[
Aindepdist = 1

]
− Pr

[
Arepdist = 1

]∣∣ < ν

for some negligible function ν, and where the games indepdist and repdist are
defined as in Figure 1.

Independent Repetition

s1
$← G(1λ), . . . , sk

$← G(1λ) s1
$← G(1λ), . . . , sk

$← G(1λ)

x1
$← X, . . . , xk

$← X x
$← X

b
$← A(s1, . . . , sk, Fs1(x1), . . . , Fsk (xk)) b

$← A(s1, . . . , sk, Fs1(x), . . . , Fsk (x))
Return b Return b

Fig. 1. Decisional Correlated Product Security

To illustrate the power of this definition, we construct a very natural IND-CPA
secure encryption from any family of 2-DCP secure injective trapdoor functions.



Let the public key be F1, F2, h where h is a pairwise independent hash function.
Define encryption as E(m, r) = (F1(r), h(F2(r))⊕m). To decrypt, we simply in-
vert F1 to recover r, from this we can recover h(F2(r)) and recover the message.
If Fi have domain {0, 1}λ, and h maps from the range of Fi to {0, 1}λ/2, then
the leftover hash lemma tells us that (F1(r1), h(F2(r2))⊕m) is statistically close
to (F1(r1), h(F2(r2))). So if y0, y1 are chosen from the repetition-distribution
(y0, h(y1) ⊕m) is a valid ciphertext, while if (y0, y1) are chosen from the inde-
pendent distribution (y0, h(y1)⊕m) is independent of m, thus this scheme will
be IND-CPA secure. We emphasize that this is not one of our main results, but
simply an illustration of a natural construction that follows from this definition.

Remark. One of the appealing properties of the notion of k-DCP security is that
it abstracts one of the most important properties of the DDH assumption. To see
the parallel, recall a simple DDH-based PRG. The description of the function is
the group G, and two elements g, ga, and f(b) = (gb, (ga)b). The first element of
the output will be uniform if b is uniform, and the pair is indistinguishable from
uniform by the DDH assumption. Now, it is easy to see that this construction will
go through as before with an injective k-DCP family of functions. In particular,
the description of the PRG will be F , s1, . . . , sk, and f(x) = Fs1(x), . . . , Fsk(x).
If Fsi(·) is a permutation, f will be a PRG with no modification. If the Fsi(·)
are merely injective, we will have to apply an extractor to “smooth” the output,
but the proof of security remains exactly the same as in the DDH case. In
fact, this observation can be generalized, the full version of this work contains
a more detailed discussion of the parallel between DCP security and the DDH
assumption.

The notion of Decisional Correlated Product security is clearly a stronger
notion than the (Computational) Correlated Product security defined in [RS09]
for injective functions. In the next section, we examine under what conditions
DCP security implies CP security.

4 Relations to (Computational) Correlated Product
Security

The notion of k-DCP security seems like a stronger requirement than Compu-
tational Correlated Product security, but we observe that if we do not put any
requirements on the functions, then k-DCP security may be satisfied by trivial
functions. For example the constant functions are trivially k-DCP for any k ≥ 2.
The following lemmas give sufficient conditions for when a k-DCP secure family
is k-correlated product secure.

Lemma 2. If F = (G,F ) is a family of k-DCP secure functions with super-
polynomial size domain and are injective, then F is k-correlated product secure.

Proof. LetA be an efficient adversary that given s1, . . . , sk, and (Fs1(x), . . . , Fsk(x)),
finds the inverse (x′1, . . . , x

′
k) = (x, x, . . . , x) with non-negligible probability ε, we

exhibit an efficient distinguisher D that uses A to break the k-DCP security of
F .



Algorithm 1 D(s1, . . . , sk, y1, . . . , yk)

(x′1, . . . , x
′
k)

$← A(s1, . . . , sk, y1, . . . , yk)
if x′1 = x′2 = · · · = x′k and Fsi(x

′
i) = yi for i ∈ [k] then

return 1
else

return 0
end if

We must analyze the probability that D outputs 1 in the repdist and indepdist
games.

Pr[Drepdist = 1] = Pr[x′1 = · · · = x′k ∧ Fsi(x′i) = yi|

x
$← X, si

$← G(1λ), yi = Fsi(x), {x′i}ki=1
$← A({si}ki=1, {yi}ki=1)]

= Pr[A successfully inverts] = ε.

Pr[Dindepdist = 1] = Pr[x′1 = · · · = x′k ∧ Fsi(x′i) = yi|

xi
$← X, si

$← G(1λ), yi = Fsi(xi), {x′i}ki=1
$← A({si}ki=1, {yi}ki=1)]

= Pr[x′1 = · · · = x′k ∧ x′i = xi|

xi
$← X, si

$← G(1λ), yi = Fsi(xi), {x′i}ki=1
$← A({si}ki=1, {yi}ki=1)]

≤ Pr[x1 = x2|xi
$← X] ≤ 1

|X|
.

Thus the difference |Pr[Drepdist = 1] − Pr[Dindepdist = 1]| ≥ ε − 1
|X| is non-

negligible, as |X| is super-polynomial.

Next, we show that if a family F = (G,F ) is a DCP secure, and each function
is individually one-way, then the family is also Correlated Product secure.

Lemma 3. If F = (G,F ) is a family of k-DCP secure one-way functions, then
F is k-correlated product secure.

Proof. Suppose on the contrary that they were not. Let A be a PPT algo-
rithm that breaks the correlated product security of (G,F ), in particular given
{s1, . . . , sk, Fs1(x1), . . . , Fsk(x1)} A is able to find a pre-image (x′1, . . . , x

′
k) with

some non-negligible probability ε, where the si are generated by G at random,
and x1 is chosen uniformly at random. We use A to build a PPT distinguisher
D that can win in the k-DCP game.

We analyze the probability that D outputs 1. If indeed the inputs are corre-
lated, i.e. yi = Fsi(x1), then A succeeds with probability ε and so D will output
1 with that probability.

On the other hand, if the inputs are random and independent, i.e. yi =
Fsi(xi), then (x1, . . . , xk) is a uniformly chosen input from the product space. Be-
cause each Fsi(·) is a one-way function, the product function (Fs1(·), . . . , Fsk(·))



Algorithm 2 D(s1, . . . , sk, y1, . . . , yk)

(x′1, . . . , x
′
k)

$← A(s1, . . . , sk, y1, . . . , yk)
if Fsi(x

′
i) = yi for i ∈ [k] then

return 1
else

return 0
end if

is also one-way. Since the inputs are uncorrelated, the probability that A inverts
it on a random value is negligible. Thus, in this case, D outputs 1 with only
negligible probability.

This contradicts the k-DCP security of (G,F ).

Many of the results in this work will focus on the case where the family F
are in fact injective, or injective with trapdoor, and so the Correlated Product
security will follow immediately from the DCP security of F .

5 Equivalence of OWF and (Decisional) Correlated
Product secure families of OWFs

In this section, we aim to prove the main theorem relating the existence of OWFs
to that of (Decisional) Correlated Product secure OWF families.

Theorem 1. The following statements are equivalent:

1. One-way functions exist.
2. k-DCP secure families of one-way functions exist.
3. k-CP secure families of one-way functions exist.

To do this, we first show how to construct a DCP secure family of one-way
functions from any pseudorandom function family. The idea is that a PRF family
becomes DCP secure if we swap what we call the seed, and what we call the
input. This idea has also been used in the past by Luby and Rackoff [LR89] to
show the one-wayness of the UNIX-like password hash. If the PRF output is
sufficiently long, then the resulting functions are also one-way, thus we have a
family of DCP secure one-way functions. The exact lengths necessary are given
in Lemma 5.

We then show that DCP secure one-way function families are also (ordinary)
CP secure. This will follow directly from the fact that a product of one-way
functions remain one-way under uniform independent inputs (Lemma 3). Finally,
CP secure OWF families obviously are one-way, which completes the cycle of
implications.

Let (PRFGen,PRF) be a PRF family, such that if s
$← PRFGen(1λ), with

s ∈ {0, 1}w(λ) then the domain of

PRF(s, ·) : {0, 1}n(λ) → {0, 1}`(λ).



We can define a DCP family (G,F ), by

– Sampling: G(1λ) outputs a uniform value s ∈ {0, 1}n(λ).
– Evaluation: For any s ∈ {0, 1}n(λ),

Fs(·) : {0, 1}w(λ) → {0, 1}`(λ)

x 7→ PRF(x, s).

Lemma 4. (G,F ) forms a k-Decisional Correlated Product secure function fam-
ily for any k = poly(λ).

Proof. Define the distributions Λ0, Λ1 by sampling s1, . . . , sk
$← G(1λ), and

x1, . . . , xk
$← {0, 1}w(λ)

Λ0 = {s1, . . . , sk, Fs1(x1), . . . , Fsk(x1)}
Λ1 = {s1, . . . , sk, Fs1(x1), Fs2(x2), . . . , Fsk(xk)}

Thus we must show that any adversary who can distinguish Λ0 from Λ1 can dis-
tinguish the underlying Pseudorandom Function from a truly random function.

Now, by the definition of F , we have

Λ0 = {s1, . . . , sk, Fs1(x1), . . . , Fsk(x1)} = {s1, . . . , sk,PRF(x1, s1), . . . ,PRF(x1, sk)},
Λ1 = {s1, . . . , sk, Fs1(x1), . . . , Fsk(xk)} = {s1, . . . , sk,PRF(x1, s1), . . . ,PRF(xk, sk)}.

Now, it is clear that the security of the Pseudorandom Function gives

Λ0 ≈c {s1, . . . , sk, U`(λ), . . . , U`(λ)} ≈c Λ1,

which gives the result.

Lemma 5. If the size of the key space of F is a negligible fraction of the size of
the output space, i.e. 1/2`(λ)−w(λ) is negligible in λ, then (G,F ) forms a family
of one-way functions.

Proof. Suppose to the contrary that for some key s, the function Fs(·) was not
one-way. Let A be a PPT inverter that succeeds with non-negligible probability
ε, i.e.

Pr
x

[Fs(z) = Fs(x)|z ← A(Fs(x))] = ε

We use A to construct a PPT algorithm B that distinguishes between oracle
access to PRF (with a randomly chosen seed x) and a truly random function
RO. The algorithm queries s on the oracle, and receives y, which is either y =
PRF(x, s) = Fs(x) for some x, or a truly random value. The distinguisher B runs
A on y, and receives some output x′. If it is the case that Fs(x

′) = y, then B
outputs 1, otherwise B outputs 0.



We analyze the probabilities Pr[BRO(·) = 1] and Prx[BPRF(x,·) = 1]. In the
former case, the probability that a random value is in the range of PRF(s, ·) is
|Range|

2`
≤ 2w

2`
which we assumed to be negligible. On the other hand,

Pr
x

[BPRF(x,·) = 1] = Pr
x

[PRF(z, s) = y|z ← A(y)]

= Pr
x

[PRF(z, s) = PRF(x, s)|z ← A(PRF(x, s))]

= Pr
x

[Fs(z) = Fs(x)|z ← A(Fs(x))] = ε

This contradicts the pseudorandomness of PRF.

Corollary 1. One-way functions imply k-DCP secure one-way function fami-
lies.

Proof. In Hastad, Impagliazzo, Levin and Luby [HILL99] it was shown that one-
way functions imply PRGs, and in Goldreich, Goldwasser, Micali [GGM86] it
was shown that PRGs imply the existence of PRF families with sufficiently long
output, thus combining these results with our result, we have one-way functions
imply k-DCP secure one-way functions.

Corollary 2. One-way functions imply k-CP secure function families.

Proof. This follows immediately from applying Lemma 3 to Corollary 1.

Since every Correlated Product secure function family is trivially a one-way
function family, we have

One-Way Functions

Pseudorandom Generators

Pseudorandom Functions

One-Way DCP Secure Functions

CP Secure Functions



Since pseudo-random synthesizers [NR95,Rei98] are equivalent to one-way
functions, we also achieve an equivalence between DCP secure functions and
synthesizers. In the full version of this work, we give a direct proof that every
family of pseudo-random synthesizers is immediately DCP secure.

In [BHK11], Braverman, Hassidim and Kalai introduced the notion of leakage-
resilient random-input PRFs. A leakage-resilient random-input PRF is a pseudo-
random function which remains pseudo-random when queried on random inputs
(i.e. it is a weak PRF) even when partial information about the seed is leaked.
Applying our construction to a leakage-resilient random-input PRF, we obtain
a family of functions which is decisionally correlated product secure for any dis-
tribution (X1, . . . , Xn) where that satisfies H̃∞(Xi|X1, . . . , Xi−1) > λ. Notice
that the repetition distribution does not have this property, so by applying our
construction to leakage-resilient random-input PRFs, we achieve DCP security
for a completely different class of distributions.

6 DCP with trapdoor from Lossy Trapdoor Functions

In the preceding sections, we examined DCP secure functions without trapdoors,
and showed that one-way DCP secure functions without trapdoor could be con-
structed from any one-way function. Now, we show constructions of DCP with
trapdoor. In particular, in this section, we show that lossy trapdoor functions
with sufficient lossiness imply DCP secure injective trapdoor functions.

Theorem 2. Let H be a family of invertible5 pairwise independent hash func-
tions with h : {0, 1}λ → {0, 1}λ. Let ε(λ) be any function such that 1/2ε(λ) is
negligible in λ. Let F = (G,F ) be a family of LTDFs on domain {0, 1}λ, where

the lossy mode has residual leakage r ≤ λ+2−2 log(1/ε)
k , for some integer k. Define

F̂ = (Ĝ, F̂ ) by

– Ĝ(1λ), samples s
$← G(1λ), and h

$← H, and outputs the function index h, s.
– Given a function index (h, s) and an input x, F̂h,s(x) = Fs(h(x)).

Then F̂ is a k-DCP secure injective trapdoor function.

Proof. To prove the claim, we must show that distributions

{h1, s1, . . . , hk, sk, F̂h1,s1(x1), . . . , F̂hk,sk(x1)}
and

{h1, s1, . . . , hk, sk, F̂h1,s1(x1), F̂hk,sk(xk)}

are computationally indistinguishable, where h1, s1, . . . , hk, sk
$← Ĝ(1λ), and

x1, . . . , xk are sampled uniformly at random from the domain {0, 1}λ.

5 We remark that this is not a strong restriction, and the natural construction h(x) =
ax + b over a finite field yields a collection of invertible pairwise independent hash
functions.



If the function Fs(·) is in lossy mode, it has image size at most 2
λ+2−2 log(1/ε)

k ,
so if x is chosen uniformly from {0, 1}λ, then

H̃∞(x|F̂h1,s1(x), . . . , F̂hk−1,sk−1
(x)) ≥ λ− (k − 1)

λ+ 2− 2 log(1/ε)

k

= λ− (λ+ 2− 2 log(1/ε)) +
λ+ 2− 2 log(1/ε)

k

=
λ+ 2− 2 log(1/ε)

k
+ 2 log(1/ε)− 2.

By the Crooked Leftover Hash Lemma, we have

∆
({
h1, s1, . . . , hk, sk, Fs1(h1(x1)), . . . , Fsk(hk(x))

}
,{

h1, s1, . . . , hk, sk, Fs1(h1(Uλ)), Fs2(h2(x)), . . . , Fsk(hk(x))
})

< ε.

Repeating this argument a total of k times, we have

∆
({
h1, s1, . . . , hk, sk, Fs1(h1(x)), . . . , Fsk(hk(x))

}
,{

h1, s1, . . . , hk, sk, Fs1(h1(Uλ)), . . . , Fsk(hk(Uλ))
})

< kε.

Since ε was assumed to be negligible, so is kε. Thus when the si are chosen to
be lossy keys, the two distributions {h1, s1, . . . , hk, sk, F̂h1,s1(x1), . . . , F̂hk,sk(x1)}
and {h1, s1, . . . , hk, sk, F̂h1,s1(x1), F̂hk,sk(xk)} are statistically indistinguishable.
The computational indistinguishability of lossy and injective keys implies that
when the si are injective keys, the two distributions are computationally indis-
tinguishable. Thus (Ĝ, F̂ ) forms a family of k-DCP secure trapdoor functions.

7 Decisional Correlated Product Security is Deterministic
Encryption

In this section, we examine the consequences of DCP secure functions, again with
trapdoor. We show that any 2-DCP secure functions with trapdoor are – almost
without modification – a PRIV1 secure uniform deterministic encryption. The
notion of PRIV1 security is the original definition of security for deterministic
encryption put forward in [BBO07]. PRIV1 security is the natural relaxation of
the notion of semantically secure encryption to the deterministic setting. Recall
that a cryptosystem is semantically secure if for any function f(·), an adversary’s
probability of calculating f(m) remains essentially unchanged if the adversary
is given access to an encryption E(m). PRIV1 security requires that for any
function f(·) which is independent of the public key, an adversary’s ability to
calculate f(m) remains essentially unchanged whether he has access to the public
key, or the public key and an encryption E(m). See [BBO07] for the formal
definition of PRIV1 security.



We follow the terminology of [BFOR08], where a uniform deterministic en-
cryption is one which is only guaranteed to be secure against message adversaries
that choose messages from the uniform distribution, instead of simply any high
min-entropy distribution.

Let F = (G,F ) be a family of 2-Decisional Correlated Product secure Func-
tions.

We can define a (Uniform) Deterministic Encryption by

KeyGen: Encryption: Decryption:

(s, t)
$← G(1λ) E(pk,m) = Fpk(m) D(sk, c) = F−1

t (c)
pk = s, sk = t

Fig. 2. Decisional Correlated Product Secure functions with trapdoor are PRIV1 secure

Theorem 3. The scheme outlined in Figure 2 is BB-CSS secure.

Proof. First, we recall the notion of BB-CSS (Balanced Boolean Comparison-
based Semantic Security) as defined in [BFOR08]. This is similar to the Com-
parison Semantic Security PRIV1, outlined by the games privreal and privideal,
except that the side information t is required to be a balanced boolean function,
i.e. Pr[t = 0] ≈ Pr[t = 1] ≈ 1

2 .
For simplicity, we assume that Pr[t = 0] = Pr[t = 1] = 1

2 , but it is easy to see
that if the distributions are only negligibly close to 1

2 then the argument goes
through as well.

Notice that in this setting any adversary has a 1
2 chance of winning in the

privideal game since his view is independent of the actual side information, thus
it is enough to consider the adversary’s probability of winning in the privreal
game.

Now, suppose there exists an adversary A = (Am, Ag), such that (m, t)
$←

Am(1λ), where m is uniform on X the domain of fs, and t is uniform on {0, 1}.
The guessing adversary Ag on input pk, c outputs a guess t′. If c = E(Pk,m),
then Pr[t = t′] = 1

2 + ε.
We show how to use A to create a distinguisher D that can distinguish the

2-repetition distribution from the 2-independent distribution. The algorithm D
takes as input the description of two functions s0, s1, and two outputs y0, y1,
which come from either the repetition distribution (in which case yi = Fsi(x)) or
the independent distribution (in which case yi = Fsi(xi), for two independently
sampled xi). The distinguisher D is described by Algorithm 3.

Now, we must analyze the probability that D succeeds. If y0, y1 were gen-
erated from the repetition distribution, then since Ag succeeds with probability
1
2 +ε, the probability that D guesses “repetition” is ( 1

2 +ε)2 +( 1
2 −ε)

2 = 1
2 +2ε2.

If y0, y1 were generated from the independent distribution, because the side in-
formation is a balanced boolean function, the probability that the t0, t1 that
would have been generated by Am are equal is 1

2 . Intuitively, this should mean



Algorithm 3 D(s0, s1, y0, y1)

t′0
$← Ag(s0, y0)

t′1
$← Ag(s1, y1)

if t′0 = t′1 then
return Repetition

else
return Independent

end if

the probability that D correctly guesses “independent” is just 1
2 . This is in fact

the case, because

Pr[D correctly guesses independent]

=
1

2
Pr[D guesses independent|t0 = t1] +

1

2
Pr[D guesses independent|t0 6= t1]

=
1

2

(
2

(
1

2
+ ε

)(
1

2
− ε
))

+
1

2

((
1

2
+ ε

)2

+

(
1

2
− ε
)2
)

=
1

2
.

Thus the probability that D is correct is 1
2 + ε2.

Corollary 3. The scheme outlined above is PRIV1 secure.

Proof. In [BFOR08], they show that BB-CSS security (Comparison based Se-
mantic Security against Balanced Boolean side information) implies B-CSS se-
curity (Comparison based Semantic Security against any Boolean side informa-
tion), which in turns implies A-CSS which is security against Arbitrary side
information. A-CSS security is the terminology in [BFOR08] for PRIV1 secu-
rity. The only thing to do is to notice that both proofs in [BFOR08] go through
unchanged when the adversaries are restricted to be uniform adversaries.

Remark. We note that if the function family F = (G,F ) were assumed to be
Decisional Correlated Product (DCP) secure when the inputs were chosen not
uniformly, but simply from some high min-entropy distribution, the same proof
would go through to show PRIV1 security against any (not necessarily uniform)
adversary Am.

Remark. On the other hand, there is an example (outlined below) of a PRIV1
secure uniform DE scheme that is not n-DCP secure (treating the public key as
the seed, key generation as G, and encryption as F ), where n is the size of the
message. This does not preclude the construction of a DCP secure family from
such a DE scheme, but instead shows that these two notions are not definition-
ally equivalent. To see that a PRIV1 secure DE need not be n-DCP secure, take
any IND-CPA secure (randomized) encryption scheme, and transform it into a
“leaky” scheme that leaks the first bit of randomness used in encryption by sim-
ply taking an extra dummy bit of randomness and revealing it in the ciphertext.



The construction of uniform DE from one-way trapdoor permutations given in
[BFOR08] makes use of an IND-CPA secure (randomized) encryption scheme.

Without fully reproducing the [BFOR08] construction, we only need to point
out that the first bit of randomness is the hard-core predicate defined by the
dot product of the message and a vector from the public key. If the “leaky”
encryption of the same message under n different public keys is revealed, the
message can be reconstructed using linear algebra. This immediately breaks
(Decisional) Correlated Product security.

8 Conclusion and Open Problems

In this work we suggested a new primitive, the decisional variant of Correlated
Product (DCP) secure functions. We argue that this primitive has many ap-
pealing properties. To this end, we show a parallel between Correlated Product
security and DCP and the Discrete Log Problem and its decisional variant DDH.
We also show how to construct simple primitives from DCP such as PRGs and
IND-CPA secure encryption.

Our main results examine two main cases: DCP functions with trapdoor and
without trapdoor. We show that DCP secure functions (and CP secure func-
tions) without trapdoor are equivalent to one-way functions. This is a somewhat
surprising result since notions of correlated product security appear to be much
stronger than simple one-wayness. When examining DCP secure functions with
trapdoor, we show that they are implied by Lossy Trapdoor Functions, and that
DCP secure functions are immediately a Deterministic Encryption scheme.

An interesting line of future research would be to develop further construc-
tions of DCP secure functions with trapdoor. A second line of research would be
a closer examination of the connections between DCP security and deterministic
encryption. For example, we know that DCP secure functions are deterministic
encryption, but it would be interesting to see how the security is affected by
auxiliary information, e.g. along the lines of [BS11].
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