
Multi-Location Leakage Resilient Cryptography

Ali Juma1?, Yevgeniy Vahlis2, and Moti Yung3

1 Mozilla Corporation ajuma@mozilla.com
2 AT&T Security Research Center evahlis@att.com

3 Google and Columbia University my123@columbia.edu

Abstract. Understanding and modeling leakage in the context of cryp-
tographic systems (connecting physical protection of keys and crypto-
graphic operation) is an emerging area with many missing issues and
hard to understand aspects. In this work we initiate the study of leakage
out of cryptographic devices when the operation is inherently replicated
in multiple locations. This setting (allowing the adversary access to leak-
age at different locations) arises naturally in cases like protocols, where
different parties activate the same cryptographic function, or in the case
of a global service providers (like cloud operators) which need to repli-
cate the cryptographic function to allow for accessible and responsive
services. We specifically deal with the theoretical setting of “leakage re-
silient cryptography,” (modeling leakage as a bound associated with al-
gorithmic steps), and in the most general model of continual leakage on
memory, randomness (and thus computation) with periods of operation
and refresh of private keys between them.
We first investigate public-key cryptography, and construct a multi-
location leakage resilient signature scheme (with unbounded number of
locations) with optimal (i.e., total n(1− o(1)) leakage) in a period, and
O(logn) leakage during updates (n is the key size). The new crucial is-
sue behind our scheme is how to maintain leakage at each location at
the level of key leakage in the single location variant, even under par-
allel adaptive leakage at the different locations. We then construct a
shared-symmetric-key authenticated session protocol that is resilient to
leakage on both the sender and the receiver, and tolerates O(logn) bits of
leakage per computation. We construct and utilize a single-location pseu-
dorandom generator which is the first to tolerate continual leakage with
only an efficient pseudorandom function as a primitive component. This
protocol highlights the importance of protocol level “per message syn-
chronization” against leakage adversaries. Interestingly, the construction
is secure in spite of the entire randomness used in the refresh processes
being publicly available.

1 Introduction

When a cryptographic function/ service is performed at more than one location,
and an adversary attacks it, if the adversary has only black-box access to it

? This work was done while at the University of Toronto

and the scheme is stateless or state-synchronized (for correctness), then from
security point of view, it does not seem to matter (i.e., and it does not require
a new model) whether the scheme is operated from a single location or multiple
ones (since the black box information revealed in a sequence of cryptographic
application is insensitive to the location). However, when leakage is allowed to
be part of the outputs, the adversary gets this added side-channel information
[23] and as a result, may have different power, depending on whether the leakage
is at a single location or if it comes from multiple locations.

The above observation is the motivation to this work, since the sensitivity
to multiple location leakage is important to various systems settings, and we
investigate this issue from the “leakage resistance cryptography” perspective.
Note that multi location is natural when two parties in a protocol operate the
same cryptographic service or when the same function is inserted in various
devices (e.g., different cloud servers, different mobile devices within the same
organization), etc.

The theme of this work is the design of secure cryptosystems under the exis-
tence of multiple locations. We consider both public key systems: in particular a
signature scheme (while the methods we design may apply in more generality to
encryption, etc.), and symmetric key systems: in particular session authentica-
tion protocols providing sender continual authentication to the receiver, based
on shared pseudorandomness. We consider the model of continual leakage with
no relaxation, i.e., where the leakage function is not only a result of computa-
tion but can be a function of the memory (state) and the randomness (i.e., the
computation) as well. In these models, the parties need to go through periods
of operation where leakage is given to the adversary and once the accumulated
amount of leakage is large enough, the private keys are refreshed between periods
(obviously if refresh is not possible, continued leakage may reveal over time the
entire key bits, say one by one). We note that the above model is the strongest,
compared with more limited types of leakage models that have been consid-
ered as well in the literature (such as: leakage in the presence of leakage-free
components, leakage where “only computations leak,” and only memory leakage
(without leaking the randomness used in the cryptographic computation)).

1.1 Multi-Location Leakage Resilient Signature

Since we consider continual leakage we have to make sure that we have a scheme
where the total leakage in a period is only a fraction of the state (if the state is
l bits long we can allow at most l(1− o(1)) bits of information about the secret
to be given to the adversary. Indeed, a few recent schemes have achieved such
leakage in a period, allowing logarithmic leakage in the refresh process (e.g. [8,
5]). In this version we concentrate on the signature scheme of [28].

In a multi-location setting, the scheme is replicated in various locations to
allow better accessibility o the signing service, say, and necessarily these locations
contain related key information (since the verification key is identical regardless
of location). If the adversary collects enough information at different locations,
each of which by itself is too small to break the key, the cumulative effect may

nevertheless be that the adversary is in possession of enough bits to break the
key (e.g., may collect all bits of a single replicated key). Thus, in the naive
solution (which allows very limited leakage per location), we may restrict the
amount of leakage at each location to be smaller than the total allowed per
single location divided by the number of locations. This approach as we will
show works sometimes, but sometimes fails!

We then turn into the challenging problem of constructing direct multi-
location leakage resilient scheme which allows large leakges per location. Our
starting point is a recent signature secure against continual leakage, where the
crux behind this scheme is the fact that a key within a period is hidden within
a large set of keys and the leakage within a period is simulatable by leakage cor-
related with a random value rather than the key [28]. Then, the key is refreshed
to another value within a large set of keys. A crucial point behind extending the
signature to a multi location scheme which is refreshed at all locations periodi-
cally (when a bound on signatures at any single location is reached) is extension
of the space from which private keys are drawn, so that multiple location leakage
will also be simulatable by random values taking the two dimensions of variety
of keys, namely, “periods” and “locations,” into account when building the space
of keys.

1.2 Multi-Location Symmetric-Key Authentication

We next design a session authentication protocol from symmetric key whose
goal is to continuously authenticate the sender to the receiver. A natural way of
doing it is to base this on a stream cipher (i.e., a pseudorandom generator) which
is run by both parties. Dziembowski and Pietrzak [12] and Pietrzak [31] gave
leakage-resilient stream ciphers in the only-computation-leaks model (where the
adversary gets a bounded size (logarithmic, in fact) leakage bits each time). Their
seminal constructions use two pieces of memory connected by a public channel,
and computation alternates between the two pieces. For an authenticated session
we have two parties, a sender A and a receiver B, where A is sending message
pieces to B, and we wish to ensure that an adversary cannot modify or reorder
messages pieces, or insert message pieces of his own without this being detected
by B. The adversary obtains leakage from both parties. The existing security
definitions of leakage-resilient stream ciphers do not deal with this case at all.
In fact, in the existing ciphers, an adversary that can cause parties A and B to
“get out of sync” can attack the system and eventually learn the cipher’s entire
state. This suggests that we need a way to somewhat synchronize the stream
cipher computations performed by the two parties.

Our construction, in turn, builds on Pietrzak’s stream cipher construction
[31], and uses a single piece of memory along with a source of strings that are
chosen according to distribution of high min-entropy but are not kept secret
(public min-entropy source), and are rather communicated between the parties.
Our stream cipher uses a pseudo-random function generator Fs : {0, 1}n →
{0, 1}2n. The initial secret state is randomly chosen K0 ∈ {0, 1}n. For each
i > 0, the i-th output is produced and the state is updated. A authenticates the

message using the output, while B generates the next round high entropy string
and sends it back for synchronization and update to A. Of course, the adversary
controls the public channel and may insert strings of his choice (purporting to be
sent by the other party) to induce a party to continue its computation; we show
that such tampering by the adversary will be detected by B when it attempts to
verify the authenticity of the message pieces he receives; the construction allows
continual leakage of logarithmic bits per round.

Remark: We note that Dodis et al [8] present a signature scheme which
is multi-location leakage resilient (Theorem 7.6 in [8]), although they do not
explicitly call it such. However, their scheme does not allow the adversary to
obtain leakage on the randomness of signing. In contrast, in this work we define
and present a signature scheme with multi-location resilience to full leakage (in-
cluding signing randomness), and provide several generic theorems for obtaining
multi-location leakage bounds for schemes that were intended to support only a
single location.

1.3 Related Work

Side channel attacks [23] have often been shown to have devastating effects on the
security of cryptographic schemes (some recent attacks that specifically pertain
to general memory leakage are described in e.g., [17, 32, 36], and others). As a
result a significant effort has been wielded to design cryptographic schemes that
provably withstand large classes of such attacks.

The influential theoretical works of Ishai, Sahai, and Wagner [19] and Micali
and Reyzin [30] enable us to construct schemes under the “any computation,
and only computation, leak information,” model, which has led to many recent
achievements. In contrast, memory leakage [1] (which, in some sense, can be
traced to the original works of Shamir [34] and Rivest [33]) are produced as a
function of the memory state itself. This type of leakage is orthogonal to com-
putational leakage: an adversary can get memory leakage by probing memories
even if the memories are not currently used in any computation (e.g., the cold-
boot attacks [17]). For example, the scheme of [9, 8] is secure against memory
attacks (even continual), but assumes that the signing process leaks no infor-
mation. The most general model allows full leakage which includes leakage both
from processing and memory.

The most demanding case for designing digital signature schemes seems to be
the case of adaptive and continual full leakage that is available to the adversary
from both computational and memory sources (without protection of sub-steps of
computations). However, till recently there are no known schemes which achieve
a digital signature scheme in this adversarial setting in the standard model.
and without further relaxations. All known schemes with full (memory and pro-
cessing) leakage either did not have a key update algorithm and thus are not
continual (cf., [22]), have a key update algorithm but require some restrictions
(e.g., [3, 2] which requires an additional leakage-free master key), or are based on
the random oracle model (with a relaxation of the definition of a “time period”)
[5]. Faust et al [13] construct signature schemes resilient to continual leakage in

the only computation leaks model. Recently, two schemes have appeared with
continual full leakage [28, 4].

In the private key setting, Dziembowski and Pietrzak [12], and Pietrzak [31]
describe the first stream ciphers resilient to continual leakage in the only com-
putation leaks model. Our private key construction uses the works of [12, 31] as
a starting point. Many other schemes dealt with the case of designing pseudo-
random generation [12, 31, 39, 11].

Faust et al [14] give a general compiler using secure hardware that protects
an arbitrary circuit against continual leakage that can be modeled as a shal-
low (AC0) boolean circuit. Juma and Vahlis [20], and separately Goldwasser
and Rothblum [16], give compilers that protect any algorithm against contin-
ual leakage (without complexity restrictions), using secure hardware. Recently,
Dodis and Pietrzak [11] show how to build continual leakage resilient pseudoran-
dom functions that are secure against non-adaptive leakage. Finally, Lewko et al
[26, 25] show how to achieve leakage resilient Identity Based Encryption (IBE)
and super-logarithmic leakage on key updates in signatures, and Chow et al [7]
show an efficient leakage resilient IBE. A separate line of work studies strong
leakage resilience in information theoretic implementation settings [35].

Finally, we mention a parallel rich line of work on tamper resistant cryptog-
raphy [6, 27, 24, 29, 18, 15]. Here, an adversary has the ability to modify, rather
than observe, the state of the cryptographic primitive. Tamper resistant schemes
provide security guarantees, even when the secret state is transformed through
a tampering function adversarially chosen from a large class of functions. We
remark that the techniques seem to be quite different from the ones employed
to achieve leakage resilience. Indeed, studying the relation between tamper re-
sistance and leakage resistance is an important direction.

Roadmap. In Section 2 we present our definitions of multi-location continuous
leakage resilient signatures, and constructions. In Section 3 we present a shared
key authenticated session protocol that is resilient to continuous leakage, and in
Section 4 we present our variant of the Dziembowsky-Pietrzak leakage resilient
stream cipher [12].

Notation. We write PPT to denote Probabilistic Polynomial Time. When we
wish to fix the random bits of a PPT algorithm M to a particular value, we
write M(x; r) to denote running M on input x and randomness r. We write
timen(M) to denote the running time of algorithm M on security parameter n.
We use x ∈R S to denote the fact that x is sampled according to a distribution
S. Similarly, when describing an algorithm we may write x ←R S to denote
the action of sampling an element from S and storing it in a variable x. For a
randomized algorithm M , we denote by Rnd[M] the space of its random coins.
Namely, if M uses at most nM random bits in any execution, then Rnd[M] =
{0, 1}nM .

2 Multi-Location Leakage Resilience in the Public Key
Setting

In a multi-location setting, an adversary (or perhaps multiple colluding adver-
saries) simultaneously mount side channel attacks on multiple devices. When
the devices contain unrelated data, and perform unrelated computations, such
an attack should be viewed as a single side channel attack on each of the devices,
since none of the other devices can provide any information that would help the
attacker. The problem becomes much more serious when the devices contain
correlated secret data. As an extreme case, consider a situation where multiple
identical copies of a secret key are stored on several servers. Even if the crypto-
graphic scheme where the key is used remained secure when the key is partially
leaked, an adversary in a multi-location setting may be able to reconstruct the
entire key from partial leakage from each of the locations. In this scenario, surely
all reasonable security properties of the scheme can be broken. One possible ap-
proach to dealing with this apparent limitation is to restrict the total amount
of leakage that the adversary can obtain across all copies of the key. Indeed, for
some primitives (such as encryption) we show a straightforward reduction from
multi-location leakage resilience with a bound on the total amount of leakage to
single location leakage resilience. We note that, perhaps surprisingly, the same
straightforward reduction fails for other primitives, such as signature schemes.

Note however that ideally, we want to obtain transformations where the
leakage per location remains as large as the leakage bound in the single location
setting. In Section 2.1 we give constructions of signature and encryption schemes
where the leakage bound per location does not decrease with the number of
different locations that maintain an equivalent copy of the key.

Overall, we note that extending multi-location leakage resilience to the con-
tinuous setting introduces several subtle challenges that do not appear when
considering leakage from only a single location. Before describing these issues,
we describe (informally) a generic transformation of a continuous leakage re-
silient signature scheme into a multi-location variant of itself. This will serve
two purposes: firstly, it will help us illustrate the definitional issues that arise
in multi-location continual leakage resilience. Secondly, our actual constructions
and transformations can all be viewed as variants of the general approach that
we describe here.

Consider a signature scheme that is resilient to continual leakage in the sin-
gle location setting. As we have already discussed, such a scheme must have a
key refresh procedure (otherwise, an adversary can eventually obtain the entire
key). Moreover, suppose that the refresh procedure produces a new signing key
chosen uniformly from the set of all valid keys that correspond to the public ver-
ification key that is generated once at the beginning. Now consider the following
initialization procedure for an n-location signature scheme:

1. A public-private key pair (vk, sk) is generated using the key generation
procedure of the single location scheme.

2. The key refresh procedure is used to produce n random signing keys sk1, . . . , skn,
all corresponding to the verification key vk.

3. Location i receives key sk i. Whenever location i receives a request to update
the key, it runs the refresh algorithm on its own key ski.

Essentially, each location maintains an independently chosen random signing
key for vk, and when the leakage bound is reached for that specific location,
the key is randomized. When n = 1, this is exactly what happens in the single
location setting (and thus for n = 1 the security of the scheme trivially follows
from its single location security). Consider now what happens when n > 1: at
first glance it may seem that, because the keys at the different locations are
independently chosen, leakage from one location would be completely useless in
attacking another location. This turns out to be false for multiple reasons.

2.1 Signature Schemes

A signature scheme with key update SGN consists of four algorithms Kg, Sig,
Ver, and Update. The inputs and outputs of Kg, Sig, and Ver are the same as in
standard signature schemes. Update takes as input a secret key and a public key
and outputs a new element of the secret key space. SGN = (Kg,Sig,Ver,Update)
has to satisfy the following property:

(Correctness) For any integers n,m, i ≥ 0 and any message M , if we com-

pute (pk , sk
(0)
1 , . . . , sk (0)

m)← Gen(1κ,m), sk0 ← sk
(0)
i , sk1 ← Updatepk (sk0),

. . ., skn ← Updatepk (skn−1), and σ ← Sig(skn,M), Ver(pk ,M, σ) = 1 al-
ways holds.

We now define multi-location leakage resilience for signatures. Intuitively, the
definition is a natural extension of the definitions of leakage resilient signatures
that appeared in [28, 5, 8, 4, 10]. Intuitively, the adversary can submit signature
queries and leakage queries that are directed at a specific location. For example,
the adversary may submit a query that is interpreted as “Have the ith signer
sign message m, and obtain side-channel information f(ski, r), where r is the
randomness used during signing, along with the resulting signature”. The other
types of queries are location specific signature queries without leakage (to allow
longer periods between updates, as discussed in the introduction), and update
queries. For update queries, we distinguish between synchronized updates where
all locations refresh their keys simultaneously and unsynchronized updates where
the adversary instructs the signer at some location i to refresh his key. Finally,
the adversary’s goal is to produce a valid signature of a message that he has not
submitted for signing in any of his queries.

Experiment ExpMLSIG(1n,A,SIG):

Setup The adversary submits an integer m, and the challenger runs Gen(1n,m) to
obtain a public verification key pk , and m location secret keys sk1, . . . , skm.

Queries A submits queries of the following three types:

Update queries.
Unsynchronized setting. Update queries of the form (update, f, i) where f is

a circuit satisfying |f(sk i, R)| ≤ ρU (|sk i|+ |R|) for any R. If Li + |f(sk i, R)| ≤
ρM |sk i| holds, the challenger chooses R

$← Rnd[Update] randomly, computes
sk i ← Updatepk (sk i, R), sends f(sk i, R) back to A, and sets Li ← |f(sk i, R)|.
Otherwise, the challenger aborts.

Synchronized setting. Update queries of the form (update, f1, . . . , fn) where
|fi(sk i, R)| ≤ ρU (|sk i| + |R|) for any R. If Li + |f(sk i, R)| ≤ ρU |sk i| holds,

the challenger chooses R1, . . . , Rn
$← Rnd[Update] randomly, computes sk i ←

Updatepk (sk i;Ri), sends (fi(sk i, Ri))
n
i=1 back toA, and sets Li ← |fi(sk i, Ri)|.

Otherwise, the challenger aborts.

Memory leak queries (leak, f, i), where f is a circuit. If Li + |f(sk i)| ≤ ρM |sk i|
holds, the challenger sends f(sk i) to adversary and resets Li ← Li + |f(sk i)|.
Otherwise, the challenger aborts.

Signing queries (sig,M, f, i) where f is a circuit with |f(sk i, R)| ≤ ρS(|sk i|+
|R|) for any (sk i, R). The challenger chooses R← Rnd[Sig] randomly, computes
σ ← Sig(sk i,M ;R) and sends (σ, f(sk i, R)) back to A.

Challenge Assuming the challenger did not abort, A outputs (M∗, σ∗). It succeeds if
Ver(pk ,M∗, σ∗) = 1 holds and A never made query (sig,M∗, i) for any i.

Definition 1 Let ρG, ρU , ρM , and ρS be elements of the real range [0, 1]. We say
that SGN = (Gen, Sig,Ver,Update) is (ρG, ρU , ρM , ρS)- EU-CMA-CML secure
(stand for existentially unforgeable under chosen message attack in the CML
model) if no PPT adversary A succeeds in the experiment of ExpMLSIG with
non-negligible probability. Here Rnd[Algo] denote the set of randomnesses for
algorithm Algo.

In the full version of this paper [21] we show several negative results regarding
generic transformations of single to multi location signature schemes, as well as
a simple transformation that does work, under some restrictions on the base
signature scheme. We now turn to a direct construction that achieves optimal
leakage bounds.

Direct Multi-Location Leakage Resilience The simple generic transforma-
tion (described in [21]) may not be satisfactory if the number of locations is
very large. For instance, for a key of length 256 bits, even an optimally leakage
resilient scheme that is transformed to a multi-location setting with more than
256 locations would be able to withstand less than one bit of leakage per location
before the key has to be refreshed. This would require an extremely high refresh
rate if even a small (but unknown) number of locations are suspected to leak
information.

To address this, we turn to constructing signature and encryption schemes
directly, that will withstand large amounts of leakage per location, and will allow
the total amount of leakage among different locations to exceed the length of
the key between updates. At the core of our constructions is a strengthening of
the Leakage Resilient Subspaces Lemma from [5]. On a high level, the BKKV

lemma can be described as follows: let K be an n-dimensional vector space,
and let Z1, . . . , Zl, 1 ≤ l < k be random elements in K. Then, no adversary
(even a computationally unbounded one) can distinguish between leakage from
random samples from Span(Z1, . . . , Zl) and random samples from K. The key
difference between the lemma in [5] and the one we present here is the ability of
the adversary to leak on samples in parallel rather than sequentially: we show
that even if the adversary breaks his leakage on a given sample into several
rounds, where at each round he chooses the leakage function adaptively based
on leakage from other samples, he is still unable to distinguish between random
samples from K and from the l dimensional subspace. We next describe the
parallel leakage resilient subspace game:

Parallel-leakage resilient subspaces. Let b ∈ {0, 1}, n, `,m, λ be integers satisfy-
ing n ≥ ` > m ≥ 2, p be a prime, and K be a n-dimensional vector space over
Zp. The following is the parallel leakage resilient subspace game, played with a
computationally unbounded adversary D:

1. Let Z1, . . . , Z`
$← K. Initially a set Γ = {Γ1, . . . , Γm} of size m is sampled

uniformly at random from K if b = 1 and from Span(Z1, . . . , Z`) if b = 0.
2. The adversary can make leakage queries: (leak, i, F) where i ∈ [m] and F :
K → {0, 1}λF , PF ⊆ P; and refresh queries: refresh. For a leakage query, the
adversary is given F (Γi), as long as

∑
F λF ≤ λ where the sum is over all

the leakage functions F that are applied to Γi between two refresh queries.
When the adversary submits a refresh query, (Γ1, . . . , Γm) are assigned a
random values from K if b = 1 and random values from Span(Z1, . . . , Z`) if
b = 0.

3. Finally, D is given Z1, . . . , Z`, and it outputs a bit b′.

We denote by ExpLRS(b,D) the above experiment with an adversary D, and
with the bit b specified as a parameter. The output of ExpLRS(b,D) is defined
to be the output of D at the end of the experiment. We now state the central
parallel leakage resilient subspaces lemma:

Lemma 1. Let D be an adversary for the above game. Then, for all δ ≥ 0, if
2λtotal ≤ p`−m−1δ2/q2, then

|Pr[ExpLRS(0,D) = 0]− Pr[ExpLRS(1,D) = 0]| ≤ δ.

The proof of Lemma 1 appears in the full version of this paper [21].

2.2 Construction

We present a simple adaptation of the signature scheme of [28] to the multi-
location setting. The modified construction allows us to achieve optimal leakage
resilience, even when multiple versions of the key leak simultaneously. That is,
the total amount of leakage across all locations between updates significantly
exceeds the length of a single complete key (this is in contrast to the simple

generic transformation, where the amount of leakage per location decreases as
the number of locations increases to guarantee that the total amount does not
exceed the size of a key). The changes required to the scheme and analysis are
quite minimal. Indeed, the only substantial modification to the analysis is the use
of the parallel leakage-resilient subspaces lemma (Lemma 1). For completeness,
we describe the complete scheme here, and give a high level overview of the
necessary modifications to the security analysis.

Our construction relies on the Symmetric External DDH assumption in bi-
linear groups (details of the assumption are given in [21]). The description of our
scheme is as follows. Let n ≥ 3 and m be integers. Let Setup be a polytime algo-
rithm that generates a group description gk = (p,G,H,T, e), as discussed above,
where e : G×H→ T. For H = (H0,H1, . . . ,Hm) ∈ (H2)m+1 and M ∈ {0, 1}m,
we define a Water’s hash function [38] h as

hgk (H,M) = H0 +
∑
k∈[m]

MkHk,

where Mk is the k-th bit of M . Let Prf and Vrf be the proof algorithm and the
verification algorithm of the Groth-Sahai proof system (reviewed in [21]). Our
signature scheme SGN = (Kg,Update,Sig,Ver) works as follows.

Key Generation Gen(1κ,m): gk ← (p,G,H,T, e)← Setup(1κ), G← H2,H ←
(H0,H1, . . . ,Hm)← (H2)m+1.

Randomly select A
$← G, Q

$← H, and a, q
$← Znp satisfying 〈a, q〉 = 0

and compute A ← aA, Q ← qQ. Select W [0] $← Hn randomly, compute
T ← e(A,W [0]). Then, the location specific keys are generated as: choose

si
$← Zp, and set W

[0]
i ← W [0] + siQ. Outputs pk ← (gk ,G,H,A, T,Q)

and location specific private keys (sk
[0]
i)i∈[m].

Key Update Updatepk (sk [i]): Parse pk and sk [i] as (gk ,G,H,A, T,Q) and W [i]

respectively, select s
$← Zp randomly, and output sk [i+1] ← W [i+1] ←

W [i] + sQ.
Signing Sig(sk [i],M) for M ∈ {0, 1}m: Parse pk and sk [i] as (gk ,G,H,A, T,Q)

and W [i]. Compute HM ← hgk (H,M), set crsM ← (G,HM), and σ ←
Prf(gk , crsM , (A, T),W [i]) and output σ.

Verification Ver(pk ,M, σ): Parse pk as (gk ,G,H,A, T,Q), compute HM ←
hgk (H,M), and set crsM ← (G,HM). If Ver(gk , crsM , (A, T), σ) = 1, out-
put 1. Otherwise, output 0.

Theorem 2. For any constants c > 0 and any γ = Θ(1/
√
κ), the proposed

scheme SIG is (ρG, ρU , ρM , ρS)-EU-CMA-CML secure under the SXDH assump-
tion. Here

(ρG, ρU , ρM , ρS) =

(
c · log k

n log p
,
c · log k

n log p
, 1− 2 + γ

n
, 1− 2 + γ

n

)
.

We can achieve the fraction 1− o(1) of leakage in signing and in memory by
setting n = κ.

Overview of the modifications to the analysis of the MTVY scheme. Essentially
the analysis of the above scheme proceeds similarly to the analysis of the original
(single-location) variant of [28]. The main modification to the argument is to
replace the use of the original leakage resilient subspace lemma from [5] with
our parallel version, given by lemma 1. Specifically, in the proof of [28, Lemma
9] we replace the use of [28, Proposition 10] with our Lemma 1. Once we use
Lemma 1, the subspace W remains information theoretically hidden from the
adversary throughout the security, and therefore any successful forgery would
yield a successful attack on the Independent Pre-Image Resistant Hash Function
described in [28, Section 3]. We leave the full details of the analysis to the full
version of this paper.

3 Authenticated session protocols

Next, we describe our definition and construction of a leakage resilient authen-
ticated session protocol in the private key setting.

3.1 Security definition

The intuitive goal of an authenticated session protocol involving two parties, the
sender A and the receiver B, where A is sending message pieces m1,m2, . . . ,
to B, is that B can verify that the message pieces he receives are indeed those
sent by A, in the same order. This should hold even when all message pieces
mi sent by A are adversarially chosen. Of course, the adversary has complete
control of the public channel over which A and B are communicating. This
means that he controls the timing and contents of all communication. In the
leakage-resilient case, we strengthen the adversary by allowing him to obtain
leakage on both parties. We are interested in the continual leakage setting, where
the adversary obtains some bounded amount of leakage on each computation
by each party but the total amount of leakage obtained by the adversary over
the course of the execution of the protocol is unbounded. The leakage on each
computation is computed by an adversarially-chosen function is applied to the
inputs and randomness involved in the computation along with the entire state
of the party performing the computation. This means that we do not rely on
the only-computation-leaks assumption. In our case, we further strengthen the
adversary by giving him all the entropy used by each party after the initial state.
Equivalently, we require that A and B are deterministic but each have access to
a (separate) source of public min-entropy; whenever a party obtains a string its
source of high min-entropy strings, this string is also given to the adversary.

We begin by formally defining session protocols (we restrict our definition to
protocols as ours with two flows per message, but the idea can be extended).

Definition 3 (Shared-private-key session protocol with public min-entropy)
A shared-private-key session protocol with public min-entropy (which we will
henceforth simply refer to as a session protocol) consists of deterministic poly-
time algorithms EvalB1 (producing message from B), EvalA (receiving the emssage

from B), and EvalB2 (producing the message received from after evaluation),
polynomials sB(n), `B(n), sA(n), and `A(n), and distribution ensembles {ZAn }
and {ZBn } that satisfy the following properties for all n ∈ N:

1. ZAn is a distribution over strings of length sA(n) such that H∞(ZAn) ≥
log2(n). Similarly, ZBn is a distribution over strings of length sB(n) such
that H∞(ZBn) ≥ log2(n).

2. EvalB1 takes as input KB ∈ {0, 1}n and rB ∈ {0, 1}sB(n), and outputs
β ∈ {0, 1}`B(n) and K ′B ∈ {0, 1}n such that β has prefix rB.

Informally, the strings KB and K ′B are the state of party B before and
after it executes EvalB1, rB is the public min-entropy used by EvalB1, and
β is a flow from party B to party A.

3. EvalA takes as input KA ∈ {0, 1}n, m ∈ {0, 1}n, β ∈ {0, 1}`B(n), and
rA ∈ {0, 1}sA(n), and outputs e ∈ {0, 1}`A(n) and K ′A ∈ {0, 1}n such that e
has prefix rA.

Informally, the strings KA and K ′A are the state of party A before and
after it executes EvalA, m is a message piece that party A would like to
send to party B, β is a flow from party B to party A, rA is the public
min-entropy used by EvalA, and e is a flow from party A to party B.

4. EvalB2 takes as input KB ∈ {0, 1}n, rB ∈ {0, 1}sB(n), and e ∈ {0, 1}`A(n),
and outputs either m ∈ {0, 1}n and K ′B ∈ {0, 1}n or a special message
Fail.

Informally, the strings KB and K ′B are the state of party B before and
after it executes EvalB2, rB is the public min-entropy used by the immedi-
ately preceding run of EvalB1, e is a flow from party A to party B, and m
is a message piece received by party B.

5. For all K ∈ {0, 1}n, every polynomial p(n), all rA,1, rA,2, . . . , rA,p(n) ∈
{0, 1}sA(n), all rB,1, rB,2, . . . , rB,p(n) ∈ {0, 1}sB(n), and all sequences of
message pieces m1,m2, . . . ,mp(n) ∈ {0, 1}n, if we define KA,0 = KB,0 = K
and, for 1 ≤ i ≤ p(n), we iteratively define KA,i,K

′
B,i,KB,i, ei, βi,m

′
i in

the following manner:

(βi,K
′
B,i)← EvalB1(KB,i−1, rB,i)

(ei,KA,i)← EvalA(KA,i−1,mi, βi, rA,i)

(m′i,KB,i)← EvalB2(K ′B,i, rB,i, ei)

then m′i = mi for all 1 ≤ i ≤ p(n).

Informally, this means that in the absence of an adversary, the message
pieces output by party B are exactly those sent by party A, in the same
order.

We now define the security experiment for leakage-resilient authenticated
session protocols. The adversary will be a family of polynomial-size circuits C =
{Cn}. Letting λ : N → N be a function, we will say that an adversary C is

λ(n)-bounded if the leakage functions produced by Cn over the course of the
security experiment each have output length λ(n). Fixing a session protocol

(EvalB1,EvalA,EvalB2, sB(n), `B(n), sA(n), `A(n), {ZAn }, {ZBn })

a function λ : N → N, a λ(n)-bounded adversary C = {Cn}, and n ∈ N, the
security experiment proceeds as follows.

A string K ∈ {0, 1}n is randomly chosen. We define KA,0 = KB,0 = K.
Then, Cn is allowed to run EvalA, EvalB1, and EvalB2 in the following manner.
Cn may run these algorithms as many times as he wishes and in any order of
his choice as long as for every i > 0, the (i + 1)-st invocation of EvalB1 does
not occur before the i-th invocation of EvalB2, and the i-th invocation of EvalB2

does not occur before the i-th invocation of EvalB1. (This restriction captures
the fact that even though the adversary controls the public channel, party B will
still alternate between executing EvalB1 and executing EvalB2.) We now describe
what happens when the adversary Cn runs each algorithm.

For i > 0, the i-th invocation of EvalB1 proceeds as follows. Cn produces the
description of a circuit fB1,i : {0, 1}n×{0, 1}sB(n) → {0, 1}λ(n). Then, rB,i ←
ZBn is chosen. Next, (βi,K

′
B,i)← EvalB1(KB,i−1, rB,i) and leakB1,i ← fB1,i(KB,i−1, rB,i)

are computed. Finally, Cn is given βi and leakB1,i.

For i > 0, the i-th invocation of EvalA proceeds as follows. Cn produces
mi ∈ {0, 1}n and β′i ∈ {0, 1}`B(n), and the description of a circuit fA,i :
{0, 1}n × {0, 1}sA(n) → {0, 1}λ(n). Then, rA,i ← ZAn is randomly chosen.
Next, (ei,KA,i)← EvalA(KA,i−1,mi, β

′
i, rA,i) and leakA,i ← fA,i(KA,i−1, rA,i)

are computed4. Finally, Cn is given ei and leakA,i.

For i > 0, the i-th invocation of EvalB2 proceeds as follows. Cn produces
a string e′i ∈ {0, 1}`A(n) and the description of a circuit fB2,i : {0, 1}n →
{0, 1}λ(n). Then, (m′i,KB,i)← EvalB2(K ′B,i, rB,i, e

′
i) and leakB2,i ← fB2,i(K

′
B,i)

are computed5; if EvalB2 outputs Fail, the experiment ends immediately.
If the i-th invocation of EvalA has previously occurred and m′i = mi, Cn is
given leakB2,i; otherwise, the experiment ends immediately.

Say that the final invocation of EvalB2 is the j-th invocation. Define qC(n) to
be the probability that the j-th invocation of EvalB2 does not output Fail and
either EvalA has been invoked fewer than j times or m′j 6= mj .

Definition 4 (Leakage-resilient authenticated session protocol) Let λ :
N→ N be a function. A session protocol is a λ(n)-leakage-resilient authenticated
session protocol if for every λ(n)-bounded adversary C as above, we have qC(n) ≤
1/nd for all d and sufficiently large n.

4 It is not necessary to provide mi or β′i as inputs to fA,i since Cn chose these values
himself and hence he can simply hardcode them into fA,i if he wishes.

5 It is not necessary to provide rB,i to fB2,i since this was previously provided to Cn

as the prefix of βi, and it is not necessary to provide e′i to fB2,i since Cn chose this
value himself.

3.2 Our construction

In our construction, only party B requires a source of public min-entropy. Ac-
cordingly, to simplify notation, we use Zn rather that ZBn to denote the high
min-entropy distribution used by B.

Given pseudo-random function generators F : {0, 1}n × {0, 1}n → {0, 1}2n
and F ′ : {0, 1}n × {0, 1}n → {0, 1}n, and given a distribution ensemble {Zn}
such that for all n, Zn is a distribution over {0, 1}n and H∞(Zn) ≥ log2(n), we
construct a leakage-resilient authenticated session protocol SP as follows.

EvalB1: On input (KB , rB), where KB ∈ {0, 1}n and rB ∈ {0, 1}n, EvalB1 lets
K ′B = KB and β = rB , and outputs (β,K ′B).

EvalA: On input (KA,m, β), where KA,m ∈ {0, 1}n and β ∈ {0, 1}n, EvalA
computes K ′A||XA ← FKA

(β) (where |K ′A| = |XA| = n) and α = F ′XA
(m),

lets e = 〈m,α〉, and outputs (e,K ′A).
EvalB2: On input (KB , rB , e

′), where KB ∈ {0, 1}n, rB ∈ {0, 1}n, and e′ ∈
{0, 1}2n, EvalB2 parses 〈m′, α′〉 ← e′, computes K ′B ||XB ← FKB

(rB) (where
|K ′B | = |XB | = n), and α = F ′XB

(m′). If α′ = α, EvalB2 outputs (m′,K ′B);
otherwise, EvalB2 outputs Fail.

It is not hard to see that SP satisfies the definition of a session protocol. The
idea is that parties A and B both run a stream cipher (see Section 4) starting
from the same key and using the same inputs, and use the i-th output Xi to
compute a signature F ′Xi

(mi) of the i-th message piece mi.

Theorem 5. For all c > 0, SP is a c log n-leakage-resilient authenticated session
protcol.

For the details of the proof of Theorem 5 we direct the reader to [21].

4 Stream cipher construction

In this section, we present our modified version of Pietrzak’s stream cipher. The
main purpose of our construction is to prove Theorem 6, which in turn is used
in the proof of Theorem 5. Our construction uses only a single piece of memory
but requires a public source of min-entropy. We believe that the construction
below and its analysis are of independent interest due to the involved analysis
of the leakage resilient stream cipher with public randomness.

The construction. Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a pseudo-random
function. Let {Zn} be such that for all n, Zn is a distribution over strings of
length n and H∞(Zn) ≥ log2(n). The initial state is K0, where K0 ∈ {0, 1}n is
randomly chosen. For each i > 0, the i-th round consists of:

1. Ri ← Zn is chosen.

2. Ki||Xi ← FKi−1(Ri).

3. The new state is Ki.

The adversary’s interaction. Fix c > 0. A (c log n)-bounded adversary interacts
as follows. For each i > 0:

1. Before round i, the adversary outputs the description of a function fi :
{0, 1}2n → {0, 1}c logn.

2. After round i, the adversary sees Ri, Xi, fi(Ki−1, Ri).

4.1 Security analysis

We begin by defining some notation.
For an adversary A, we will use reali to denote the adversary’s view after

the first i rounds along with the corresponding Xj . That is,

reali = 〈R1, f1(K0, R1), X1, R2, f2(K1, R2), X2, . . . , Ri, fi(Ki−1, Ri), Xi〉

Note that the fj are not fixed functions, but rather are chosen adaptively by the
adversary A as described in Section 4.

We will also define a version of reali that includes an additional round where
there is no leakage. Specifically, we define

real+i = 〈reali, Ri+1,Ki+1, Xi+1〉

That is, real+i includes the inputs and outputs of an additional leak-free round
along with the entire state at the end of that round.

Theorem 6. Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a pseudo-random func-
tion. Let K ′ and X ′ be independent random variables that are each uniformly
distributed over {0, 1}n. Let {Zn} be such that for all n, Zn is a distribution
over strings of length n and H∞(Zn) ≥ log2(n). For all c > 0, d > 0, e > 0,
every function p : N → N, sufficiently large n, all (c log n)-bounded adversaries
A interacting as described in section 4 and obtaining leakage for p(n) rounds,
and all adversaries D such that 2 · size(A) + size(D) + p(n)size(F) ≤ ne,∣∣∣Pr

[
D(real+p(n)) = 1

]
− Pr

[
D(realp(n), Rp(n)+1,K

′, X ′) = 1
]∣∣∣ ≤ 6p(n) + 6

nd
.

Specifically, for sufficiently large n (depending only on c, d, and e), if there
exists an adversary D breaking the above, then there exists an adversary of size
ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

The details of the proof of Theorem 6 are given in [21]. The high-level ap-
proach is similar to that of Pietrzak [31], but there are differences in the details,
due to the differences in our security models.

References

1. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hard-
core bits and cryptography against memory attacks. In Omer Reingold, editor,
TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture Notes
in Computer Science, pages 474–495. Springer, March 2009.

2. Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel
Wichs. Public-key encryption in the bounded-retrieval model. In Henri Gilbert, ed-
itor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes
in Computer Science, pages 113–134. Springer, May 2010.

3. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryp-
tography in the bounded-retrieval model. In Shai Halevi, editor, Advances in
Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science,
pages 36–54. Springer, August 2009.

4. Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In
Proceedings of the 30th Annual international conference on Theory and applications
of cryptographic techniques: advances in cryptology, EUROCRYPT’11, pages 89–
108, Berlin, Heidelberg, 2011. Springer-Verlag.

5. Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to continual
memory leakage. In 51st Annual Symposium on Foundations of Computer Science,
pages 501–510. IEEE Computer Society Press, 2010.

6. Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: Built-in tamper resilience.
Cryptology ePrint Archive, Report 2010/503, 2010. http://eprint.iacr.org/. To
appear in ASIACRYPT 2011.

7. Sherman S. M. Chow, Yevgeniy Dodis, Yannis Rouselakis, and Brent Waters. Prac-
tical leakage-resilient identity-based encryption from simple assumptions. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10:
17th Conference on Computer and Communications Security, pages 152–161. ACM
Press, October 2010.

8. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Cryptography against continuous memory attacks. In 51st Annual Symposium on
Foundations of Computer Science, pages 511–520. IEEE Computer Society Press,
2010.

9. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Efficient public-key cryptography in the presence of key leakage. In Masayuki
Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture
Notes in Computer Science, pages 613–631. Springer, December 2010.

10. Yevgeniy Dodis, Allison Lewko, Brent Waters, and Daniel Wichs. Storing secrets
on continually leaky devices. Cryptology ePrint Archive, Report 2011/369, 2011.
http://eprint.iacr.org/. To appear in FOCS 2011.

11. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions
and side-channel attacks on Feistel networks. In Tal Rabin, editor, Advances in
Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 21–40. Springer, August 2010.

12. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
49th Annual Symposium on Foundations of Computer Science, pages 293–302.
IEEE Computer Society Press, October 2008.

13. Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-
resilient signatures. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryp-
tography Conference, volume 5978 of Lecture Notes in Computer Science, pages
343–360. Springer, February 2010.

14. Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-
tanathan. Protecting circuits from leakage: the computationally-bounded and noisy
cases. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, vol-
ume 6110 of Lecture Notes in Computer Science, pages 135–156. Springer, May
2010.

15. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In Moni Naor, editor, TCC 2004: 1st Theory of Cryp-
tography Conference, volume 2951 of Lecture Notes in Computer Science, pages
258–277. Springer, February 2004.

16. Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous
leakage. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume
6223 of Lecture Notes in Computer Science, pages 59–79. Springer, August 2010.

17. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold boot attacks on encryption keys. In Paul C. van
Oorschot, editor, USENIX Security Symposium, pages 45–60. USENIX Associa-
tion, 2008.

18. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits
II: Keeping secrets in tamperable circuits. In Serge Vaudenay, editor, Advances
in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 308–327. Springer, May / June 2006.

19. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 463–
481. Springer, August 2003.

20. Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual
leakage. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume
6223 of Lecture Notes in Computer Science, pages 41–58. Springer, August 2010.

21. Ali Juma, Yevgeniy Vahlis, and Moti Yung. Multi-location leakage resilient cryp-
tography. Cryptology ePrint Archive, March 2012. http://eprint.iacr.org/.

22. Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded
leakage resilience. In Mitsuru Matsui, editor, Advances in Cryptology – ASI-
ACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 703–720.
Springer, December 2009.

23. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer, Au-
gust 1996.

24. Yuichi Komano, Kazuo Ohta, Hideyuki Miyake, and Atsushi Shimbo. Algorith-
mic tamper proof (ATP) counter units for authentication devices using PIN. In
Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud,
editors, ACNS 09: 7th International Conference on Applied Cryptography and Net-
work Security, volume 5536 of Lecture Notes in Computer Science, pages 306–323.
Springer, June 2009.

25. Allison Lewko, Mark Lewko, and Brent Waters. How to leak on key updates.
Cryptology ePrint Archive, Report 2010/562, 2010. http://eprint.iacr.org/.

26. Allison B. Lewko, Yannis Rouselakis, and Brent Waters. Achieving leakage re-
silience through dual system encryption. In TCC, pages 70–88, 2011.

27. Feng-Hao Liu and Anna Lysyanskaya. Algorithmic tamper-proof security under
probing attacks. In Juan A. Garay and Roberto De Prisco, editors, SCN 10: 7th
International Conference on Security in Communication Networks, volume 6280 of
Lecture Notes in Computer Science, pages 106–120. Springer, September 2010.

28. Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung. Signatures resilient
to continual leakage on memory and computation. In TCC ’11: Proceedings of the
8th Theory of Cryptography Conference, 2011.

29. Paulo Mateus and Serge Vaudenay. On tamper-resistance from a theoretical view-
point. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and
Embedded Systems – CHES 2009, volume 5747 of Lecture Notes in Computer Sci-
ence, pages 411–428. Springer, September 2009.

30. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended
abstract). In TCC, pages 278–296, 2004.

31. Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor,
Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in
Computer Science, pages 462–482. Springer, April 2009.

32. Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,
get off of my cloud: exploring information leakage in third-party compute clouds.
In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS
09: 16th Conference on Computer and Communications Security, pages 199–212.
ACM Press, November 2009.

33. Ronald L. Rivest. All-or-nothing encryption and the package transform. In Eli
Biham, editor, Fast Software Encryption – FSE’97, volume 1267 of Lecture Notes
in Computer Science, pages 210–218. Springer, January 1997.

34. Adi Shamir. How to share a secret. Communications of the Association for Com-
puting Machinery, 22(11):612–613, November 1979.

35. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, Advances
in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer
Science, pages 443–461. Springer, April 2009.

36. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES,
and countermeasures. Journal of Cryptology, 23(1):62–74, January 2010.

37. Nicolas Veyrat-Charvillon and François-Xavier Standaert. Generic side-channel
distinguishers: Improvements and limitations. In Phillip Rogaway, editor,
CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 354–372.
Springer, 2011.

38. Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 114–127. Springer, May 2005.

39. Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practi-
cal leakage-resilient pseudorandom generators. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference on Com-
puter and Communications Security, pages 141–151. ACM Press, October 2010.

