
Relatively-Sound NIZKs and

Password-Based Key-Exchange ?

Charanjit Jutla1 and Arnab Roy2

1 IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598, USA
2 Fujitsu Laboratories of America,

Santa Clara, CA 94058, USA

Abstract. We define a new notion of relatively-sound non-interactive
zero-knowledge (NIZK) proofs, where a private verifier with access to
a trapdoor continues to be sound even when the Adversary has access
to simulated proofs and common reference strings. It is likely that this
weaker notion of relative-soundness suffices in most applications that
need simulation-soundness. We show that for certain languages which
are diverse groups, and hence allow smooth projective hash functions,
one can obtain more efficient single-theorem relatively-sound NIZKs as
opposed to simulation-sound NIZKs. We also show that such relatively-
sound NIZKs can be used to build rather efficient publicly-verifiable
CCA2-encryption schemes.
By employing this new publicly-verifiable encryption scheme along with
an associated smooth projective-hash, we show that a recent PAK-model
single-round password-based key exchange protocol of Katz and Vaikun-
tanathan, Proc. TCC 2011, can be made much more efficient. We also
show a new single round UC-secure password-based key exchange pro-
tocol with only a constant number of group elements as communication
cost, whereas the previous single round UC-protocol required Ω(k) group
elements, where k is the security parameter.

1 Introduction

Authentication based on passwords is a significant security paradigm in today’s
world. Security in this scenario has been a challenging problem to solve because
passwords typically come from low-entropy domains resulting in insufficient ran-
domness for generating cryptographically secure keys. Gong et al. [11] raised the
problem of designing protocols resistant to offline password guessing attacks,
where other than guessing the low-entropy password by an online attack, the
protocol must otherwise provide strong security based on a security parame-
ter. Beginning with the work of Bellovin and Merritt [2], there has been con-
siderable theoretical work in formalizing and obtaining secure protocols in the
setting where only passwords are shared by peers (e.g. [1]), referred to as the

? Authors were supported in part by the Department of Homeland Security under
grant FA8750-08-2-0091.

PAK-security model. From [15] onwards, these protocols employ smooth projec-
tive hash functions which have been a standard tool in cryptography ever since
Cramer and Shoup defined them to give an efficient chosen ciphertext secure
(CCA2) encryption scheme [7].

As illustrated by Gennaro and Lindell [10], who call this the non-malleable
commitment paradigm, these protocols require the two peers A and B to non-
malleably commit to their password to their peer (say B), e.g. by CCA2 encrypt-
ing the password under a public key given as a common reference string (CRS).
While, the peer B cannot decrypt this commitment, it might be able to compute
a smooth projective-hash on this commitment using a smooth hash key that it
generates. The projection of this smooth hash key is sent to peer A, and peer
A can compute the same smooth hash using the witness it has for the commit-
ment. The two peers then output a product of two such smooth hashes, one for
its own commitment and one for its peer. The problem, however, is that smooth
projective-hash for the language, which in this case is the CCA2-ciphertext en-
crypting a password, is not easy to define, and [10] requires an adaptive smooth
hash key, which makes the key-exchange protocol a multi-round protocol.

Recently, Katz and Vaikuntanathan [16] gave a single round protocol for
password-based authenticated key exchange, by utilizing a publicly-verifiable
CCA2-encryption scheme of Sahai [19]. A publicly-verifiable encryption scheme
allows a (non-interactive) public verification of well-formedness of the ciphertext,
i.e. it returns TRUE if and only if the decryption oracle will not return an “invalid
ciphertext” response when queried with this ciphertext. The public verification
allows the smooth hash to be defined on only a part of the ciphertext, which
in [16] happens to be two El-Gamal encryptions of the password. Such smooth
projective hashes are easy to define and compute.

While the resulting protocol requires only a constant number of group el-
ements, as it employs simulation-sound extensions of Groth-Sahai NIZKs [13],
under the decisional linear assumption (DLIN [3]) it still requires each party to
send 65 group elements (and the run-time is proportionately high).

In this paper we show that the above scheme can be made much more efficient
by using a novel concept of relatively-sound NIZKs rather than using simulation-
sound NIZKs. Simulation-Sound NIZKs were first defined by Sahai [19], where it
was used to convert Naor-Yung [18] CCA1-encryption scheme into the aforemen-
tioned CCA2-encryption scheme. In simulation-sound NIZKs the NIZK (public)
verifier continues to be sound even when the Adversary is given the simulated
CRS and proofs. We notice that in most applications what is really required
is that a (private) verifier with access to a trapdoor continues to be sound in
the simulated world, as long as this private verifier is equivalent to the public
verifier in the real-world. The novel relatively-sound NIZKs captures this idea3.
While it is an open problem whether relatively-sound NIZKs are strictly weaker
than adaptive simulation-sound NIZKs, we show that relatively-sound NIZKs
imply soundness under simulation of proofs of random (false or true) state-

3 Relatively-sound NIZKs can be considered a hybrid of designated-verifier simulation-
sound NIZKs [9] and simulation-sound NIZKs.

ments. Since, for many applications (including the current) such non-adaptive
(random) simulation-sound NIZKs suffice, relative-soundness can be seen as a
useful abstraction and tool for obtaining the former.

While it is easy to check that relative-soundness suffices in Sahai’s original
proof, in this paper we consider a further optimized construction. We prove that
an augmented El-Gamal encryption scheme (reminiscent of [8]), along with a la-
beled single-theorem relatively-sound NIZK leads to a publicly-verifiable CCA2-
encryption scheme. In the augmented El-Gamal scheme the public key (under
the DDH or SXDH assumptions) consists of g, ga, gk, and the encryption of m
with randomness x is gx, gax,m · gkx. The labeled relatively-sound NIZK proves
that the first two elements of the ciphertext use the same randomness x, with
the third element used as label.

While a single-theorem simulation-sound NIZK could also have been used
above, we show that one can obtain single-theorem relatively-sound NIZK far
more cheaply than simulation-sound NIZK for this language. We use the fact
that the language is a finite diverse group, and hence allows simple 2-universal
projective hash functions [7], which allows us to build a private verifier. Under
the SXDH assumption [13], converting a NIZK for this language to a relatively-
sound NIZK only requires two more group elements, whereas the best-known
simulation-sound extension would require nine group elements. Similarly, under
the DLIN assumption, our extension requires only three more elements, whereas
a simulation-sound extension requires at least 18 more elements [16]. Overall
under the DLIN assumption, our publicly-verifiable CCA2 ciphertexts have only
19 group elements versus the 47 group elements in the Sahai scheme [19].

We show that using the new encryption scheme in the PAK-model protocol
of [16], leads to a new protocol which is two to three times more efficient (under
both SXDH and DLIN assumptions), with the SXDH-based scheme requiring
only 10 group elements to be communicated4.

UC Security. Canetti et al. [6] proposed a definition of security for password-
based key exchange protocols within the Universally Composable (UC) security
framework [5], which has the benefit of the universal composition theorem and
as such can be deployed as a part of larger security contexts. In addition, their
definition of security considers the case of arbitrary and unknown password
distributions.

Katz and Vaikuntanathan [16] also gave a single round UC-secure protocol
for password-based authenticated key exchange. However, their single round UC
protocol is still inefficient as it uses general purpose NIZKs (for NP languages),
and further requires proof of knowledge NIZKs. Even if the language for which
zero knowledge proofs are required can be made to be given by simple algebraic
relations in bilinear groups, the proof of knowledge for exponents of elements as
required in their protocol makes it rather expensive.

4 It should be remarked that other efficient publicly-verifiable CCA2-encryption
schemes such as [17], which allow hash proofs on the (proof-less) part of the ci-
phertext can also be used in [16].

A second main contribution of this paper is an efficient UC-secure single-
round protocol for password based key exchange. The main new ideas required
for this efficient protocol are as follows: (a) The shared secret key is obtained
in the target group of the bilinear pairings used in the NIZKs which allows for
efficient simulator-extraction of group elements corresponding to the smooth-
hash trapdoor keys. Such an extraction is required for UC-simulatability. (b) The
NIZK proof of knowledge (for extraction) requires the NIZKs to be unbounded
simulation-sound. A general construction for unbounded simulation-soundness
was given in [4] which is based on a construction due to Groth [12], both of
which can be seen to be using relative-soundness implicitly. This leads us to give
an optimized version of this general construction. (c) We continue to use the
Damgard style [8] encryption scheme, which allows for even more optimization
of the unbounded simulation-sound construction for this specific language.

As a result, we get a single-round UC-secure protocol, where under the DLIN-
assumption, each party only communicates 63 group elements, which is as effi-
cient as the PAK-model protocol described in [16]. Under the SXDH assumption,
our UC-secure protocol only requires 33 group elements.

For sake of exposition, we focus on giving complete proofs only under the
SXDH assumption. All of the protocols are also given under the DLIN assump-
tion in the full paper [14].

2 NIZK Definitions

In this section we give some definitions related to Non Interactive Zero Knowl-
edge (NIZK) proofs. We will assume familiarity with usual definitions of NIZKs
(see e.g. [19, 13]). A proof for a relation R consists of a key generation algorithm
K which produces the CRS ψ, a probabilistic polynomial time (PPT) prover P
and a PPT verifier V .
Zero-Knowledge. We call (K,P, V) a NIZK proof for R if there exists a poly-
time simulator (S1, S2), such that for all non-uniform PPT adversariesA we have

Pr[ψ ← K(1m) : AP (ψ,·,·)(ψ) = 1] ≈ Pr[(σ, τ)← S1(1
m) : AS(σ,τ,·,·)(σ) = 1],

where S(σ, τ, x, w) = S2(σ, τ, x) for (x,w) ∈ R and both oracles output failure if
(x,w) 6∈ R.
One-time Simulation Soundness A NIZK proof is one-time simulation sound
NIZK if for all non-uniform PPT adversaries A = (A1,A2) we have
Pr[(σ, τ)← S1(1

m); (x, s)← A1(σ);π ← S2(σ, τ, x); (x
′, π′)← A2(x, π, σ, s) :

((x′, π′) 6= (x, π)) and ¬∃w′ s.t. (x′, w′) ∈ R, and V (σ, x′, π′) = 1] ≈ 0.
Unbounded Simulation Sound Extractability (uSS-NIZK). Consider a
NIZK proof (K,P, V, S1, S2) along with an initialization algorithm SE1 and a
knowledge extractor E2, such that SE1 outputs (σ, τ, ξ) with (σ, τ) identical to
values output by S1. Such a proof is said to have the Unbounded Simulation
Sound Extractability property if for all non-uniform PPT adversaries A we have
Pr[(σ, τ, ξ)← SE1(1

k); (x, π)← AS2(σ,τ,·)(σ);w ← E2(σ, ξ, x, π) :
(x, π) /∈ Q and (x,w) /∈ R and V (σ, x, π) = 1] ≈ 0

where Q is the set of simulation queries and responses (xi, πi). For some subset

of witnesses the extractor E2 may extract witnesses in polynomial time, which
will be the focus in this paper.

2.1 Relative Soundness

We now define a novel weaker notion of simulation soundness, which might
suffice for most applications, especially in the case of single theorem (or one-
time) simulation. It is possible that this weaker notion may be more efficient to
implement, as we demonstrate later for a particularly important language, where
we also show that the weaker notion suffices for the application at hand. In a
nutshell, the weaker notion allows for the simulator to have a private verifier of its
own, with access to a trapdoor. Simulation-soundness is now defined with respect
to simulator’s private verifier, and hence the name relative-soundness. There is an
important further stipulation in the definition that the zero-knowledge property
should hold even when the Adversary is given oracle access to private verifier in
the simulated world (and public verifier in real world).
Labeled Single-Theorem Relatively-Sound NIZK (l-SRS-NIZK). Con-
sider a sound and complete (labeled) proof (K,P, V) for a relation R along with
a PPT private-verifier W and a PPT simulator (S1, S2). In a labeled proof, the
prover P takes an input label, in addition to the statement to be proven. The
verifier takes a statement, a label, and a proof. Such a proof is called a labeled
single-theorem relatively-sound NIZK for R if for all non-uniform PPT
adversaries A = (A1,A2,A3,A4) we have

relative-ZK:
Pr[(ψ) ← K(1m); (x,w, lbl, s)← A

V (ψ,·,·,·)
1 (ψ); π ← P (ψ, x, w, lbl) :

A
V (ψ,·,·,·)
2 (π, s) = 1] ≈

Pr[(σ, τ)← S1(1
m); (x,w, lbl, s)← A

W (σ,τ,·,·,·)
1 (σ); π ← S2(σ, τ, x, lbl) :

A
W (σ,τ,·,·,·)
2 (π, s) = 1],

for A1 restricted to producing (x,w) satisfying R, and
relative-simulation-soundness:

Pr[(σ, τ)← S1(1
m); (x, lbl, s)← A

W (σ,τ,·,·,·)
3 (σ);π ← S2(σ, τ, x, lbl);

(x′, lbl′, π′)← A
W (σ,τ,·,·,·)
4 (π, s) : ((x′, lbl′, π′) 6= (x, lbl, π)) and

¬∃w′ s.t. R(x′, w′) = 1, and W (σ, τ, x′, lbl′, π′) = 1] ≈ 0.

Note that there are no other requirements onW other that those listed above.
It is critical that relative-ZK is required only w.r.t. adversaries (A1) that produce
language members. Otherwise, relative-simulation-soundness would already im-
ply normal simulation-soundness. Although it remains an open problem whether
relatively-sound NIZKs are strictly weaker than simulation-sound NIZKS, the
following shows the relation to non-adaptive simulation soundness, i.e. where
the statements for which the proofs need to be simulated are chosen randomly.

Relation to Simulation-Soundness. Consider the following variant of One-
time Simulation Soundness defined in Section 2. A NIZK proof for language

L ⊆ X is a non-adaptive one-time simulation-sound NIZK if for all non-
uniform PPT adversaries A = (A3,A4) we have

Pr[(σ, τ)← S1(1
m);x

$
←− X ; (lbl, s)← A3(σ, x);π ← S2(σ, τ, x, lbl);

(x′, lbl′, π′)← A4(π, s) : ((x′, lbl′, π′) 6= (x, lbl, π))
and ¬∃w′ s.t. R(x′, w′) = 1, and V (σ, x′, lbl′, π′) = 1] ≈ 0.

Now, assume that the language L is efficiently witness-samplable, i.e. there is
PPT machine which can efficiently sample from L along with the witness for the
language member. Also, a language L, subset of a domain X , is called hard if
no PPT adversary can distinguish between a (uniformly) random element of L
from a random element of X .

Lemma 1. For a hard and efficiently witness-samplable language L, an l-SRS-
NIZK for L also satisfies the non-adaptive labeled one-time simulation soundness
property for L.

The proof of this lemma uses standard arguments, and a version of this lemma
for unbounded simulation soundness also holds.

3 Smooth Projective Hash Functions

Fix a cyclic group G = 〈g, ·〉 of prime order q, such that 1/q is a negligible
function of the security parameter. We define the El-Gamal encryption function
as follows. For K,m in G, and x, define

enc
eg
K (m;x) = 〈gx,Kx ·m〉

For K and pwd in G, define LK,pwd = {c = 〈R,P 〉 | ∃x : c = enc
eg
K (pwd;x)} ∩

G×G. A projective hash function [7] is a keyed family of functions mapping
elements in some message space X to the group G, and is associated with a
language. Further, it comes with a projection function α : K → S, where K
is the key space and S is the projected key space. For our hash family, the key
space is Zq ×Zq, and the projected key space is G. The message space X is the
space of ciphertexts. For n, n̂ in Zq, c in G2, and K, pwd in G, define the hash

family HK,pwd associated with LK,pwd by

H
pwd
n,n̂ (c = 〈R,P 〉) = (P/pwd)n̂ ·Rn, αK,pwd(n, n̂) = gn · (K)n̂.

It is straightforward to see that, if c = enc
eg
K (pwd;x) for some x, thenH

pwd
n,n̂ (c) =

αK,pwd(n, n̂)x.

For any K and pwd in G, HK,pwd is said to be smooth [7] w.r.t. L =
LK,pwd, if for any c′ in G2, but not in L, the statistical distance between the

distribution of the pair (H
K,pwd
n,n̂ (c′), αK,pwd(n.n̂)) and the pair (gd1 , gd2) is

negligible, where n, n̂, d1, d2 are chosen randomly and independently from Zq. It

is a simple exercise to see that HK,pwd is smooth with respect to LK,pwd.

We also define a projective hash function family associated with any language
L to be 2-universal [7] if for all s ∈ S, x, x′ ∈ X , and π, π′ ∈ G with x 6∈ L∪{x′},
it holds that Prk[Hk(x) = π | Hk(x

′) = π′ ∧ α(k) = s] ≤ 1/q.

4 Bilinear Assumptions

Throughout the paper, we use (bilinear) groupsG1,G2,GT each of prime order q,
which allow an efficiently computable Zq-bilinear pairing map e : G1×G2 → GT .
SXDH: [13] The symmetric external decisional Diffie-Hellman (SXDH) assump-
tion states that the decisional Diffie-Hellman (DDH) problem is hard in both
groups G1 and G2.
DLIN: [3] In groups such that G1 is same as G2, the decisional linear (DLIN)
assumption states that given (αP , βP , rαP , sβP , tP) for random α, β, r, s ∈ Zq,
and arbitrary generator P of G1, it is hard to distinguish between t = r+ s and
a random t.

5 A Publicly-Verifiable CCA2-Encryption Scheme

In this section we describe a CCA2-Encryption scheme that has the property
that a potential ciphertext can be publicly verified to be a valid ciphertext of
some message. Note that Sahai [19] had previously given a publicly-verifiable
CCA2-encryption scheme employing the Naor-Yung CCA1-scheme [18], but our
scheme is simpler and more efficient.

One might be tempted to take the Cramer-Shoup encryption scheme, and
extend the ciphertext by including a NIZK proof that the 2-universal smooth
projective-hash [7] was correctly computed. However, since the NIZK scheme
by itself may be malleable, this may render the scheme insecure in the CCA2-
model. There are two potential fixes to this: (a) make the NIZK single theorem
simulation-sound, or (b) include the NIZK commitments to the witness in the
projective-hash. While it is not that difficult to see that (a) may lead to a correct
publicly-verifiable CCA2-scheme (just as in [19]), the second idea (b) may seem
far-fetched.

We now show that it suffices to make the NIZK proof a labeled single-theorem
relatively-sound NIZK, and further one just needs to prove in this NIZK that the
Diffie-Hellman tuple in the ciphertext is well-formed, i.e. it is of the form gx, Ax.
We later show that there exists a very efficient way to extend a single-theorem
Groth-Sahai NIZK of this statement to be a relatively-sound proof, such that the
resulting publicly-verifiable CCA2-scheme is just the idea (b) mentioned above.

To formally define publicly-verifiable CCA2-encryption schemes, one just ex-
tends the standard IND-CCA2 definition of encryption with a public verification
function V which takes the public key and a potential ciphertext as arguments,
and it returns true iff the decryption function when supplied with the same
ciphertext does not return “invalid ciphertext”.

For given g,A, let the relation R = {((ρ, ρ̂), x) | ρ = gx, ρ̂ = Ax}. We
now define a labeled publicly-verifiable public-key encryption scheme DHENC

as follows:

Key Generation: Generate g,A
$
←− G1, and k

$
←− Zq. Let K = gk. Let ψ be

the CRS for an l-SRS-NIZK. The public key is (g,A,K, ψ) and the private
key is k.

Encrypt: Given plaintextm ∈ G1, and label lbl. Choose x
$
←− Zq. Let the triple

〈ρ, ρ̂, γ〉 be 〈gx, Ax,mKx〉. Let π be an l-SRS-NIZK proof of ((ρ, ρ̂), x) ∈ R
with label γ, lbl. The ciphertext is (ρ, ρ̂, γ, π).

Decrypt: Given ciphertext c = (ρ, ρ̂, γ, π) and label lbl. Verify if π is an l-
SRS-NIZK proof for (ρ, ρ̂) and label γ, lbl. If verification fails output ⊥.
Otherwise output m = γ

ρk .

Verify: Given ciphertext c = (ρ, ρ̂, γ, π) and label lbl. Verify if π is an l-SRS-
NIZK proof for (ρ, ρ̂) and label γ, lbl. If verification fails output false else
output true.

Theorem 1. The scheme DHENC is publicly-verifiable (labeled) IND-CCA2
secure.

The full proof of this theorem can be found in [14], but the main idea is that the
decryption can be done as either γ/ρk, or as γ/(ρk

′

ρ̂k
′′

), where the Simulator
chooses the public key K as gk

′

Ak
′′

. The encryption oracle hides the message
by employing DDH as follows: (1) The NIZK CRS in the original experiment
is the binding-CRS, and the decryption oracle in the original experiment does
a public verification of proofs in each adversarially supplied ciphertext. (2) The
NIZK CRS is switched to be the hiding CRS, the proof switched to a simulator
generated proof, and decryption oracle now uses private-verification. This is an
indistinguishable change by the relative-ZK property of l-SRS-NIZK. Note, x is
no more used in the simulated proof. (3) The decryption is done as γ/(ρk

′

ρ̂k
′′

),
which is equivalent because of relative-simulation soundness property of l-SRS-
NIZK. (4) DDH is employed, as only A(= ga) is being used in the simulation,
instead of a. This leads to Ax being replaced by an independent X ′. (5) The
decryption is done as γ/ρk, which is again equivalent by relative-soundness. (6)
the message in the encryption can be switched by pairwise independence in k,
and this step is information-theoretic. More precisely, gxk

′

(X ′)k
′′

is random and
independent of gx, X ′, K, A, as well as Adversary’s coins with high probability.
(7) Next we do all the above steps (2)-(5) in reverse.

6 l-SRS-NIZK for the DDH Language

Let G1 and G2 be two groups with a bilinear pairing e : G1 × G2 → GT and
|G1| = |G2| = |GT | = q, a prime number. Also assume that DDH is hard for both
G1 and G2. Recall that this is the SXDH assumption. Let Lg,A be the language:
{(ρ, ρ̂) ∈ G1

2 | ∃x. ρ = gx ∧ ρ̂ = Ax}, with g,A in G1.
Note that this language is actually a cyclic group with generator 〈g,A〉, and

forms a diverse group system [7]. In [7], Cramer and Shoup show how to obtain
2-universal projective hash functions for such languages, and we use these hash
functions for private-verification.

We construct an l-SRS-NIZK proof system for Lg,A, as follows:

CRS Generation: Generate P
$
←− G2 and u, v, d1, d2, e1, e2

$
←− Zq. Compute

(P,Q,R, S, d, e) = (P , Pu, Pv, Puv+1, gd1Ad2 , ge1Ae2). The CRS is ψ =

(P,Q,R, S, d, e). The first four elements are as in the Groth-Sahai NIZK
for SXDH (binding CRS), and the last two are the projection keys for a
2-universal projective-hash for the DDH language (just as [7]), to be used in
the relatively-sound system.
The simulation CRS σ is (P,Q,R, S, d, e) = (P , Pu, Pv, Puv, gd1Ad2 ,
ge1Ae2). This is the hiding CRS of GS-NIZK for SXDH along with d and e
as above. The trapdoor is τ = (u, d1, d2, e1, e2).

Prover: Given witness x, candidate (gx, Ax), and label lbl, construct proof as

follows. Generate s
$
←− Zq. Compute t← H(gx, Ax, QxP s, SxRs, lbl), where

H is a collision resistant hash function. Then compute: (β, c1, c2, θ, φ, χ) ←
((det)x, QxP s, SxRs, gs, As, (det)s). Output proof π = (β, c1, c2, θ, φ, χ).
The first element is a 2-universal projective-hash computed on the candidate
with witness x. The last five elements can be interpreted as generated by
the Groth-Sahai NIWI proof (which also happens to be a NIZK proof) for
the language {ρ, ρ̂, h | ∃x : ρ = gx, ρ̂ = Ax, h = (det)x}, where t is a hash of
ρ, ρ̂, lbl, and the commitment to x in the NIWI system, i.e. QxP s, SxRs.

Simulator: Given a candidate (ρ, ρ̂), generate the proof as follows. Generate

s
$
←− Zq and compute t← H(ρ, ρ̂, P s, Rs, lbl). Then compute

π = (β, c1, c2, θ, φ, χ) =
(
ρd1 ρ̂d2(ρe1 ρ̂e2)t, P s, Rs, ρ−ugs, ρ̂−uAs, β−u(det)s

)

Public Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂) with
label lbl, compute t ← H(ρ, ρ̂, c1, c2, lbl). Then check the following equa-
tions:

e(g, c1)

?
= e(ρ,Q) · e(θ, P), e(g, c2)

?
= e(ρ, S) · e(θ,R)

e(A, c1)
?
= e(ρ̂, Q) · e(φ, P), e(A, c2)

?
= e(ρ̂, S) · e(φ,R)

e(det, c1)
?
= e(β,Q) · e(χ, P), e(det, c2)

?
= e(β, S) · e(χ,R)

Private Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂) with
label lbl, compute t← H(ρ, ρ̂, c1, c2, lbl). Then first do public verification

and if that succeeds then check the following equation: β
?
= ρd1 ρ̂d2(ρe1 ρ̂e2)t.

Note that this private verifier is well-defined in the real world as well. In
addition, its trapdoor (d1, d2, e1, e2) is identically generated in both the real
and the simulated worlds.

Theorem 2. The above system is an l-SRS-NIZK proof system for Lg,A.

Proof Sketch: We focus on Relative-ZK and Relative-SS properties. For the for-
mer, we need to show that the simulation CRS, and a proof for (ρ, ρ̂) with label
lbl is computationally indistinguishable from the real CRS and a real proof,
even when the Adversary has oracle access to respective verifiers. This is accom-
plished by a sequence of games, where the first game is same as the real world
game. In the second game, the CRS and the proof remain the same but the
verifier in the oracle is changed to be the private verifier, which in our case is
well-defined in the real world. We need to show that public verification implies

private verification, but this follows from soundness of the Groth-Sahai NIZK, as
well as the fact that on a valid DDH tuple the projection hash is same whether it
is computed using the witness and the projection key or using the private hash
keys. In the final game we switch to the simulation CRS and simulated proof,
and indistinguishability follows from ZK property of Groth-Sahai NIZKs and
the fact that the private verification trapdoor is independent of the Groth-Sahai
NIZK CRS (hiding or binding).

The relative-simulation-soundness property is proven using the 2-universal
property of the projective smooth hash (just as in [7]), but additionally using
the fact that in Groth-Sahai NIZKs, once the commitments to the witnesses
are fixed, there is a unique proof satisfying the linear equations of the type
used in the above NIZK proof. This holds for both the SXDH and the DLIN
assumptions. ut

The l-SRS-NIZK proof for DDH language above consists of six group el-
ements. The l-SRS-NIZK proof for the DLIN language (and under the DLIN
assumption), given in the full paper [14], consists of 15 group elements.

7 Secure Protocol in the PAK Model

In this section we present a password-based key exchange protocol secure in
the PAK model of security due to Bellare, Pointcheval and Rogaway [1]. We
instantiate the single-round scheme due to Katz and Vaikuntanathan [16], which
is described in Figure 1, with the more efficient publicly-verifiable CCA-secure
encryption scheme DHENC of Section 5, which enables a more efficient hash
proof as well. The common reference string (CRS) is just the public key of this
scheme.

The projective-hash family used in this scheme is Hpw along with the pro-
jection function αK,pw defined in Section 3, where K is from the public-key (i.e.
CRS). Note that the input label to the hash function is ignored in Hpw. Also, α
does not depend on pw.

CRS = pk

Party Pi A Party Pj

ki
$
←− Hash-K; si ← α(ki)

labeli,Ci−−−−−−→
labelj ,Cj
←−−−−−−

kj
$
←− Hash-K; sj ← α(kj)

labeli ← (Pi, Pj , si) labelj ← (Pj , Pi, sj)
Ci ← encpk(labeli, pw) Cj ← encpk(labelj, pw)

label′j ,C
′

j
←−−−−−−

label′i,C
′

i−−−−−−→
Reject if C′

j is not a publicly Reject if C′

i is not a publicly
verified ciphertext with label verified ciphertext with label
label′j . label′i.
ski ← Hki

(label′j, C
′

j , pw) skj ← Hkj
(label′i, C

′

i, pw)
·Hkj

(labeli, Ci, pw) ·Hki
(labelj , Cj , pw)

Fig. 1: Single-round PAK-Model Secure Password-based Authenticated KE.

Theorem 3. Assume the existence of SXDH-hard groups G1 and G2. Then the
protocol in Figure 1 is secure in the PAK model.

The proof of this theorem is same as the proof in [16], as we have modularized
the various constructs required in that proof. The main idea is that once the
CCA2-encryption scheme is publicly verifiable, then the smooth hash needs to
be just over the language LK,pw, which are CPA encryptions of password.

8 Secure Protocol in the UC Model

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It
interacts with an adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from Pi: Send
(NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there
is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw) and mark this record
fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If
pw = pw′, mark the record compromised and reply to S with “correct
guess”. If pw 6= pw′, mark the record interrupted and reply with “wrong
guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k: If
there is a record of the form (Pi, Pj , pw), and this is the first NewKey

query for Pi, then:
– If this record is compromised, or either Pi or Pj is corrupted, then

output (sid, sk) to player Pi.
– If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ =
pw, and a key sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the
time, then output (sid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length k and send
(sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Fig. 2: The password-based key-exchange functionality FpwKE

The essential elements of the Universal Composability framework can be
found in [5]. We adopt the definition for password-based key exchange from
Canetti et al [6]. The following description is a summary from [6]. The formal
description is given in Figure 2.

Like the key exchange functionality, if both participating parties are not
corrupted, then they receive the same uniformly distributed session key and the
adversary learns nothing of the key except that it was generated. However, if
one of the parties is corrupted, then the adversary determines the session key. If
the adversary makes a wrong password guess in a given session, then the session

is marked interrupted and the parties are provided random and independent
session keys. If the adversary makes a successful guess, then the session is marked
compromised, and the Adversary gets the power to set the session key.

8.1 A Single Round UC Password-Based Key Exchange Protocol

The single-round UC protocol under the SXDH assumption uses labeled un-
bounded simulation sound G2-extractable NIZKs (uSS-NIZK). Consider parties
Pi and Pj involved in the protocol with SSID ssid. The CRS is three group ele-
ments g,A(= ga),K(= gk) chosen randomly from G1, another element P chosen
randomly from G2, and a uSS-NIZK CRS ψ. Since g, P are also part of the uSS-
NIZK CRS, having chosen the NIZK CRS, g, P are already determined. The
protocol is symmetric and asynchronous with each party computing a message to
be sent, then receiving a corresponding message and computing a key. Therefore,
we just describe it from the perspective of one party; the other is symmetric.

Party Pi generates x
$
←− Zq and computes c1 = 〈gx, Ax,Kx · pw〉. It also

generates hash key (n1, n̂1)
$
←− (Zq)

2 and computes the projection key η1 =

αK,pwd(n1, n̂1) = gn ·K n̂. Finally it computes a NIZK proof of consistency in
the following way:

π1 = uSS-NIZKψ(gx, Ax, η1;x,P
n1 ,P n̂1) with label 〈Pi, Pj , ssid〉

Note that π here denotes the commitments to the witnesses as well as the further
proof as in the Groth-Sahai system. The NP language L for the NIZK is

L = {ρ, ρ̂, η | ∃x,N, N̂ : ρ = gx, ρ̂ = Ax, e(η,P) = e(g,N)e(K, N̂)}

Now, the message sent by Pi is 〈c1, η1, π1〉. Let the message received by Pi in

this session, supposedly from Pj , be 〈c′2, η
′

2, π
′

2〉. Let c′2 be parsed as (ρ′2, ρ̂
′

2, γ
′

2).
If any of ρ′2, ρ̂

′

2, γ
′

2, η
′

2 is not in G1\{1}, or uSS-NIZK-Verify(π′

2; ρ
′

2, ρ̂
′

2, η
′

2) with
label 〈Pj , Pi, ssid〉 turns out to be false, then it sets its session key sk1 randomly
from the target group of e, GT . Otherwise it is computed as follows:

h′2 = (
γ′2

pwd
)n̂1(ρ′2)

n1 h1 = (η′2)
x1 h3 = h′2 · h1 sk1 = e(h3,P).

Theorem 4. Assume the existence of a SXDH-hard group, a labeled unbounded
simulation-sound G2-extractable NIZK proof system. Then the protocol in Fig-
ure 3 securely realizes the F̂pwKE functionality in the F crs hybrid model, in the
presence of static corruption adversaries.

In the next section we demonstrate a simulator which uses F̂pwKE to simulate
the protocol to an adversary, thus proving Theorem 4.

A more optimized version of such a general labeled unbounded simulation
sound G2-extractable NIZK [7] is given in the Appendix in Section A. In fact,
for the language above for which such a NIZK is required, we give a further op-
timization in [14]. Based on this optimized construction, the uSS-NIZK requires

CRS = g,P , A,K,ψ : g,A,K
$
←− G1 P

$
←− G2 ψ = uSS-NIZK CRS

Party Pi Adv A

Input (NewSession, sid, ssid, Pi, Pj ,pwd, initiator/responder)

Choose x1, n1, n̂1

$
←− Zq.

c1,η1,π1−−−−−→ A
Set ρ1 = gx1 , ρ̂1 = (A)x1 , γ1 = pwd ·Kx1 , η1 = gn1(K)n̂1 ,
Let c1 = 〈ρ1, ρ̂1, γ1〉, and
π1 = uSS-NIZKψ(ρ1, ρ̂1, η1; x1,P

n1 ,P n̂1) with label 〈Pi, Pj , ssid〉.
c′
2
,η′

2
,π′

2←−−−−− A
Let c′2 = 〈ρ′2, ρ̂

′

2, γ
′

2〉.
If any of ρ′2, ρ̂

′

2, γ
′

2, η
′

2 is not in G1\{1}, or
not uSS-NIZK-Verify(π2; ρ

′

2, ρ̂
′

2, η
′

2) with label 〈Pj , Pi, ssid〉

set sk1

$
←− GT , else

compute h′

2 = (
γ′
2

pwd
)n̂1(ρ′2)

n1 , h1 = (η′2)
x1 , sk1 = e(h′

2 · h1,P).

Output (sid, ssid, sk1).

Fig. 3: Single round UC-secure Password-based KE under SXDH Assumption.

29 group elements. A similar construction under the DLIN assumption, and for
the DLIN based UC-secure PWKE-construction (given in the full paper [14])
requires 54 group elements.

8.2 The Simulator for the UC Protocol

The trapdoor keys a, k for the CRS are chosen differently by the simulator.
Instead of choosing a, k randomly from Zq, the simulator chooses a, k′, k′′ from

Zq and sets k = k′ +a ·k′′. It outputs A = ga and K = gk = gk
′

(ga)k
′′

as before.
Note that this does not change the distribution of A and K, as Zq is a field.
(We will continue to write k for k′ + ak′′, except when the simulation in some
experiments needs to be done with ga, instead of a).

Simulator S also invokes the initialization phase SE1 of the labeled uSS-
NIZK (with security parameter m) to obtain (σ, τ, ξ). S then gives A, K, and σ
to the real world adversary A as the common reference string. Thereafter, the
simulator S interacts with the environment Z, the functionality F̂pwKE, and uses
A as a subroutine. The messages between Z and A are just forwarded by S.

The main difference in the simulation of the real world parties is that S uses
a dummy message µ instead of the real password which it does not have access
to. Further, it generates all proofs using the NIZK simulator S2 instead of real
prover.
New Session: Sending a message to A. On message (NewSession, sid, ssid,

i, j, role) from F̂pwKE, S starts simulating a new session of the protocol Π for
party Pi, peer Pj , session identifier ssid, and CRS = (A,K,ψ). We will denote
this session by (Pi, ssid). To simulate this session, S chooses x1 at random, and
sets c1 (= 〈ρ1, ρ̂1, γ1〉) to 〈gx1 , Ax1 , µ ·Kx1〉. It also chooses hash keys n1, n̂1 at
random, and computes the smooth-hash projected key η1 as in the real protocol
as well. S obtains a fake NIZK proof π1 using the simulator S2 of the NIZK, and

the CRS σ, and simulation trapdoor τ . It then hands c1, η1, π1 to A on behalf
of this session.
On Receiving a Message from A. On receiving a message c′2, η

′

2, π
′

2 from A
intended for this session (Pi, ssid), the simulator S makes the real world protocol
checks including verifying the NIZK proof using the NIZK-verifier. If any of
the checks fail, it issues a TestPwd call to F̂pwKE with the dummy password
µ, followed by a NewKey call with a random session key, which leads to the
functionality issuing a random and independent session key to the party Pi
(regardless of whether the session was interrupted or compromised).

Otherwise, it computes pwd′ by decrypting c′2, i.e. setting it to γ′2/(ρ
′

2)
k. If

the message received from A is same as message sent by S on behalf of peer Pj
in session ssid, then S just issues a NewKey call for Pi. Otherwise, S calls F̂pwKE

with (TestPwd, ssid, Pi, pwd′). Regardless of the reply from F , it then issues a
NewKey call for Pi with key computed as follows (this is different from the real-
world protocol.). This has the effect that if the pwd′ was same as the actual pwd in

F̂pwKE then the session key is determined by the Simulator, otherwise the session
key is set to a random and independent value. Here is the complete simulator
code (stated as it’s overall experiment with Z, including F ’s communication
with Z):

1. Let c′2 = 〈ρ′2, ρ̂
′

2, γ
′

2〉.
2. If any of ρ′2, ρ̂

′

2, γ
′

2, η
′

2 is not in G1\{1}, or not uSS-NIZK-Verify(π′

2; ρ
′

2, ρ̂
′

2, η
′

2)

with label 〈Pj , Pi, ssid〉, output sk1
$
←− GT , else compute as follows.

3. If msg rcvd == msg sent in same session (same SSID) by peer, set sk1
$
←− GT ,

unless the peer also received a legitimate message and its key has already
been set, in which case that same key is used to set sk1.

4. Else, compute N ′

2, N̂
′

2 from the proof π′

2, using the extraction trapdoor ξ.

5. Compute pwd′ = γ′2/(ρ
′

2)
k. If (pwd′ 6= pwd) then sk1

$
←− GT , else

6. h′2 = (
γ′

2

pwd′)n̂1(ρ′2)
n1 , h1 = (η′2)

x1 ; set sk1 = e(h′2,P)·e(h1,P)·e(µ/pwd, N̂ ′

2).

Note that the main difference is the additional factor e(µ/pwd, N̂ ′

2).

8.3 Proof of Indistinguishability for the UC Protocol

We now describe a series of experiments between the Simulator and the environ-
ment, starting with Expt0 which is the same as the experiment described as the
Simulator in Section 8.2 above, and ending with an experiment which is identical
to the real world execution of the protocol in Fig 3. We will show that the envi-
ronment has negligible advantage in distinguishing between these experiments,
leading to a proof of realization of FpwKE by the protocol Π .

For each instance, we will use subscript 2 along with a prime, to refer to
variables after the reception of the message from A, and use subscript 1 to refer
to variables computed before sending the message to A. We will call a message
legitimate if it was not altered by the adversary, and delivered in the correct
session, and to the correct party.

Expt1: The experiment Expt1 is same as Expt0 except for the following modified
step 3 in the reception code: If msg rcvd == msg sent in same session by peer,
set sk1 to

e(H
pwd
n1,n̂1

(enc
eg
gk (µ;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (µ;x1)),P).

Because the hash proof system is for languages with messages encrypting real
password, the smooth-hash-proof yields random values from the adversary’s
point of view. Note that we only employ the hash proof system correspond-
ing to n1 and n̂1, and note that the second factor corresponding to n2 and n̂2 is
independent of the first. In step 6, n1 and n̂1 are being used, but the code never
gets there if the msg received is same as message sent by legitimate peer.
Expt2: Next, we replace all occurrences of e(h1,P) (= e((η′2)

x1 ,P)) in the com-
putation of sk1 in Step 6 of the reception code by e(g,N ′

2)
x1 · e(K, (N̂ ′

2)
x1),

which is the same as e(gx1 , N ′) · e(Kx1 , N̂ ′). This leads to an indistinguish-
able change as the simulator had verified the NIZK proofs, and the NIZK
proofs have unbounded simulation extractability property, and thus e(η′2,P) =
e(g,N ′

2)e(K, N̂
′

2).
Expt3: The next change in simulation is to replace µ by the real password in
the outgoing message element γ. However, since the simulator is employing k to
compute pwd′, one cannot directly employ DDH to replace µ by pwd in outgoing
γ. However, since we are using an augmented El-Gamal encryption scheme, i.e.
also including ρ̂ in the outgoing message along with a proof of its relation to
ρ, we can use the pairwise independence in k to accomplish our goal, just as in
CCA2 scheme DHENC described in Section 5.

At this point, not only is the outgoing γ1 being computed as Kx1 · pwd, i.e.
c1 = enc

eg
K (pwd;x1), but also in the reception phase of the same (ssid, Pi), the

term e(µ/pwd, N̂ ′

2) has been replaced by 1. Recall that in Expt2, e(h1,P) was
replaced by e(gx1 , N ′) · e(Kx1, N̂ ′), and now e(Kx1 , N̂ ′) has been replaced by
e(pwd/µ ·Kx1, N̂ ′), which is then equivalent to replacing e(µ/pwd, N̂ ′

2) by 1 in
Step 6. Further, if the message received was legitimate, then sk1 is now set to

e(H
pwd
n1,n̂1

(enc
eg
gk (µ;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (pwd;x1),P).

Similarly, if the peer received a legitimate message, its computation of sk1 has
a similar change, i.e. its first factor has µ replaced by pwd. Thus, at the end
of these sequence of hybrid experiments, if the message received was legitimate,

then sk1 is now set to e(H
pwd
n1,n̂1

(enc
eg
gk (pwd;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (pwd;x1)),P).

Expt4: In this experiment we drop the condition if (pwd′ 6= pwd) then set sk1 to
random in Step 5, and always output as follows

h′2 = (
γ′2

pwd
)n̂1/ssid(ρ′2)

n1 , h1 = (η′2)
x1 ; set sk1 = e(h′2,P)·e(gx1, N ′

2)·e(K
x1, N̂ ′

2).

This is accomplished by a series of hybrid experiments, one for each (ssid, Pi),
we employ the hash proof smoothness, as pwd′ 6= pwd implies the tuple c′2 is not
in the language, and hence h′2 is anyway random and independent.

Expt5: In this experiment we set sk1 in the last step as e(h′2,P) · e(η′x1

2 ,P). This
change is indistinguishable as the simulator is checking the validity of the NIZK
proofs, and by simulation-soundness extractability.
Expt6: In this experiment we can drop the extraction of N ′

2 and N̂ ′

2, as they
are no longer needed, and further we drop step 3. Note that currently that step

is computing sk1 as e(H
pwd
n1,n̂1

(enc
eg
gk (pwd;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (pwd;x1)),P), but

since η′2 = η2, and c′2 = c2 for this session, then the above expression is same as
e(h′2,P)·e(η′x1

2 ,P). We replace all simulator generated proofs by proofs generated
by real prover, and switch from the CRS generated by SE1 to the real world
CRS. Experiment Expt6 is indistinguishable from the real-world experiment by
completeness of the hash proof system, i.e. when the labeled tuple c, ssid is in
the language, then the hash can be computed from the projection keys and the
witness x1 of c. This completes the proof of Theorem 4. ut

Acknowledgments. The authors would like to thank the referees for several
helpful comments.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, vol. 1807 LNCS, pp. 139–155.
Springer, May 2000.

2. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and

Privacy, pp. 72–84. IEEE Comp. Soc. Press, May 1992.
3. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004,

vol. 3152 LNCS, pp. 41–55. Springer, Aug. 2004.
4. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure

against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In
EUROCRYPT 2009, vol. 5479 LNCS, pp. 351–368. Springer, Apr. 2009.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pp. 136–145. IEEE Comp. Soc. Press, Oct. 2001.

6. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally
composable password-based key exchange. In EUROCRYPT 2005, vol. 3494 LNCS,
pp. 404–421. Springer, May 2005.

7. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT 2002, vol. 2332
LNCS, pp. 45–64. Springer, Apr. / May 2002.

8. I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In CRYPTO’91, vol. 576 LNCS, pp. 445–456. Springer, Aug. 1992.

9. E. Elkind and A. Sahai. A unified methodology for constructing public-key en-
cryption schemes secure against adaptive chosen-ciphertext attacks. Cryptology
ePrint Archive: Report 2002/042.

10. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In EUROCRYPT 2003, vol. 2656 LNCS, pp. 524–543, 2003.

11. L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly
chosen secrets from guessing attacks. IEEE JSAC, 11(5):648–656, June 1993.

12. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In ASIACRYPT 2006, vol. 4284 LNCS, pp. 444–459, 2006.

13. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT 2008, vol. 4965 LNCS, pp. 415–432. Springer, Apr. 2008.

14. C. Jutla and A. Roy. Relatively-sound NIZKs and password-based key-exchange.
Cryptology ePrint Archive, Report 2011/507, 2011. http://eprint.iacr.org/.

15. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In EUROCRYPT 2001, vol. 2045
LNCS, pp. 475–494. Springer, May 2001.

16. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key
exchange. In TCC 2011, volume 6597 of LNCS, pp. 293–310. Springer, Mar. 2011.

17. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC 2006,
volume 3876 of LNCS, pp. 581–600. Springer, Mar. 2006.

18. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC. ACM Press, May 1990.

19. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pp. 543–553. IEEE Comp. Soc. Press, 1999.

A More Efficient Unbounded Simulation Sound NIZKs

In [4], an unbounded simulation sound NIZK scheme is given for bilinear groups,
building on the Groth-Sahai NIZKs and using Cramer-Shoup like CCA2 encryp-
tion schemes under K-linear assumptions. In this section we show various general
optimizations for that construction, and further optimizations for specific lan-
guages involving generalized Diffie-Hellman tuples.

The general optimizations can be summarized as follows.

1. The scheme in [4] uses a one-time signature scheme. However, since it also
uses a labeled CCA2 encryption scheme, the one-time signature scheme can
be dropped, and one can use the label in the CCA2 scheme to get the sig-
nature property.

2. The scheme in [4] allows the simulator to generate a CCA2 encryption of ux

(for trapdoor x) along with a proof, instead of the proof of the statement.
In order for the Adversary to cheat, it must also produce such an encryp-
tion, which is impossible under CCA2. However, one notices that since the
simulator knows ux, instead of a normal encryption, the simulator can hide
ux with just the smooth hash.

We now give this optimized version under the SXDH-assumption for groups
(G1, G2, GT), with a Zq-bilinear map e. We will write the bilinear map e(A,B) in
infix notation as A ·B. The group operation will be written in additive notation.

Languages for the simulation-sound NIZK can be specified by equations (re-
lations) of the form x ·A = T , where x are variables from Zq, A are constants
from G2, and T is a constant from GT , and thus x serves as witness for a member
of a language specified by A and T . Languages can also be specified by equations
of the form B ·Y = T1 ·T2, where B are elements from G1, Y are variables from
G2, and T1 and T2 are constants from G1 and G2 resp. One can also consider
languages with multiple such relations of both kinds.

Note that languages for which Groth-Sahai NIWI proofs can be given are
more general, including equations like x · A + b · Y = T , as well as quadratic
equations.

The uss-NIZK CRS will consist of the usual Groth-Sahai NIWI CRS for
SXDH, along with g,A=ga,k = gk1Ak2 ,d=gd1Ad2 , e=ge1Ae2 , and h=gx,u=gu,
with g ∈ G1, and a, k1, k2, d1, d2, e1, e2, x, u chosen at random from Zq. One
could alternatively choose these values from G2. Let H be a collision resistant
hash function.

Given a set of relations as above, along with satisfying variables, the prover
does the following:

1. – For each equation of the kind x ·A = T , it generates a modified equation
x ·A = δ · T , where δ is a new global integer variable.

– Get modified equations of the form B · Y + T1 · V = 0, where V is a
new variable representing elements from G2, along with an additional
equation V + (δ − 1) · T2 = 0 [13].

– Generate an additional quadratic equation δ(1− δ) = 0.
2. Produce a Groth-Sahai NIWI proof for the above modified set of equations,

with δ set to 1. Call this proof, which includes all commitments to original
variables as well as δ and V , as π1. Also append the original statement to be
proven in π1.

3. Generate ρ = gw, ρ̂ = Aw, with w chosen at random.
4. Produce a Groth-Sahai NIWI proof of the following statements (using the

same commitment to δ as in step 2, and w′, x′ committed to zero): ρ1−δ =
gw

′

, ρ̂1−δ = Aw
′

, h1−δ = gx
′

. Call this proof along with commitments to
x′, w′ as π2.

5. Set b = u · (kdet)w, where t = H(ρ, ρ̂, π1, π2).
6. Produce a Groth-Sahai NIWI proof of the following statement (using the

same commitment to δ as in step 2, and same commitment for w′, x′ as in
Step 4): b1−δ = ux

′

· (kdet)w
′

. Call this proof π3.
7. The uss-NIZK proof consists of (π1, π2, π3, ρ, ρ̂, b).

The proof of zero-knowledge is similar to the construction in [4]. The proof of
unbounded simulation sound extractability is also similar to as in [4] but using
the CCA2 encryption scheme (and its proof) as described in Section 5.

It is noteworthy that the uss-NIZK CRS can just give the product of k and
d, and it follows that k can be deleted altogether from the scheme. The above
can also be made a labeled unbounded simulation-sound extractable NIZK, by
including the label in the collision-resistance hash computation t in step 5.

Note that it takes 14 extra group elements to convert an SXDH based NIZK
proof into a uSS-proof using this construction (and 28 elements for a DLIN based
construction) [13]. For the language in Section 8.1, the NIZK proof requires 18
group elements. In the full paper [14] we show a further optimization for this
specific language, which saves another 3 group elements, resulting in a total of
29 group elements for a uss-NIZK proof for the language.

