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Abstract. We revisit shuffling in public [AW07a], a scheme which allows
a shuffle to be precomputed. We show how to obfuscate a Paillier shuffle
with O(N log3.5 N) exponentiations, leading to a very robust and efficient
mixnet: when distributed over O(N) nodes the mixnet achieves mixing in
polylogarithmic time, independent of the level of privacy or verifiability
required. Our construction involves the use of layered Paillier applied to
permutation networks. With an appropriate network the shuffle may be
confined to a particular subset of permutations, for example to rotations.
While it is possible that the mixnet may produce biased output, we show
that certain networks lead to an acceptable bias-efficiency tradeoff.
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1 Introduction

A re-encryption mix permutes and re-encrypts its input [PIK94]. A series of
mixes is called a mixnet and guarantees that input ciphertexts cannot be linked
to the decrypted output unless all mixes collude. A proof of shuffle allows a mix
to prove they have correctly processed their input. A fundamental challenge in
electronic voting is the design of mixnets that can accomodate a large number
of encrypted ballots in a relatively short space of time. An additional goal is
robustness, a mixnet must be able to recover from the failure of faulty or dis-
honest mixes. In this paper we present efficient constructions for shuffling in
public [AW07a], a scheme which allows a shuffle to be precomputed before any
input is received. Evaluating the precomputed shuffle upon input is public, that
is requires no secret information and can be performed even by untrusted parties.
Evaluation is also highly parallelisable, thus the work required to mix votes can
be distributed over an arbitrary number of workstations at election time.

1.1 Improving the Efficiency and Robustness of Mixnets

Most mixnets achieve robustness through the detection and replacement of cor-
rupt mixes. Although a few schemes [Cha81,PIK94,GZB+02] verify that the
mixnet as a whole functioned properly, these schemes provide no way to recover
from errors or identify dishonest mixes. The most common method to audit a



mix is to require it to output a zero knowledge proof. Cut and choose tech-
niques [SK95] are generally applicable but inefficient, hence much work has been
devoted to optimising the proof of a shuffle.

Abe [Abe99] and later Jakobsson and Juels [JJ99] presented the first prac-
tical proofs of a shuffle based upon re-encryption permutation networks. Fu-
rukawa and Sako [FS01] used a commitment to a permutation matrix and Neff
[Nef01] used unique factorisation of polynomials to prove a shuffle of ElGamal
ciphertexts with improved efficiency. Efficient arguments and proofs have also
been devised in the case that the shuffle is restricted to a subset of permuta-
tions [RW04,dHSŠV09]. Generic techniques may be used to further optimise the
above proofs, including pre-computation of re-encryption factors, fixed base and
multi-exponentiation and batch proof techniques [BGR98] and PRGs for chal-
lenge generation. Wikström [Wik09] has also observed that a proof of shuffle
may be split into offline and online phases. A mix provably commits to its per-
mutation offline allowing a highly efficient commitment-consistent proof in the
online phase.

Despite these enhancements there remain inherent limitations on the robust-
ness and efficiency of mixnets which makes use of private techniques for online
mixing. Firstly, if a mix is detected cheating then the mixnet must either be
restarted or delayed until a replacement is found. Secondly, the opportunities
for parallelisation are quite limited. As each mix must keep its permutation se-
cret, it must perform its round of mixing and output a correct proof without
assistance. Therefore the runtime is at least linear in the number of votes and
mixes. Thirdly, it is commonly assumed that each mix server in a mixnet should
belong to a different organisation (e.g. political party). Online private mixing
depends upon a quorum of these co-operating in the short space of time before
tallying begins.

In contrast, two schemes shuffling in public [AW07a] and offline/online mix-
ing [AW07b] allow a shuffle to be precomputed. These schemes imply that no
mix servers need be present at election time for mixing to take place. A major
downside of offline/online mixing is that each voter requires a separate key to en-
crypt their vote. Additionally the scheme significantly restricts the number and
size of votes. The main disadvantage of shuffling in public is its inefficiency, with
generation and evaluation of the precomputed shuffle requiring O(N2) exponen-
tiations. In this work we reduce both phases to O(N log3.5N) exponentiations.
Experiments indicate that our scheme is faster when N > 1200.

1.2 Shuffling in Public

The goal of shuffling in public is the public-key obfuscation of the shuffle phase of
a mix-net comprising either a decryption shuffle or re-encryption shuffle function-
ality (program) [AW07a]. Informally, a public-key obfuscator O takes a program
F and outputs a new program O(F ) which outputs encryptions of F ’s outputs.
That is ∃ � ∀x O(F ) � x = O(F (x)) for some encryption function O and we say
the operator � evaluates the obfuscated program on input x. A formal model
is proposed in Definition 3 [AW07a] which builds upon an earlier definition by



Ostrovsky and Skeith [OS07]. Adida and Wikström present obfuscators for de-
cryption and re-encryption shuffles in the BGN [BGN05] and Paillier [Pai99]
cryptosystems respectively. They also prove that their obfuscators are seman-
tically secure (Definition 4 [AW07a]). Given a set of parties who sample and
obfuscate a shuffle before any input is received, one can construct a mixnet
provided that joint decryption is verifiable.

1.3 Our Contributions

We public key obfuscate a Paillier shuffle using permutation networks. Our ob-
fuscated shuffle comprises O(N logN) ciphertexts and requires O(N log3.5N)
exponentiations to generate and evaluate, rather than O(N2) ciphertexts and
exponentiations in [AW07a]. Utilising a suitable network, we can restrict the
space of permutations, for example we can obfuscate homomorphic rotation. We
propose a distributed protocol for sampling and obfuscating a shuffle allowing
the construction of a verifiable mixnet. A side effect of the use of permutation
networks is that the resulting distribution over permutations may be biased.
However it is possible to reduce the bias at the expense of increasing the com-
plexity to O(N logcN) for a constant c > 3.5. Moreover for some applications
weaker anonymity may be acceptable.

1.4 Outline

The paper is organised as follows. In Section 2 we discuss cryptographic prelim-
inaries. In Section 3 we review permutation networks. In Section 4 we show how
to obfuscate shuffles of Damg̊ard-Jurik ciphertexts as well as an operation to
compose obfuscations. These ideas when applied to permutation re-encryption
networks lead to an improved obfuscator for a Paillier shuffle. In Section 5 we
provide a distributed protocol for sampling and obfuscating a shuffle via an
arbitrary permutation network. In Section 6 we analyse the properties of the
resulting mixnet and prove that it is secure under standard assumptions. In
Section 7 we conclude and suggest future directions.

2 Preliminaries

2.1 Notation

We denote by κ the security parameter (i.e the bitlength of the RSA modulus),
and say that a function ε(κ) is negligible if for each c ∈ N there exists κ0 ∈ N
such that for all κ > κ0, ε(κ) < κ−c. We denote probabilistic polynomial time
by PPT and assume all adversaries are PPT Turing machines. Let ΣN be the
symmetric group on N elements. By a “random encryption” of a message m,
we will implicity mean an encryption of m where the randomisation factor is
chosen uniformly and independently from the randomisation space. Suppose a



PPT Turing Machine A distinguishes distributions D1 and D0. We denote by
Adv(A) the advantage of A in distinguishing D1 and D0, where

Adv(A) = | Pr
t←D1

[A(t) = 1]− Pr
t←D0

[A(t) = 1]|

is a function of κ.

2.2 Homomorphic Encryption

Definition 1 (Homomorphic). The public key of a homomorphic cryptosys-
tem CS = (G, E ,D) specifies a message space (Mpk,+), a randomiser space
(Rpk, ·) and a ciphertext space (Cpk,×) all of which are abelian groups. En-
cryption is homomorphic

Epk(m, r)× Epk(m′, r′) = Epk(m+m′, r · r′).

For any homomorphic cryptosystem we can define a scalar homomorphism gener-
ically

c⊗ Epk(m, r) = Epk(m, r)× . . .× Epk(m, r)︸ ︷︷ ︸
c

= Epk(cm, rc).

Definition 2 (Indistinguishability under Chosen Plaintext Attacks).
Let CS = (G, E ,D) be a cryptosystem and A = (A1, A2) be an adversary. Define

Experiment ExpIND−CPA−bA,CS (κ) :

(pk, sk)← G(1κ); (m0,m1, δ)← A1(pk) : |m0| = |m1|; c← Epk(mb);

v ← A2(m0,m1, δ, c)

return v
and let

Adv(A) =| Pr[ExpIND−CPA−1A,CS (κ) = 1]− Pr[ExpIND−CPA−0A,CS (κ) = 1] |

Then CS satisfies indistinguishability under chosen plaintext attacks (IND-CPA)
if for any PPT A, Adv(A) is negligible.

2.3 The Damg̊ard-Jurik Cryptosystem

The Damg̊ard-Jurik Cryptosystem [DJ01] is a generalisation of the Paillier Cryp-
tosystem [Pai99] based on the isomorphism Zni × Z∗n → Z∗ni+1 . Let Ei,n be the

ith generalised Paillier encryption, where i ≤ s for some integer s.

Key Generation Let n = pq be an RSA modulus. Let λ = lcm(p − 1, q − 1).
Compute via the Chinese Remainder Theorem d such that d = 1 mod ns

and d = 0 mod λ.
Encryption Given a plaintextm ∈ Zni , choose a random r ∈ Z∗n. Let Ei,n(m, r) =

(1 + n)mrn
i

mod ni+1.



Decryption Di,n(c) = log(1+n) c
d mod ni+1. We have:

cd = (1 + n)mdrn
id = (1 + n)md mod nirn

id = (1 + n)m mod ni+1.
One can extract m given (1 + n)m mod ni+1 using the binomial-expansion
based algorithm presented in Section 3 of [DJ01].

Semantic Security Semantic security of the scheme is based upon the Deci-
sion Composite Residuosity Assumption (DCRA) [Pai99], which states that
no PPT algorithm can distinguish the uniform distribution on Z∗n2 from the
uniform distribution on the subgroup of nth residues in Z∗n2 . In fact an adver-
sary with advantage εi(κ) against Ei,n implies an adversary with advantage
at least εi(κ)/i against E1,n as shown in [Gjø05].

2.4 Privacy of a Shuffle

Nguyen et al. in [NSNK04] formally define shuffle privacy by observing that a
shuffle of ciphertexts is an “encryption” that hides the permutation. The corre-
sponding security notion is “indistinguishability under chosen permutation at-
tacks” (IND-CPAS). A discussion is included in Appendix A.

3 Permutation Networks

A permutation network is a circuit composed of configurable switches that per-
mutes a set of inputs. For convenience we assume that every switch accepts the
same number of inputs. This includes the important special cases of rotation and
shuffling - the networks we present are also optimal in the sense that the size
and depth are minimal. We assume that the number of inputs, N , is a power of
two.

Definition 3. Suppose Ψ is a permutation network of dimension ∆×W . Then
each layer consists of W independent switches where each switch imposes a fixed
mapping on N ′ = N/W inputs when its control bit is true. Let the switches in
the ith layer partition the set of inputs {1, . . . , N} into subsets Vi,1, . . . , Vi,W with
corresponding mappings σi,1, . . . , σi,W . Let A(i) be the adjacency matrix of the
ith layer. Then

A
(i)
lm =

{
1 if l = m ∨ σi,j(l) = m for some j ∈ [W ]
0 otherwise.

(1)

Let the control bits of the ith layer be bi,1, . . . , bi,W . Then the permutation im-

posed by that layer is πi , σ
bi,1
i,1 . . . σ

bi,W
i,W . Moreover the state of the network is

π
Ψ
= π∆ . . . π1.

3.1 Rotation

We describe the barrel shifter network which is capable of implementing every
possible rotation. Let the set of rotations be φ0, . . . , φN−1. Observe that a switch



on N inputs can output φ0 or φ2
i

for each i in [log2N ]. Cascading these switches
together, we obtain a network that has ∆ = log2N and W = 1. Clearly φj :
0 ≤ j < N is output iff blog2N−1 . . . b0 = j2, therefore each rotation is possible.
Figure 1(a) shows an example for N = 8.

3.2 Shuffling

We require a rearrangeable permutation network, i.e. one that is capable of im-
plementing all possible permutations of its input. Since there are N ! possible
outputs, at least log2N ! = Ω(N logN) switches are required. A number of net-
works meet this bound for example the Waksman network [Wak68] consists of
N log2N−N+1 switches. For convenience we will use the slightly simpler Beneš
network [Ben64] which consists of a butterfly network composed with a reflected
butterfly network, where the middle layer is shared. Note that the network has
∆ = 2 log2N − 1,W = N/2. Figure 1(b) shows an example for N = 8.

3.3 Biased Networks

Abe and Hoshino observed that setting each switch uniformly and independently
in most permutation networks leads to a biased distribution over ΣN [AH01].
For example, in the Beneš network, there are 2(N/2)(log2N−1) switch settings
that produce the identity permutation, while other permutations result from
only one switch setting. This issue cannot be avoided in Protocol 1 leading to
biased output of the mixnet. However we provide some results that suggest that
for certain applications the protocol may be acceptable.

Definition 4. Suppose Ψ is a permutation network. Let k ≤ N be a positive
integer. Let Ck and Pk be the set of ordered (resp. unordered) k-tuples whose
elements are drawn without replacement from 1, . . . , N . For t ∈ Ck, let Ct and
Pt be the distributions of {Ψ(t1), . . . , Ψ(tk)} and (Ψ(t1), . . . , Ψ(tk)) respectively,
when all switches are set uniformly at random. The bias over ordered (resp.
unordered) k-tuples of Ψ is

εCk(N) = max
t∈Ck

‖Ct − U(Ck)‖, εPk(N) = max
t∈Ck

‖Pt − U(Pk)‖

where U is the uniform distribution and ‖ · − · ‖ denotes the statistical distance.

Proposition 1. The bias over 1-tuples of the Beneš network is 0.

Proof. It is well-known that the Butterfly network sends any input to each out-
put with probability 1/N when set uniformly. This property is maintained when
the network is composed with its reflection.

Theorem 1 (Lemma 4.2 [CKKK01]). One can construct a permutation net-
work of depth O(log4N) with bias over ordered N/ log2N -tuples in O(1/N2).

Theorem 2 (Corollary 1.10 [CKKK01]). There are permutation networks
of depth O(log2N) with bias over unordered N -tuples in O(1/N).



Proposition 1 guarantees the privacy of any input in the absence of infor-
mation about the images of other inputs. On the other hand, the network in
Theorem 1 guarantees that the images of any k ≤ N/ log2N inputs cannot be
determined except with low probability. Unfortunately privacy is only guaran-
teed between ordered k-tuples, for example it is possible that the order of inputs
is maintained. For applications where there is a lot of redundancy in the inputs,
such as first-past-the post voting, this level of bias may be acceptable. Theorem 2
is unfortunately non-constructive, but states that efficient networks with small
bias exist.

(a) Barrel Shifter. (b) Beneš.

Fig 1. Permutation Networks.

4 Obfuscation of a Paillier Shuffle

In this section we show how to obfuscate Paillier shuffles via permutation net-
works. A key property we use is that the Damg̊ard-Jurik cryptosystem supports
nested homomorphic encryption. Let Ei,n : Mi,n × Rn → Ci,n denote the ith

generalised Paillier encryption, where Mi,n and Ci,n are the message and ci-
phertext spaces.1 Similiarly define re-encryption RE i,n : Ci,n × Rn → Ci,n.
Then Ci,n ⊆ Mi+1,n for all i ≥ 1 and additionally Ei,n(m, r) ⊗ Ej,n(m′, r′) =
Ej,n(Ei,n(m, r) × m′, Ei,n(m, r) ⊗ r′) for all m ∈ Ci,n,m

′ ∈ Mj,n, r, r
′ ∈ Rn.

The latter property appears to have been first observed by Lipmaa [Lip05] who
used it in a recursive fashion to develop an efficient 1-out-of-n computationally
private information retrieval (CPIR) protocol. Adida and Wikström in [AW07a]
independently noticed this fact and used it define a form of homomorphic matrix
multiplication.

4.1 Matrix Notation

Let Ēi,n and R̄E i,n be encryption and re-encryption defined for matrices of in-
puts. Let ◦ denote point-wise matrix multiplication and ⊗ denote point-wise

1 Note that Rn is actually equivalent to C0,n.



matrix exponentiation, note that like ciphertext exponentiation the exponent
matrix is written on the left. Variables in lower case will generally denote vec-
tors, while variables in upper case will denote matrices.

Definition 5 (Homomorphic Matrix Multiplication [AW07a]). Suppose

d = (dl) ∈ C1×N
i,n and C = (clm) ∈ CN×Nj,n . Then d ? C ,

(∏N
l=1(clm)dl

)N
m=1

.

Proposition 2. Suppose d ∈ C1×N
i,n and C = Ēj,n(M,R) ∈ CN×Nj,n . Then d?C =

Ēj,n(d×M,d ? R).

Proof. The proof follows easily from the homomorphic properties of Ej,n.

4.2 Obfuscation of Damg̊ard-Jurik Shuffles

The main idea behind standard Paillier obfuscation is to represent the shuffle
as a modified permutation matrix where the ones are replaced by re-encryption
factors and then encrypt it (see Definition 9 [AW07a]). A straightforward gen-
eralisation allows one to obfuscate Damg̊ard-Jurik shuffles of arbitrary degree
(Proposition 3). Moreover it turns out that homomorphic matrix multiplica-
tion actually composes obfuscated shuffles, although this fact was not noted in
[AW07a]. The composition of two obfuscated shuffles multiplies both underlying
permutations, but re-encrypts using the re-encryption factors of the first shuffle.
This is formalised in Lemma 1.

Definition 6. Suppose Λπ = (λπlm) is a permutation matrix. Let a = (al) ∈
M1×N

i,n and r = (rl) ∈ R1×N
n be vectors. Then Pπi [a, r] , (λπlmEi,n(al, rl)).

Definition 7. The ith generalised Paillier shuffle is a functionality PSi = {PSi,N(κ),κ}κ∈N,
where N(·) is a polynomially bounded and polynomially computable function,
such that for every κ ∈ N,PSi,N(κ),κ = {PSi[π, r]}π∈ΣN(κ),r∈({0,1}∗)N(κ) and for

every (n, sk) ∈ G(1κ) and (c1, . . . , cN ) ∈ C1×N
i,n the circuit PSi[π, r] is defined by

PSi[π, r](n, c1, . . . , cN ) = (c1, . . . , cN )× Pπi [0, r].

Proposition 3. Let PSi[π, r] ∈ PSi,N(κ),κ be a shuffle and let i < j. Then

C = Ēj,n(Pπi [0, r], S) : S ∈R RnN×N is an obfuscation of PSi[π, r].

Proof. Let d ∈ C1×N
i,n . Define d′ = d ? C. By Proposition 2

d′ = d ? Ēj,n(Pπi [0, r], S) = Ēj,n(d× Pπi [0, r], d ? S) = Ēj,n(PSi[π, r](d), d ? S).

Lemma 1 (Composition). Suppose PSi[µ, r] ∈ PSi,N(κ),κ, PSj [ν, r
′] ∈ PSj,N,κ

are shuffles with corresponding obfuscations Cµi , Ēi+1,n(Pµi [0, r], S), Cνj ,
Ēj+1,n(P νj [0, r′], S′), where i < j. Then (Cµi , C

ν
j ) is an obfuscation of PSi[νµ, r].



Proof. Let d ∈ C1×N
i,n . Define d′ = d ? Cµi and d′′ = d′ ? Cνj . By Proposition 2

d′′ = Ēj+1,n(PSj [ν, r
′](d′), d′ ? S′)

= Ēj+1,n(PSj [ν, r
′](Ēi+1,n(PSi[µ, r](d), d ? S)), d′ ? S′)

= Ēj+1,n(Ēi+1,n(PSi[µ, r](d), d ? S + r′(j−i))× Λν , d′ ? S′)

= Ēj+1,n(Ēi+1,n(PSi[νµ, r](d), ν(d ? S + r′(j−i))), d′ ? S′).

4.3 Obfuscation of Shuffle Networks

The composition lemma implies that a sequence of obfuscated shuffles of ar-
bitrary length may be composed by multiplication, the result is an obfuscated
shuffle that composes all permutations but inherits re-encryption factors from
only the first shuffle in the sequence. Therefore it is possible to obfuscate the
set of shuffles induced by the layers of a re-encryption permutation network
[Abe99,JJ99] and compose them, provided that the ith layer is lifted to ac-
cept ith generalised Paillier ciphertexts (Proposition 4). We further observe that
each layer can be obfuscated using only O(N) ciphertexts, by decomposing the
corresponding permutation into switches (Proposition 5). Combining these ob-
servations yields an efficient obfuscator of an arbitrary shuffle (Definition 8). We
prove that our obfuscator is semantically secure if the network has polylogarith-
mic depth and the DCRA holds (Theorem 3).

Proposition 4. Let Ψ be a re-encryption permutation network with state π
Ψ
=

π∆ . . . π1. Suppose that PS1[π1, r
(1)] ∈ PS1,N(κ),κ, . . . , PS∆[π∆, r

(∆)] ∈ PS∆,N(κ),κ

is the sequence of shuffles corresponding to the layers of Ψ . Let {Cπii = Ēi+1,n(Pπii [0, r(i)], Si) :

Si ∈ RN×Nn } be obfuscations. Then (Cπ1
1 , . . . , Cπ∆∆ ) is an obfuscation of PS1[π, r(1)].

Proof. The result follows from recursive application of Lemma 1.

Proposition 5. Let PSi[πi, r
(i)] and Cπii be defined as in Proposition 4 and let

A(i) be the adjacency matrix of the ith layer of Ψ . Then C ′i
πi = A(i) ⊗ Cπii is

also an obfuscation of PSi[πi, r
(i)].

Proof. Observe that by Equation (1), Definition 3, A(i) ◦ Λπi = Λπi . By the
homomorphic properties of ciphertext exponentiation

A(i) ⊗ Cπii = A(i) ⊗ Ēi+1,n(Pπii [0, r(i)], Si)

= Ēi+1,n(A(i) ◦ Pπii [0, r(i)], A(i) ⊗ Si)

= Ēi+1,n(Pπii [0, r(i)], A(i) ⊗ Si).

Note that matrix A(i) is zero except for the co-ordinates which correspond to
input and output nodes in the ith layer which are linked by switch. It follows
that C ′i

πi is a matrix which consists of only 2N non-trivial ciphertexts.



Definition 8. Let Ψ be a rearrangeable permutation network of depth ∆. The
obfuscator OΨ for the Paillier shuffle PS1 takes as input the tuple (1κ, n, d, PS1[π, r]),

where (n, sk) ∈ G(1κ) and PS1[π, r] ∈ PS1,N(κ),κ. It computes π
Ψ
= π∆ . . . π1 and

generates shuffles PS1[π1, r
(1)] ∈ PS1,N(κ),κ, . . . , PS∆[π∆, r

(∆)] ∈ PS∆,N(κ),κ

such that r(1) = r and r(2), . . . , r(N) ∈R R1×N
n . It produces obfuscations {Ciπi =

A(i) ⊗ Ēi+1,n(Pπi [0, r(i)], Si) : Si ∈ RN×Nn }∆i=1. It outputs a circuit with hard-

coded C1
π1 , . . . C∆

π∆ that, on input d ∈ C1×N
1,n outputs d′ = d?C1

π1 ?. . .?C∆
π∆ ∈

C∆+1,n.

Theorem 3. The obfuscator OΨ is polynomially indistinguishable (Definition 4
[AW07a]) if Ψ has polylogarithmic depth and the DCRA holds.

5 Distributed Sampling and Obfuscation of a Shuffle

We construct a distributed protocol for sampling and obfuscating a shuffle via
an arbitrary permutation network. Suppose that mix servers M1 −Mk sample
and obfuscate the shuffle. Denote the switch at position (i, j) in Ψ by χi,j . Recall
that the permutation in the ith layer of a permutation network may be written as

a product of the switches which are set to true, i.e. πi = σ
bi,1
i,1 . . . σ

bi,W
i,W . To ensure

that the state of the permutation network is set uniformly at random, every mix
flips the state of χi,j at random hence bi,j = 1 with probability 1/2. In practice

χi,j is simply a permutation matrix of encrypted control bits, hiding σ
bi,j
i,j . When

the matrices χi,1, . . . , χi,W are superimposed, they form the permutation matrix
Ci of the shuffle πi. Thus the obfuscated shuffle is the tuple (C1, . . . , C∆).

Protocol 1 (Sampling and Obfuscation of a Shuffle).
Common Input: A Paillier public key n, integer N and permutation network
Ψ of dimension ∆×W .
Mix server MI proceeds as follows.

1. For i = 1, . . . ,∆ do:
(a) Generate N ×N matrix Ci whose entries are all initially Ei+1,n(0, 0∗).
(b) For j = 1, . . . ,W do:

i. Generate N ′ double encrypted zeroes of the form Ei+1,n(Ei,n(0)) in a

distributed way using Protocol 3 [AW07a]. Denote these (c
(1)
i,j , . . . , c

(N ′)
i,j ).

ii. Form the matrix:

χ
(0)
i,j =

(
c
(1)
i,j , . . . , c

(N ′)
i,j

Ei+1,n(0, 0∗) , . . . , Ei+1,n(0, 0∗)

)
.

iii. For l = 1, . . . , k do:



– If l = I, permute the rows of χ
(l−1)
i,j with µ

(l)
i,j ∈R Σ2 respectively

and re-encrypt them with randomness r
(l)
i ∈R R2×N ′

n publishing
matrix

χ
(l)
i,j = R̄E i+1,n(µ

(l)
i,j(χ

(l−1)
i,j ), r

(l)
i ).

– If l 6= I, verify that the above equation holds.
iv. Suppose Vi,j = {l1, . . . , lN ′}. Update matrix Ci:

Ci

(
l1, l1 , . . . , lN ′ , lN ′

l1, σi,j(l1) , . . . , lN ′ , σi,j(lN ′)

)
← χ

(k)
i,j .

2. Output (C1, . . . , C∆).

6 Mixnet Properties

We analyse the mixnet which result from mix servers generating an obfuscated
shuffle according to Protocol 1, evaluating it upon input and requesting that a
threshold number of decryption servers decrypt the output. Note thatN(∆+1) =
O(N logN) threshold decryptions are required to recover the input messages.

6.1 Privacy

We assume the existence of at least one honest mix in Protocol 1, hence the ob-
fuscated shuffle should be identically distributed to the output of a trusted party
running obfuscator OΨ (Definition 8), albeit according to a biased permutation
distribution, namely that formed by setting the network uniformly at random.
Therefore the security of the mixnet follows from the following theorem.

Theorem 4. Suppose the DCRA holds. Let (CSpai, S, (P,V)) be the verifiable
shuffle which results from a trusted party obfuscating a random Paillier shuf-
fle according to Definition 8, evaluating it upon input and then revealing (and
proving correct) each layer of intermediate decryptions. Then (CSpai, S, (P,V))
is IND-CPAS secure.

We note that a weakness of the IND-CPAS model is that it does not guaran-
tee that all information usable by an attacker remains hidden when the mixed
ciphertexts are finally opened. In particular an attacker will at least know their
own output and may combine this with knowledge of the bias to infer other out-
puts. Therefore analysis of a realisable ideal (biased) mixnet in the universally
composable framework [Can01] is desirable but unfortunately beyond the scope
of this paper.



Remark 1. Alternatively it is possible to construct an unbiased mixnet as follows.
The Ith mix samples a shuffle from PS(I−1)∆+1 at random and obfuscates it by
setting the state of the Beneš network accordingly and applying the obfuscator
in Definition 8. The obfuscated shuffles are then homomorphically multiplied
with the input. Note, however, this approach incurs an overhead of k3.5 (see
Section 6.2) thus is only practicable for small k.

6.2 Complexity

The expansion factor of the mix-net is 1/∆. We count the effective number of
multiplications modulo n for each stage of the mixing process, and compare
them to [AW07a]. We assume that multiplication modulo ns is s1.5 times as
costly as multiplication modulo n, and that exponentiation is performed by
repeated squaring. This implies complexity proportional to ∆3.5. Note that κc
is a parameter of Protocol 2 [AW07a] and satisfies κc � κ.

Sample & Prove Evaluate Decrypt
Obfuscate

[AW07a] (Shuffle) O(N2κ) O((N2 +Nκc)κ ) O(N2κ) O(N logNκ)

Proposed O(N log3.5Nκ) O(N log3.5Nκcκ) O(N log3.5Nκ) O(N log3.5N
(Shuffle & Rotate) (logN + κ))

An implementation using GMP [Gra12] suggests that our scheme is faster when
N > 1200.

6.3 Parallelisation

Generating an obfuscated shuffle makes use of a private mixnet, therefore par-
allelisation is limited to that within individual mixes, of course the verification
of each mix’s shuffle proofs can be distributed over other mixes or the public.
The evaluation of the shuffle is public, though, hence can be safely parallelised
over arbitrarily many parties. The most obvious parallelisation has k processors
evaluate O(N/k) switches at each layer of the network, resulting in O(logN)
parallel steps. Thus when k ≈ N it is possible to mix votes in polylogarithmic
time.

7 Conclusion

We have presented a more efficient method of obfuscating a Paillier shuffle based
upon re-encryption permutation networks. An interesting further direction is to
investigate to what extent it is possible to distribute the sampling and obfusca-
tion of a shuffle over a variable number of parties, without incurring a prohibitive
loss in efficiency. Such a protocol could conceivably allow voters to directly con-
tribute to the anonymisation of their votes without any assistance from third
parties.
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A Shuffle Privacy

A verifiable shuffle is a tuple (RP, S, (P,V)) whereRP is a public-key cryptosys-
tem with a re-encryption algorithm, S is a PPT algorithm that shuffles input ci-
phertexts and (P,V) is a proof system that proves the existence of re-encryption
factors linking input and output ciphertexts [NSNK04]. One definition for secu-
rity of a verifiable shuffle is indistinguishability under chosen permutation attacks
(IND-CPAS) and is an extension of classical IND-CPA security for cryptosys-
tems. A related definition is semantic privacy under chosen permutation attacks
(SP-CPAS) which specifies that whatever can be computed after the shuffle exe-
cution could be computed using only prior information. Nguyen et al. [NSNK04]
prove that the two notions are equivalent.

Definition 9 (Indistinguishability under Chosen Permutation Attacks).
Let
(RP, S, (P,V)) be a verifiable shuffle and A = (A1, A2) be a pair of PPT algo-
rithms. Let t ∈ {0, 1}poly(κ). Define

Experiment ExpIND−CPAS−bA,(RP,S,(P,V))(κ, t) :

(pk, sk)← G(1κ); ((π(0), π(1), Lin, L
(p)
in , C

L
(p)
in

Epk
), δ)← A1(pk, t);

Lout ← S(pk, Lin, π(b));

o(b) ← (Lout,VIEWPV (pk, Lin, Lout), Lin, L
(p)
in , C

L
(p)
in

Epk
);

v ← A2(δ, o(b))

return v
and let

Adv(A) =

max
t∈{0,1}poly(κ)

| Pr[ExpIND−CPAS−1A,(RP,S,(P,V))(κ, t) = 1]− Pr[ExpIND−CPAS−0A,(RP,S,(P,V))(κ, t) = 1] |

Then (RP, S, (P,V)) satisfies indistinguishability under chosen plaintext attacks
(IND-CPAS) if for any A with polynomially bounded auxiliary input, Adv(A) is
negligible.

B Proofs

B.1 Proof of Theorem 3

Proof. Suppose there is an adversary A against the the obfuscator OΨ with ad-
vantage ε(κ). Let A′ be an adversary in the IND-CPA experiment for E∆+1,n.

When A outputs challenge circuits PS0, PS1, adversary A′ generates sequences
{P 0

i }∆i=1, {P 1
i }∆i=1 as would be generated by OΨ . When the IND-CPA experi-

ment returns Sb = {Ē∆+1,n(P bi )}∆i=1, A′ produces Sbred = {A(i) ⊗ Ē∆+1,n(P bi )



(mod ni+1)}∆i=1 and passes it to A, outputting 1 iff A does. Since Sbred is identi-
cally distributed to OΨ (PSb), the advantage of A′ in the IND-CPA experiment
is identical to that of A in distinguishing the obfuscated shuffles. Then by the re-
marks in Section 2.3, A′ has advantage at least ε(κ)/(∆+1) = ε(κ)/O(logcN) in
breaking the DCRA. Since N < 2κ, logcN < κc thus ε(κ)/κc must be negligible
if the DCRA holds. Then ε(κ) is also negligible and polynomial indistinguisha-
bility of OΨ follows.

B.2 Proof of Theorem 4

Proof. The proof is via a hybrid argument. First define D̄i,n to be the vector
form of Di,n, and define D̄j:i,n = D̄j,n ◦ . . . ◦ D̄i,n for j > i. Suppose Π(b) is the

distribution of the challenge o(b) in ExpIND−CPAS−b
A, (CSpai,S,(P,V)), where A = (A1, A2) is

an adversary. Define the following hybrid distributions:

Π(b) =

(
L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄∆+1,n(Leval), . . . , D̄∆+1:2,n(Leval)

)
:

(Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t), π(b)

Ψ
= π∆ . . . π1,

Ci = A(i) ⊗ Ēi+1,n(Pπi [0, r(i)], Si) : r(i) ∈ R1×N
n , Si ∈ RN×Nn ,

Leval ← Lin ?

∆∏
i=1

Ci.

Π̂(b) =

(
L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄∆+1,n(Leval), . . . , D̄∆+1:2,n(Leval)

)
:

(Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t), π(b)

Ψ
= π∆ . . . π1,

Ci = A(i) ⊗ Ēi+1,n(Pπi [x(i), r(i)], Si) : x(i) ∈M1×N
i,n , r(i) ∈ R1×N

n , Si ∈ RN×Nn ,

Leval ← Lin ?

∆∏
i=1

Ci.

Π̃Ψ =

(
L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, y∆, . . . , y1

)
:

(Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t),

Ci = A(i) ⊗ Ēi+1,n(0, Si) : Si ∈ RN×Nn ,

Leval ← Lin ?

∆∏
i=1

Ci, y∆ ∈R C1×N
∆,n , . . . , y1 ∈R C1×N

1,n .

We are required to show that the distributions Π(0) andΠ(1) are computationally

indistinguishable. By transitivity it suffices to prove that Π(b) and Π̃(b) are
computationally indistinguishable for each b. However this in turn follows from
combining Lemmas 2 and 3.



Lemma 2. Suppose the DCRA holds. Then the distributions Π(b) and Π̂(b) are
computationally indistinguishable.

Proof. Suppose there is an adversary A = (A1, A2) against Π(b) and Π̂(b) with
advantage ε(κ). Let A′ be the adversary that distinguishes a ciphertext c∆ that
is a random encryption of 0 or a uniform message under E∆,n as follows.

Adversary A′(c∆, n, t)

1. Set (Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t)

2. Compute π(b)
Ψ
= π∆ . . . π1.

3. For i = 1, . . . ,∆ do:
(a) Compute ci ≡ c∆ mod ni+1.
(b) Apply Protocol 2 on (ci, πi) to generate modified permutation matrix

Pπii [a(i), r(i)].
(c) Generate Ci = A(i) ⊗ Ēi+1,n(Pπii [a(i), r(i)], Si) : Si ∈R RN×Nn .

4. Set Leval ← Lin ?
∏∆
i=1 Ci.

5. For i = 1, . . . ,∆ do:
(a) Compute D̄∆+1:i+1,n(Leval) = π∆ . . . πi+1 (li−1 × Pπii [a(i), r(i)]).

6. Run A2 on

o(b) = (L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄∆+1,n(Leval), . . . , D̄∆+1:2,n(Leval))

and output 1 iff A2 does.

Clearly A′ has advantage ε(κ) in breaking the semantic security of E∆,n. Since
∆ = O(logcN) the DCRA implies ε(κ) is negligible, hence the lemma follows.

Lemma 3. Suppose the DCRA holds. Then the distributions Π̂(b) and Π̃ are
computationally indistinguishable.

Proof. Suppose there is an adversary A = (A1, A2) against Π̂(b) and Π̃ with
advantage ε(κ). Let A′ be the adversary that distinguishes a ciphertext c∆+1

that is a random encryption of 0 or 1 under E∆+1 as follows.

Adversary A′(c∆+1, n, t)

1. Set (Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t).

2. Compute π(b)
Ψ
= π∆ . . . π1.

3. For i = 1, . . . ,∆ do:
(a) Compute ci ≡ c∆+1 mod ni+2.
(b) Generate modified permutation matrix Pπii [x(i), r(i)] where x(i) ∈R
Mi,n

1×N , r(i) ∈R R1×N
n .

(c) Apply Protocol 3 on (ci, πi) to generate matrix of ciphertexts Mi.
(d) Generate Ci = A(i)⊗(Pπii [x(i), r(i)]⊗Mi⊕Ei,n(0, Si)) : Si ∈R RN×Nn .

4. Set Leval ← Lin ?
∏∆
i=1 Ci.

5. For i = 1, . . . ,∆ do:



(a) Compute D̄∆+1:i+1,n(Leval) = π∆ . . . πi+1 (li−1 × Pπii [x(i), r(i)]).
6. Run A2 on

o(b) = (L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄∆+1,n(Leval), . . . , D̄∆+1:2,n(Leval))

and output 1 iff A2 does.

Clearly A′ has advantage ε(κ) in breaking the semantic security of E∆+1,n. Since
∆ = O(logcN) the DCRA implies ε(κ) is negligible, hence the lemma follows.

Protocol 2.

Input Ciphertext c which is a random encryption of 0 or a uniformly chosen
message under Ei and permutation πi ∈ ΣN .

Output Modified permutation matrix Pπii [a, r] with distribution

Pπii [0, r] : r ∈R R1×N
n if c is a random encryption of 0,

Pπii [x, r] : x ∈RMi,n
1×N , r ∈R R1×N

n otherwise.

Procedure Use standard amplification to generateN independent copies c1, . . . , cN
which have the same distribution as c. Replacing the ones in Λπi with {ci}Ni=1

yields the required distribution.

Protocol 3.

Input Ciphertext c which is a random encryption of 0 or 1 under Ei+1,n and a
permutation πi ∈ ΣN .

Output Matrix Mi with distribution

Ēi+1,n(0, S) : S ∈R RN×Nn if c is a random encryption of 0,

Ēi+1,n(Λπi , S) : S ∈R RN×Nn otherwise.

Procedure Use standard amplification to generateN independent copies c1, . . . , cN
which have the same distribution as c. Replacing the ones in Λπi with {ci}Ni=1

and the zeroes with random encryptions of zero yields the required distribu-
tion.


