
Policy-Enhanced Private Set Intersection:
Sharing Information While Enforcing Privacy

Policies

Emil Stefanov, Elaine Shi, and Dawn Song

UC Berkeley
{emil,elaines,dawnsong}@cs.berkeley.edu

Abstract. Companies, organizations, and individuals often wish to share
information to realize valuable social and economic goals. Unfortunately,
privacy concerns often stand in the way of such information sharing and
exchange.
This paper proposes a novel cryptographic paradigm called Policy-Enhanced
Private Set Intersection (PPSI), allowing two parties to share information
while enforcing the desired privacy policies. Our constructions require
minimal additional overhead over traditional Private Set Intersection
(PSI) protocols, and yet we can handle rich policy semantics previously
not possible with traditional PSI and Authorized Private Set Intersec-
tion (APSI) protocols. Our scheme involves running a standard PSI pro-
tocol over carefully crafted encodings of elements formed as part of a
challenge-response mechanism. The structure of these encodings resem-
ble techniques used for aggregating BLS signatures in bilinear groups.
We prove that our scheme is secure in the malicious model, under the
CBDH assumption, the random oracle model, and the assumption that
the underlying PSI protocol is secure against malicious adversaries.

1 Introduction

The need for two parties to exchange privacy-sensitive information arises in
numerous application domains. Often, the two parties involved in the exchange
are mutually distrustful and do not wish to reveal any additional information
other than what is necessary. In particular, we consider the scenario where two
parties each hold a set of elements and wish to find the intersection of their
elements without revealing other elements that are not in the intersection. In

This material is based upon work partially supported by the Air Force Office of Sci-
entific Research under MURI Grant No. 22178970-4170 and No. FA9550-08-1-0352,
by the National Science Foundation Graduate Research Fellowship under Grant No.
DGE-0946797, by Intel through the ISTC for Secure Computing, and by a grant
from the Amazon Web Services in Education program. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.

such applications, it is important to ensure that each data item being exchanged
is properly authenticated or authorized by the owner(s) or creator(s) of that data
item due to the following reasons:

– Thwart dishonest behavior. Unless some form of authentication is re-
quired, a malicious party can claim possession of fictitious data items, in an
attempt to find out whether the other party possesses these data items. For
example, if hospitals A and B are trying to find out their common patients,
a malicious hospital A can fictitiously claim that Carol is their patient, in
an attempt to find out whether Carol is a patient with hospital B.

– Comply with privacy policies. Sharing of privacy-sensitive information
may be governed by certain privacy regulations, either made by the govern-
ment or individual organizations. For example, two healthcare providers A
and B may wish to exchange information about their common patients to
improve service and facilitate diagnosis. However, due to privacy regulations
such as the Health Insurance Portability and Accountability Act (HIPAA),
they can only share a patient’s record if both providers have obtained the
patient’s consent. The above is an example of a simple privacy policy. In
other application scenarios, we may also desire the ability to support richer
privacy policies. We demonstrate how to support rich privacy policies in
Section 4.

In this paper, we propose Policy-Enhanced Private Set Intersection (PPSI).
In PPSI, each party has a set of elements, where each element may be autho-
rized (signed) by a different authority or authorities. PPSI allows two parties
to find the intersection of their sets, while enforcing rich privacy policies. The
policies specify what authorizations each party must possess for its elements.
Our scheme thwarts dishonest behavior by preventing a malicious party from
using unauthorized elements during the set intersection to violate the privacy of
the other party.

1.1 Results and Contributions

New problem definitions One important contribution we make is the definition
of a new problem, namely, Policy-Enhanced Private Set Intersection (PPSI).
Existing Private Set Intersection (PSI) protocols and Authorized Private Set In-
tersection (APSI) protocols are not general enough and fail to adequately address
the needs of above-mentioned application scenarios. To resolve this problem our
PPSI scheme offers the following rich capabilities not previously possible with
existing PSI and APSI protocols:

– Multiple authorities. PPSI supports privacy policies where each element
may be authorized by a different authority or different authorities. This
makes PPSI particularly useful when each data item may not be owned or
created by the same entity.

Overall Additional overhead over PSI

Computation O(nm+ n log log n) at most nm pairings

Bandwidth O(n) 2 group elements

Rounds O(1) 1 round

Table 1: Efficiency of our construction in Section 3.3. n is the maximum
number of elements per user and m is the maximum number of authorities
per element. The complexities are calculated assuming that we use [15] as the
underlying PSI scheme.

– Rich privacy policies. Many applications desire the ability to support
expressive privacy policies. Our PPSI constructions can support rich policy
semantics during the information sharing process, including conjunctive and
disjunctive policies, asymmetric policies, policies with attributes, and bundles
of elements.

Novel, provably secure constructions We propose novel PPSI constructions that
offer two main functionalities: 1) a signing functionality which allows an author-
ity to authenticate or authorize an element for a party; 2) a set intersection
protocol that allows two parties to find the intersection of their elements, while
enforcing the desired privacy policy.

We prove the security of our scheme against malicious adversaries, assuming
that the underlying PSI scheme is also secure in the malicious model. The proof
also relies on the CBDH assumption and the random oracle model.

Efficiency Our constructions are efficient in practice. Specifically, we require
O(n) communication bandwidth and O(nm+ n log log n) computation, where n
is the maximum number of elements per party and m is the maximum number
of authorities per element. Also, our protocol executes in O(1) rounds.

Notably, our constructions require only minimal overhead over standard Pri-
vate Set Intersection (PSI) protocols, but can support rich policies that are not
possible with standard PSI. We need one additional round of communication
over standard PSI, during which the parties exchange two group elements (ellip-
tic points). In terms of computation, we incur an additional overhead of at most
nm bilinear pairings over the traditional PSI protocols.

Table 1 summarizes the efficiency of our basic construction described in Sec-
tion 3.3.

1.2 Technical Challenges and Highlight of Our Techniques

It turns out that the problem is non-trivial, even with relatively simple policies.
A straightforward idea is to adopt an existing PSI protocol and require that
each party demonstrate a zero-knowledge proof that each element encoded in
a cryptographic commitment has the appropriate authorizations. However, the

complication is that when each element has a different authority or different
authorities, one cannot reveal the identity of the authority when performing the
zero-knowledge proofs, as the identity of the authority can leak information about
the corresponding element.

Special encodings Our techniques may be of independent interest. Our scheme
leverages a type of special encoding that allows us to circumvent the need for
performing complicated and costly zero-knowledge proofs. Each party computes
the special encodings over their elements and then runs a standard PSI protocol
over these encodings.

A party’s encoding for an element x is essentially a product of terms demon-
strating its authorization on x and the anticipated terms demonstrating the
other party’s authorization on x. The terms are cleverly crafted so that a party
can compute its own terms by combining its own authorizations and a challenge
sent by the other party. It can also compute the anticipated terms of the other
party without having the other party’s authorizations.

If both parties satisfy their respective policies for an element, then both par-
ties obtain the same encoding for that element, and this particular encoding
appears in the set intersection. However, if a party does not possess the correct
authorizations for an element, it is unable (computationally intractable) to com-
pute the correct encoding for this element. As a result, this party is unable to
learn whether the other party owns the element.

We point out that our encoding idea bears resemblance to techniques used
for aggregating BLS signatures in bilinear groups [5].

1.3 Related Work

A Private Set Intersection (PSI) protocol [9–18] allows two parties to find the
intersection of their respective sets such that neither party can infer elements
in the other party’s set that are not in the intersection. However, PSI protocols
allow each party to place any element in their own set. A dishonest party can
therefore insert fabricated elements in its set that she suspects the other party
might have. The intersection will reveal if the other party indeed has those
elements in its set.

To address this issue, Authorized Private Set Intersection (APSI) and vari-
ants [6,8,10] ensure that each party can only use elements certified by a trusted
authority in the intersection protocol. Existing APSI protocols assume that for
each party, there exists a single authority responsible for certifying all of its el-
ements. Therefore, these schemes do not support rich privacy policies coming
from multiple authorities, such as the application scenarios mentioned earlier.

2 Problem Definitions

2.1 Notations and Terminology

Let U denote a (countable) universe of all possible elements. Let Λ denote the
set of all authorities.

n Max number of elements in each party’s set.

m Max number of authorities per element.

U The set of all possible elements.

x ∈ U An element.

Λ The set of all authorities

authi ∈ Λ An authority that signs elements.

Pi A party participating in our protocol.

Si Pi’s set.

I The resulting intersection.

vki, ski authi’s public verification key and secret signing key.

σ or σi A signature issued by an authority.

attr An attribute attached to a signature.

F (x) Authorities for element x (for symmetric policies).

F (x, Pi) Authorities for element x and party Pi (for asymmetric policies).

g A random generator for the bilinear group.

Ri = gri Pi’s challenge for the other party.

Table 2: Table of notations.

As mentioned earlier, two parties, PA and PB , wish to find the intersection
of their sets in a way that complies with certain privacy policies, that is, only
when both parties have the appropriate authorizations for an element should it
appear in the intersection.

Policy A privacy policy defines which authority or authorities must sign an
element for a given party. For ease of exposition, we will first focus on symmetric
policies, where each element needs to be authorized by one or more authorities,
and the set of authorities is determined by the element itself, but is not dependent
on the parties. Two exampless of symmetric policies are: (1)Claimed friendship
with Alice needs to be authorized by Alice, and (2) Claimed membership in a
social group needs to be authorized by the administrator(s) of the group.

As each element’s authorities are determined by the element itself, we can
use a function F to describe symmetric policies. Formally, let F : U → 2|Λ|

denote a publicly-known policy function that maps each element to the set of
authorities that must sign it. For example, let x ∈ U , if F (x) = {auth1, auth3},
this means that element x has to be signed by authorities auth1 and auth3. One
simple policy function is the identity function, e.g., each patient’s record must
be authorized by the patient herself, or claimed friendship with a user must be
authorized by that user herself.

We say that x ∈ U is an authorized element for party P , if party P has
received all the necessary signatures for x, i.e., P has received a signature σi for
every authi ∈ F (x).

2.2 Basic Problem Definitions

Apart from the necessary setup and key generation functionalities, a PPSI
scheme should offer two main functionalities: 1) a signature scheme allowing
an authority authi to authorize an element x for a party P ; 2) a set intersec-
tion protocol that allows two parties to find the intersection of their authorized
elements.

We now present formal definitions for a basic PPSI scheme supporting sym-
metric policies. A Policy-Enhanced Private Set Intersection (PPSI) scheme (sup-
porting symmetric policies) should provide the following algorithms or protocols:

– Setup(λ): The Setup algorithm is run only once at system initialization to
generate public parameters param. The input λ represents the security pa-
rameter.

– KeyGen(param): Each authority authi runs the KeyGen algorithm to generate
a signing and verification key pair (ski, vki). authi then announces the public
verification key vki but keeps the private signing key ski to itself.

– Authorize(param, ski, x, Pj): The Authorize algorithm allows an authority authi
to grant a party Pj a signature on a specific element x.

– Intersect(Pi, Pj , Si, Sj): Let Si, Sj ⊆ U . Intersect is an interactive protocol
run by any two parties Pi and Pj on input sets Si and Sj respectively. When
both parties are honest, and assuming that Pi and Pj both have the necessary
signatures for elements in Si and Sj respectively, then both parties would
learn the intersection Si ∩ Sj at the end of the protocol.

2.3 Security Definitions

We prove the security of our protocol against a malicious adversary, who may
deviate arbitrarily from the specified protocol. We define security by comparing
what a malicious adversary can do in the real protocol execution against what
the adversary can do in an ideal world. In the ideal-world execution, both parties
would submit their sets to an imaginary trusted third-party denoted as T. The
trusted party T would make sure that both parties have the correct authoriza-
tions on the elements they submitted. If a party submits an element without
the necessary authorizations, T simply ignores that element. T then computes
the intersection of the elements satisfying the privacy policy and returns the
intersection to both parties. In the real-world, we do not use T and the par-
ties communicate directly to execute the real set intersection protocol. Roughly
speaking, the security definition implies that any attack that a polynomial-time
adversary can perform in the real world is also possible in the ideal world. Intu-
itively, this suggests that the real-world set intersection protocol is as secure as
the protocol in the ideal world that relies on a trusted third-party.

We now formally define the ideal functionality. The security definition in-
volves multiple parties a subset of which is controlled by the adversary.

Authorize T receives an authorization request from party Pi, requesting authj to
authorize element x. T forwards the request to authj , who can either accept or
reject the request. If authj accepts the authorization request, T replies accept to
Pi and remembers that T has authorized Pi on element x. Otherwise, T replies
reject to Pi.

SetIntersect T receives a request from party Pi to perform set intersection with
party Pj . T forwards the request to Pj . Pi and Pj now run an ideal set intersection
protocol as below (unless Pj replies abort).

– i) Pi sends a set Si to T, and T sends |Si| to Pj ; or ii) Pi sends abort.

– i) Pj sends a set Sj to T, and T sends |Sj | to Pi; or ii) Pj sends abort.

– T now checks whether each element in Si and Sj has appropriate authoriza-

tions. Let Ŝi ⊆ Si and Ŝj ⊆ Sj denote maximal subsets of Si and Sj that

have appropriate authorizations. T computes the intersection I ← Ŝi ∩ Ŝj .
– T sends I to Pi, and Pi responds ok or abort.

– T sends I to Pj , and Pj responds ok or abort.

Definition 1. Let E = (E1, E2, . . . , Em) denote a sequence of events, where
each Ei is of the form (Authorize, Pi, authj) or (SetIntersect, Pi, Pj). Let IdealS,E
denote the joint output distribution of all parties and the adversary S in the ideal
world under event sequence E. Let RealA,E denote the joint output distribution
of all parties and the adversary A in the real world under event sequence E.

We say that a PPSI scheme is secure, if for any polynomial-time adversary
A in the real world, there exists simulator S in the ideal world, such that for any
sequence of events E,

IdealS,E
c
= RealA,E

where
c
= denotes computational indistinguishability.

Note that we cannot prevent an adversary from refusing to participate in the
protocol or aborting in the middle of the protocol execution. As a result, our
definition explicitly allows the ideal-world adversary to abort any time during
the ideal-world protocol. Our definition also allows each party to use only a
subset of their authorized elements as input to the protocol.

Our protocol is not size-hiding, i.e., each party can learn the size of the
other party’s set. Therefore, in the ideal functionality, the trusted third-party
reveals to each party the size of the other party’s set. In particular, when both
parties honestly use their authorized elements as inputs, i.e., ŜA = SA and
ŜB = SB , each party learns the size of the other party’s authorized set. However,
notice that a party can potentially fuzz the size of its set by padding the input
set with random dummy elements for which it does not possess appropriate
authorizations. These dummy random elements will not appear in the final set
intersection due to lack of authorizations; however, they can hide the number of
authorized elements each party has.

3 Construction

3.1 Strawman Schemes

One strawman approach would be for the two parties to perform a regular Pri-
vate Set Intersection (PSI) over the elements’ signatures, thereby revealing the
signed elements that they have in common. However, this requires that both
parties have the exact same signature for the same element. This does not allow
authorities to bind a signature to a specific party. The signature can thus be
easily transferred to unauthorized parties.

It is conceivable that there are other solutions based on standard techniques
for the problem than our construction. For example, we can imagine schemes
based on secure multi-party computation, verifiable shuffles, and matching pairs
of blinded elements. However, to the best of our knowledge, these approaches all
tend to have much higher computational and bandwidth complexity than our
construction which achieves O(nm + n log log n) computational overhead and
O(n) bandwidth overhead – both almost linear in the number of elements n if
we assume the number of authorities per element m to be a constant.

3.2 Preliminaries

Bilinear group Our scheme utilizes a bilinear G group of primary order p.
There exists a non-degenerate bilinear mapping e : G × G → GT such that
∀g1, g2 ∈ G,∀a, b ∈ Z, e(ga1 , gb2) = e(g1, g2)ab. Our scheme relies on the following
computational assumption.

Computational Bilinear Diffie-Hellman (CBDH) Assumption Let g ∈ G denote
a random generator of the group. The CBDH assumption posits the computa-
tional hardness of the following problem. Given randomly chosen ga, gb, gc ∈ G,
compute e(g, g)abc.

Private Set Intersection A Private Set Intersection (PSI) protocol allows two
parties to compute their set intersection without revealing other elements. Our
protocol utilizes a standard PSI protocol (e.g., the scheme by Hazay and Nis-
sim [15]) as a blackbox. We assume that the PSI protocol is secure in the ma-
licious model, and refer the readers to [15] for a formal security definitions of
PSI.

3.3 Main Construction

Our construction involves running a standard PSI protocol over special encodings
formed as part of a challenge-response protocol. Below, we first describe our
construction, including the key generation and authorization algorithm, as well
as the intersection protocol. Then, in Section 3.4, we explain in detail how to
construct the encodings used in the set intersection protocol, and the properties
required for the encodings.

Inputs: PA, PB each has sets SA and SB , with the appropriate authorizations.
Outputs: PA, PB each obtains I:=SA ∩ SB

Protocol:

1. PA : Select random rA ∈R Zp, let RA ← grA

PB : Select random rB ∈R Zp, let RB ← grB

PA → PB : RA

PB → PA : RB

2. PA : CA ← {EncodeElem(x, rA, RB , PA, PB)|x ∈ SA}
PB : CB ← {EncodeElem(x, rB , RA, PB , PA)|x ∈ SB}

3. PA ⇔ PB : Engage in a PSI protocol with input sets CA and CB respectively.
As a result, both parties obtain the set C′:=CA ∩ CB of encodings.

4. PA, PB : Recover the intersection I from their encodings C′.

Fig. 1: Intersection protocol.

Setup The Setup algorithm chooses a bilinear group G of prime order p with
pairing function e : G × G → GT . It then chooses a random generator g ∈ G.
Next, it picks a hash functionH : {0, 1}∗ → G which will be modeled as a random
oracle. Finally, the Setup algorithm publishes a description of the bilinear group,
the generator g, as well as the hash function.

Key generation algorithm To pick a signing and verification key pair, each au-
thority authi randomly selects ski ∈R Zp. The verification key is vki:=g

ski . Each
authority i publishes its public verification key vki, but withholds its secret sign-
ing key ski.

Authorization algorithm Let H : {0, 1}∗ → G denote a hash function modeled
as a random oracle. We assume that each party Pi has a publicly-known unique
name (e.g., an assigned name or a randomly generated identifier). Without risk
of ambiguity, we overload the notation Pi to denote either the party or its name.

For authority authi to authorize element x for party Pj , authi computes the
following BLS signature [5] and issues it to Pj .

σ ← H(x, Pj)
ski

In the above, the hash function is computed over the name of the element con-
catenated with the name of the receiving party. Notice that since the name of
the party is incorporated into the signature, the signature cannot be transferred
to another party.

Intersection protocol Our protocol takes place in following four phases. The
detailed construction is presented in Figure 1.

1. Challenge Phase. PA sends PB a random challenge RA, and PB sends PA
a random challenge RB .

Fig. 2 The EncodeElem function.

function EncodeElem(x, rself, Rother, Pself, Pother)
c← 1 ∈ GT

for authi ∈ F (x) do
Let σi denote Pself’s signature on x from authi.
c← c · e(σi, Rother) · e(H(x, Pother), vki)

rself

end for
return c

end function

x ∈ U is the element to encode. rself ∈ Zp is the random exponent generated by the
party itself. Rother ∈ G is the random challenge received from the other party. Pself

and Pother represent the names of the party itself and the party it is communicating
with.

2. Encoding Phase. Each party computes an encoding for each element it
possesses and with the appropriate authorizations. The encoding is depen-
dent on the random challenges RA and RB . Figure 2 specifies the encoding
function.

3. Set Intersection Phase. Both parties perform a standard Private Set In-
tersection (PSI) protocol using their respective encodings as the inputs. For
the underlying PSI scheme we use the protocol described in [15].

4. Recovery Phase. At the end of the PSI protocol, each party learns the
intersection of the encodings. Through the intersection of encodings, each
party recovers the original elements in the intersection.

3.4 Encodings for Symmetric Policies

As shown in Figure 2, the encoding is computed as a product of multiple terms,
where each term is the result of a bilinear pairing. Intuitively, the encodings
satisfy the following properties:

– Conformity. If both parties have an element x ∈ U and the appropriate
authorizations, their respective encodings of the element x will be the same.
Therefore, the encoding for element x will appear in the intersection at the
end of the PSI protocol.

– Unforgeability. If a party does not have appropriate authorizations for the
element x, it is unable to forge the correct encoding for x. In this way, a
dishonest party who does not possess authorizations for element x cannot
find out whether the other party has element x.

The encoding contains two corresponding terms for each element-authority
pair (x, authi):

– Response to the other party’s challenge. The first term, e(σi, Rother), is a
response to the other party’s challenge Rother. Intuitively, if a party does not

possess an authorization from authi, then it will not be able to generate this
part of the encoding.

– Anticipated response from the other party to one’s own challenge. The sec-
ond term,
e(H(x, Pother), vki)

rself , is the anticipated response from the other party for
one’s own challenge Rself. Note that a party is always able to compute the
anticipated response for its own challenge, even without knowing the other
party’s signature, since a party knows the exponent rself of a challenge gen-
erated by itself. Let σ′i:=H(x, Pother)

ski denote the signature given to Pother

from authi on element x. It is not hard to see that

e(σ′i, Rself) = e(H(x, Pother), vki)
rself

In other words, if Pother has the correct signature from authi, its actual re-
sponse to Pself’s challenge should match the response anticipated by Pself. In
summary, this term enforces that the other party can only compute the encod-
ing if it has a signature from the correct authority.

Theorem 1. The PPSI scheme described in this section is secure against ma-
licious adversaries, assuming 1) the underlying PSI protocol is simulatable in
the malicious model; 2) the Computational Bilinear Diffie-Hellman (CBDH) as-
sumption holds in the bilinear group G; and 3) the hash function H is a random
oracle.

Proof overview We now give an overview of our proof, and defer the detailed
proof to Appendix 5. We first define a hybrid protocol by replacing the PSI
protocol with an ideal functionality for PSI. Due to the sequential modular
composition theorems by Canetti [7], it suffices to prove that the hybrid protocol
securely computes the ideal functionality defined in Section 2. We then construct
a simulator which is given black-box access to a hybrid-world adversary A. We
show that if the encoding scheme is unforgeable in some sense, then the joint
output distribution of all parties in the ideal world is indistinguishable from the
joint output distribution in the hybrid world.

The description of our protocol in Figure 1 does not hide the number of
authorized elements from the other party. If this number is also considered sen-
sitive, a party can pad its set of encodings with random dummy encodings, and
use the resulting set as inputs to the PSI protocol. Effectively, this reveals to the
other party the total number of authorized elements and dummy elements.

Another possible method to hide the size of one’s set is to use a Size-Hiding
PSI protocol in place of the PSI protocol used in our construction. Our security
proofs would still hold if the Size-Hiding PSI protocol is simulatable in the
malicious model. Notably, Ateniese et al. recently propose a Size-Hiding PSI
protocol secure under the semi-honest model [3]. Therefore, it is conceivable
that a Size-Hiding PSI protocol in the malicious model will become available in
the near future.

Fig. 3 The EncodeElem function for asymmetric policies.

function EncodeElem(x, rself, Rother, Pself, Pother)
c← 1 ∈ GT

for authi ∈ F (x, Pself) do
Let σi denote authi’s signature for Pself on x.
c← c · e(σi, Rother)

end for
for authi ∈ F (x, Pother) do

Let σi denote authi’s signature for Pother on x.
c← c · e(H(x, Pother), vki)

rself

end for
return c

end function

4 Extensions for Richer Policies

In this section, we describe how to compute the encodings in the intersection
protocol for different kinds of policies. Our main construction in Section 3.3
supports simple symmetric policies, and we now incrementally add support for
asymmetric policies, attributes, bundles, and DNFs.

4.1 Asymmetric Policies

So far we have focused on symmetric policies, where the authorities associated
with each element depend on the element itself. In other application scenarios,
the right authority may depend on both the element and the party performing
set intersection.

Let U denote a countable universe of elements, let P denote the set of all
parties, and let Λ denote the set of authorities. We denote asymmetric policies
using a publicly known policy function F : U × P → 2Λ. F outputs the set of
appropriate authorities given an element and a party. For example, if F (x, P) =
{auth1, auth2}, this means that auth1 and auth2 must sign element x for party
P .

Figure 3 describes how to modify the EncodeElem function to support asym-
metric policies.

The idea is essentially the same as the symmetric case. If authi must sign
element x for party Pself, then Pself computes the term e(σi, Rother), which is
a response to the challenge from Pother. If authj must sign element x for party
Pother, then Pself computes the term e(H(x, Pother), vkj)

rself , which is the antic-
ipated response from Pother to one’s own challenge. The final encoding for an
element is basically the product of all responses to the other party’s challenge,
and all anticipated responses from the other party.

4.2 Attributes

Authorities may wish to attach attributes to an element when making autho-
rizations. For example, attributes may be used to determine the type or level of

Fig. 4 The EncodeElem function supporting attributes and asymmetric policies.

function EncodeElem(x, rself, Rother, Pself, Pother)
c← 1 ∈ GT

for (authi, attr) ∈ F (x, Pself) do
Let σi denote authi’s signature for Pself on x and attribute attr.
c← c · e(σi, Rother)

end for
for (authi, attr) ∈ F (x, Pother) do

Let σi denote authi’s signature for Pother on x and attribute attr.
c← c · e(H(x, attr, Pother), g

vki)rself

end for
return c

end function

authorization given (e.g., sensitivity level of medical records). We show that our
construction can be extended to support policy attributes.

Let V denote the set of all possible attributes. Suppose a public function
F : U × P → 2Λ×V exists which outputs the necessary (authority, attribute)
pairs given an element and a party. For example, if

F (x, P) = {(auth1, attr1), (auth1, attr2), (auth5, attr3)},

it means that for party P to be a rightful owner of element x, it is necessary
that auth1 has signed element x with attributes attr1 and attr2 for party P , and
auth5 has signed element x with attribute attr3 for party P .

To support attributes, first, the authorities need to incorporate the attribute
values in the hash when computing signatures. To authorize element x with
attribute attr to party P , authi now computes the following signature:

σ ← H(x, attr, P)ski

Second, the EncodeElem function needs to be modified to incorporate the at-
tributes as in Figure 4.

4.3 Bundles

A group of elements may form a bundle. The bundle should appear in the inter-
section if both parties have all elements in the bundle, as well as the appropriate
authorizations. Otherwise, the bundle should not appear in the intersection, and
neither party should learn any partial information about elements in the bundle
that the other party has.

Our scheme can be easily adapted to handle bundles by combining the en-
coding of each element of the bundle to produce a single encoding for the entire
bundle. Specifically, the bundle’s encoding is the product of the encodings of its
elements.

4.4 Disjunctions and DNFs

So far, we have considered conjunctive policies. More generally, policies may
also contain disjunctions, or Disjunctive Normal Forms (DNFs). For example,
if a hospital A may want to share Carol’s record with hospital B either if the
record has low sensitivity and hospital B has permissions to receive low sensi-
tivity records from Carol, or the record is cardiology related, and hospital B has
permissions to retrieve Carol’s cardiology records.

As another example, imagine two online stores (e.g., Dell and Newegg) want
to investigate a consumption pattern of their shared customers. Specifically, they
want to determine which customers have bought both a computer from Dell
and a monitor from Newegg. Therefore, they need to perform a set intersection
operation on their sales datasets. Meanwhile, to prevent each company from
inserting fictitious records, each sales record must be authorized by a recognized
credit company, Mastercard or Visa.

In general, for parties PA and PB to share an element x, a DNF-style policy
of the following form must be satisfied:

policy := C1 ∨ C2 ∨ . . . ∨ Ck

where each Ci(1 ≤ i ≤ k) is a conjunctive clause of the form:

(authi1 , PA, x, attr1) ∧ . . . ∧ (authi` , PA, x, attr`)

∧(authj1 , PB , x, attr1) ∧ . . . ∧ (authj`′ , PB , x, attr`′)

In the above, each tuple (authi, P, x, attr) means that “authi gave authorizations
to party P on element x with attribute attr”. Specifically, each conjunctive clause
specifies the policies for party PA and PB respectively.

Our basic construction can be extended to support DNFs, with the caveat
that each party reveals to the other party which conjunctive clause is satisfied
for an element. The idea is quite straightforward: for each conjunctive clause,
each party uses the algorithm described in Figure 4 to compute an encoding. The
encoding for an element is now the union of all encodings corresponding to all
conjunctive clauses. Furthermore, each party will use the union of all encodings
for all elements as inputs to the PSI protocol.

5 Proofs of Security

Suppose the PSI protocol we use in the protocol is fully simulatable under
the malicious model. Due to the sequential modular composition theorems by
Canetti [7], we can replace the PSI module in our protocol with the ideal func-
tionality for PSI. We refer to the resulting protocol as the hybrid protocol. We
formally describe the hybrid protocol below. Although not explicitly stated, par-
ties PA and PB may abort the protocol at any message boundary. The proofs
for Lemma 1 and 2 are available in the full version [1] of this paper.

– PA picks random rA ∈ Zp, and sends to PB the value RA:=grA ∈ G.

– PB picks random rB ∈ Zp, and sends to PA the value RB :=grB ∈ G.
– PA computes CA ← {EncodeElem(x, rA, RB , PA, PB)|x ∈ SA} and sends it

to TPSI. TPSI sends |CA| to PB .
– PB computes CB ← {EncodeElem(x, rB , RA, PB , PA)|x ∈ SB} and sends it

to TPSI. TPSI sends |CB | to PA.
– TPSI computes C ′:=CA ∩ CB , and sends C ′ to PA.
– TPSI sends C ′ to PB .

Due to the sequential modular composition theorems by Canetti [7], it suffices
to show that the hybrid protocol is secure as stated by Lemma 1.

Definition 2. Let E denote an event sequence. Let IdealS,E denote the joint
output distribution of all parties and the adversary S in the ideal world, under
event sequence E. Let HybridA,E denote the joint output distribution of all
parties and the adversary A in the hybrid world, under event sequence E. We
say that the hybrid protocol securely computes the ideal functionality defined in
Section 2.3, if for any polynomial-time adversary A in the hybrid world, there
exists simulator S in the ideal world, such that for any sequence of events E,

IdealS,E
c
= HybridA,E

where
c
= denotes computational indistinguishability.

Lemma 1 (Security of the hybrid protocol). Assume that the CBDH as-
sumption holds in the bilinear group G, and the hash function H is a random
oracle. Then, the hybrid protocol described earlier securely computes the ideal
functionality defined in Section 2.3.

Lemma 2 (Unforgeability of encodings). Assume that the CBDH assump-
tion holds in the group G, and the hash function H is a random oracle. Let A
denote polynomial-time adversary in the hybrid protocol, who has full control of
all corrupted parties. Let PA denote a corrupted party, and assume that PA has
not received authi’s signature on element x. Then, during a set intersection pro-
tocol between PA and any honest party PB, A is unable to compute the correct
encoding EncodeElem(x, rA, RB , PA, PB) except with negligible probability. In the
above, RB ∈R G is chosen at random by PB, and rA ∈ Zp is chosen arbitrarily
by the adversary A.

6 Performance

In this section, we present the asymptotic complexities and experimental per-
formance of our protocol.

6.1 Asymptotic Complexities

We first analyze the performance of our basic construction (described in Sec-
tion 3.3) supporting symmetric policies. Later, in Section 6.3, we discuss the
performance of the various extensions (described in Section 4).

The efficiency of our protocol depends on both the number of elements (n)
and the number of authorities per element (m). We now present asymptotic
bounds for the amount of computation, amount of bandwidth, and the number
of communication rounds.

Computation: O(nm+n log log n) The encoding phase performs a constant num-
ber of operations for each element-authority pair and is hence O(nm). It com-
putes a single encoding for each element resulting in O(n) encodings. Those
encodings are the input for the PSI phase, and by using the protocol by Hazay
and Nissim [15], we can perform the PSI phase in O(n log log n) time. The re-
covery phase is trivially O(nm) and the challenge phase is O(1). Summing up
the above, the total computation is O(nm+ n log log n).

Bandwidth: O(n) The communication between the two parties consists of the PSI
protocol’s communication and the two group elements sent during the challenge
phase. Since the input size for the PSI is n, using the PSI protocol by Hazay
and Nissim [15], the bandwidth overhead for the PSI phase is O(n). Therefore,
the combined communication bandwidth for our scheme is O(n).

Rounds: O(1) The PSI protocol by Hazay and Nissim [15] consists of O(1)
communication rounds. We add one additional round for the challenge phase.

Note that our construction introduces only a small overhead on top of PSI,
namely, a single round of extra communication where 2 group elements are
exchanged, and at most nm bilinear pairings. And with this small additional
overhead, we provide the ability to support rich privacy policies previously not
possible with existing PSI and APSI schemes.

6.2 Empirical Performance

Our protocol can be broken down into two time consuming phases: (1) encoding
elements, and (2) performing standard Private Set Intersection (PSI). There is
a large body of existing work on building efficient PSI protocols [9–13, 15–18],
and one can plug into our construction any existing PSI protocol that is fully
simulatable under a malicious adversary model. Therefore, our experimental
analysis below focuses on the additional overhead introduced by the encoding
phase.

We generated 2,000 random elements with attributes and then computed the
signatures for 2 parties by 5 authorities. We used different authorities for each
element-authority pair, hence we have the total number of authorities |Λ| =
10,000. We set the maximum number of authorities per element to be m = 5.
We then varied m = 1, . . . , 5 by choosing a random subsets of the corresponding
authorities for each element, and computed all of the the element encodings in
parallel. After repeating this experiment 20 times, we calculated the average
encoding time per element and standard deviation. The results are shown in
Table 3.

m 1 2 3 4 5

average 1.70 3.10 4.45 5.65 7.07

std. dev. 0.06 0.17 0.22 0.04 0.27

Table 3: The time (in ms) for encoding an element given the number of author-
ities for that element. These results are for the symmetric policy construction
with attributes.

Our experiment was implemented in C# and was run on 64-bit Windows 7
with an Intel Core i7 3.33 GHz CPU and 12GB of RAM (although the experiment
used much less memory). For all of the pairing and elliptic curve operations, we
used the Pairing Based Crypto Library [19].

6.3 Performance for Rich Policies

So far, we focused on the performance of the basic construction supporting sym-
metric policies. The performance of our protocols supporting richer policies can
be analyzed in a similar fashion.

Asymmetric Policies The performance for asymmetric policies is essentially the
same as the performance for symmetric policies. Therefore, encoding n elements
each having at most m authorities per element using an asymmetric policy is at
least as fast as encoding using a symmetric policy for the same n and m.

Attributes With attribute-enriched policies, the number of bilinear pairings is
the number of (element, authority, attribute) tuples for each party.

Bundles The cost of encoding a bundle scales linearly with the number of ele-
ments. For example, the cost of encoding a bundle of b elements is b times times
the cost of encoding a single element. This is due to the fact that the elements
of the bundle have to be first encoded individually. Combining them incurs a
series of elliptic point multiplications, but their cost is significantly outweighed
by the pairing function that is applied to each element.

DNF policies Each DNF policy consists of multiple conjunctive clauses. The
cost of encoding an element under a DNF policy is simply the sum of the cost
of encoding each conjunctive clause, where the cost for encoding a conjunctive
clause has been discussed earlier – depending on whether the conjunctive clause
is symmetric, asymmetric, attribute-enriched, etc.

With a DNF policy consisting of k conjunctive clauses, the encoding for an
element will consist of k group elements instead of one.

To summarize, suppose the maximum number of conjunctive clauses for a
DNF policy is k, and the maximum number of literals for a conjunctive clause
is m. Then, the communication overhead of our protocol will be O(nk), and the
computational overhead will be O(nmk + nk log log(nk)).

7 Conclusion

We introduced a new cryptographic paradigm for private set intersection with
rich policies, allowing two parties to selectively share data while satisfying pri-
vacy policies. Our protocol ensures that only properly authorized elements which
satisfy certain privacy policies appear in the set intersection. Our protocols
support rich policies, including conjunctive and disjunctive policies, attribute-
enriched policies, asymmetric policies, and bundles of elements. We prove that
our scheme is secure under the malicious model, given the CBDH assumption,
the security of the underlying PSI protocol, and assuming the random oracle
model.

References

1. Policy-enhanced private set intersection: Sharing information while enforcing pri-
vacy policies. Techinical Report, http://eprint.iacr.org/2011/509.pdf, 2012.

2. A. I. Anton, J. B. Eart, M. W. Vail, N. Jain, C. M. Gheen, and J. M. Frink. HIPAA’s
effect on web site privacy policies. IEEE Security and Privacy, 5, January 2007.

3. G. Ateniese, E. D. Cristofaro, and G. Tsudik. Size-hiding private set intersection.
Cryptology ePrint Archive, Report 2010/220, 2010. http://eprint.iacr.org/.

4. E. Bertino, B. C. Ooi, Y. Yang, and R. H. Deng. Privacy and ownership preserving
of outsourced medical data. In ICDE, 2005.

5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. pages
514–532. Springer-Verlag, 2001.

6. J. Camenisch and G. M. Zaverucha. Private intersection of certified sets. In
Financial Cryptography, 2009.

7. R. Canetti. Security and composition of multi-party cryptographic protocols.
JOURNAL OF CRYPTOLOGY, 1998.

8. E. Cristofaro, S. Jarecki, J. Kim, and G. Tsudik. Privacy-preserving policy-based
information transfer. In PETS, 2009.

9. E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection
protocols secure in malicious model. In Asiacrypt, 2010.

10. E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear complexity. In Financial Cryptography, 2010.

11. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private
set intersection. In ACNS, 2009.

12. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and obliv-
ious pseudorandom functions. In TCC, 2005.

13. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In Eurocrypt, 2004.

14. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In TCC, 2008.

15. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious
adversaries. In Public Key Cryptography, 2010.

16. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications
to adaptive ot and secure computation of set intersection. In TCC, 2009.

17. S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN, 2010.
18. L. Kissner and D. Song. Private and threshold set-intersection. In CRYPTO, 2005.
19. B. Lynn. Pairing-based cryptography library. http://crypto.stanford.edu/pbc/.

