
Constant-Round Multi-Party Private Set Union
Using Reversed Laurent Series

Jae Hong Seo1, Jung Hee Cheon2?, and Jonathan Katz3??

1 National Institute of Information and Communications Technology
Tokyo, Japan

jaehong@nict.go.jp
2 ISaC & Dept. of Mathematical Sciences

Seoul National University
Seoul, Korea

jhcheon@snu.ac.kr
3 Dept. of Computer Science

University of Maryland
Maryland, USA

jkatz@cs.umd.edu

Abstract. We introduce the idea of associating a set of elements with
a rational function represented using a reversed Laurent series. Using
this representation, we propose private set-union protocols in the multi-
party setting, assuming an honest majority. Our protocols are the first
efficient protocol for private set union with constant round complexity
(in both the semi-honest and malicious settings), as well as the first with
statistical security (in the semi-honest setting).

1 Introduction

We focus here on constructing protocols for privacy-preserving set operations.
In this setting, we have a set of parties P1, . . . ,Pn with each party Pi holding a
set Si ⊆ U of elements in some known universe U ; the parties want to compute
some function of their sets such as their intersection

⋂
i Si or union

⋃
i Si. Of

course, the problem can be solved using protocols for generic secure multi-party
computation [13, 3], but we are interested in more efficient solutions. This prob-
lem, for various types of set operations, has received a lot of attention in both
the two-party [10, 4, 14, 7, 6, 17, 9, 15, 8] and multi-party [19, 11, 23] settings.

In this paper, we propose a new framework for privacy-preserving set oper-
ations based on representing sets using rational polynomial functions and ma-
nipulating this representation using reversed Laurent series. (See the following
section for an overview.) Although our framework can be extended to apply to
a more general class of set operations, we focus here on computing set union

? Supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MEST) (No. 2012-0001243)

?? Supported by NSF grant #1111599.

Semi-honest:

Ref. Rounds Communication Computation Assumptions Threshold

[19] O(n) O(n2 k τN) O(n3k2τNρN) DCR t < n

[11] O(n) O(n2 k τN) O(nk2τNρN) DCR t < n

Here O(1) O(n3k2τp) O((n4k2 + n2k2τp)ρp) none t < n/2

Malicious:

Ref. Rounds Communication Computation Assumptions Threshold

[11] O(n) O((n3 k + n2 k2) τN) O(nk2τNρN) DCR t < n

Here O(1) O(n3k2τ ′p) O(n4k2τ ′pρ
′
p) DL t < n/2

Table 1. Privacy-preserving set-union protocols. DCR denotes the decisional
composite-residuosity assumption [21], and DL denotes the discrete-logarithm assump-
tion. The number of parties is n, the maximum set size is k, the number of corrupted
parties is t, and τN , ρN (resp., τp, ρp) are the size and multiplication cost for a modu-
lus N (resp. prime p) used for Paillier encryption (resp., representing domain elements).
τ ′p and ρ′p are the size and multiplication cost for a cyclic group of order p used for Ped-
ersen commitment scheme and Gennaro-Rabin-Rabin verifiable secret sharing scheme.

in the multi-party setting. Set union is not trivial to compute securely, and in
particular the solution in which each party publicly reveals its set is not secure
since it reveals which parties hold which elements, as well as the multiplicity of
each element in the union.

Our framework yields efficient multi-party protocols for private set union
that are secure against any dishonest minority, and in particular we obtain the
first efficient multi-party protocols for set union (in both the semi-honest and
malicious settings) that use a constant number of rounds. Moreover, our pro-
tocol achieves statistical security in the semi-honest (aka, honest-but-curious)
setting. In contrast, previous protocols [19, 11] have round complexity linear in
the number of parties, and achieve computational security even in the semi-
honest setting. On the other hand, previous protocols tolerate any number of
corrupted users. We compare our work to prior work in Table 1.

Beyond the result just stated, we believe our techniques are of independent
interest as they provide what is, to the best of our knowledge, a novel approach
to privacy-preserving computation on sets. We explain our approach in more
detail in the following section.

1.1 Overview of Our Techniques

As in some prior work (e.g., [10, 19, 11, 6, 7]), we begin with the observation that
a set S can be represented by a polynomial fS(x) over a field F ⊇ S such that
the roots of fS(x) are exactly the elements of S; namely,

fS(x) =
∏
s∈S

(x− s).

In contrast to previous work, however, we then switch to viewing S as being rep-
resented by the rational polynomial 1/fS(x). This representation is well suited

2

for computing set union, since

1

fS(x)
+

1

fS′(x)
=
fS(x) + fS′(x)

fS(x) · fS′(x)
=

gcd (fS(x), fS′(x)) · p(x)

fS(x) · fS′(x)

=
p(x)

lcm (fS(x), fS′(x))
, (1)

for some polynomial p(x). That is, the denominator of (the reduced represen-

tation of) the rational polynomial 1
fS(x) + 1

fS′ (x)
is a polynomial fS∪S′(x)

def
=

lcm(fS(x), fS′(x)) with no repeated roots, whose roots are exactly the elements
of S ∪ S′. Because of how it is defined (in particular, the fact that it has no
repeated roots), the polynomial fS∪S′(x) reveals nothing beyond S ∪ S′ and
therefore provides a starting point for secure computation of the union.

The above does not yet give a secure protocol for computing the union,
as we must still address several challenges. First, we need an efficient way to
manipulate rational polynomials. For this, we rely on the reversed Laurent series
representation of rational functions [25, Section 16.8]; see Section 2 for details.
Second, we need to deal with the fact that the numerator in (1) might reveal
information beyond the union S ∪ S′. We thus modify the above, having the
parties choose random polynomials r(x), r′(x) of degree at most |S| − 1 and
|S′| − 1, respectively, and then compute

r(x)

fS(x)
+

r′(x)

fS′(x)
=
fS(x)r′(x) + fS′(x)r(x)

fS(x) · fS′(x)
=

gcd (fS(x), fS′(x)) · u(x)

fS(x) · fS′(x)

=
u(x)

lcm (fS(x), fS′(x))
.

We prove that u(x), above, is a uniformly distributed polynomial of degree at
most deg(lcm(fS(x), fS′(x)))− 1. Thus, assuming |F| � |S|, it holds with over-
whelming probability that u(x) and fS∪S′(x) have no roots in common and so
recovering the denominator of the above still yields the correct result. Moreover,
uniformity of u(x) implies that computing the above leaks no information about
either party’s original set.

Although we describe the two-party case above for simplicity, we can easily
extend the above argument to the case n > 2 in which we are mostly interested.
See Section 3.1 for details.

1.2 Related Work

Private set-union protocols should hide both (1) which parties hold which ele-
ments, and (2) the multiplicity of each element in the union. There are only a few
multi-party protocols satisfying these two requirements. Kissner and Song [19]
proposed a protocol which can be utilized for multi-party set union in the semi-
honest setting. Frikken [11] proposed a privacy-preserving set-union protocol in
the malicious setting. Both protocols rely on a “mix-net” approach, where t+ 1

3

parties mix encrypted elements (when security against t corruptions is required).
This approach inherently requires round complexity O(t).

Some protocols achieving relaxed privacy guarantees have been proposed. In
particular, Kissner and Song [19], Sang and Shen [23], and Hong et al. [16] pro-
posed multi-party set-union protocols that leak the multiplicity of each element
in the union.

In the two-party case, other protocols are known. Brickell and Shmatikov [4]
proposed two-party set-union protocols secure against honest-but-curious ad-
versaries. Recently, Hazay and Nissim [15] proposed very efficient protocols for
privacy-preserving set union secure against malicious adversaries; their protocol
achieves (almost) linear complexity in the number of private inputs. Neither of
these protocols appear to generalize easily to the multi-party case.

1.3 Outline of the Paper

In the next section, we recall the notion of the reversed Laurent series (RLS)
representation of a rational function, and discuss efficient conversions between
a rational function and its RLS representation. In Section 3, we show how to
use the RLS representation of rational functions to perform set union. As ap-
plications of our technique, we give constant-round protocols for computing set
union in both the semi-honest and malicious settings.

2 Reversed Laurent Series

We let Zp denote the set of integers modulo p. In this paper, we always take p
prime so that Zp is also the finite field of size p. As usual, Zp[x] denotes the set
of polynomials over Zp. We use [a, b] (with a ≤ b and both possibly negative) to
denote the set of integers between a and b, inclusive.

2.1 Reversed Laurent Series and Rational Functions

A reversed Laurent series (RLS) over Zp is a singly infinite, formal sum of the
form

f(x) =

m∑
i=−∞

ai x
i (am 6= 0),

for m an integer and ai ∈ Zp. We refer to m as the degree of f , denoted deg(f).
Given d1 ≤ d2 ≤ m, we define

f(x)[d1,d2] =

d2∑
i=d1

ai x
i.

The set of all reversed Laurent series, denoted Zp((x−1)), forms a field with
addition and multiplication defined in the natural way. Since Zp[x] is a subring
of Zp((x−1)), any rational function f/g with f, g ∈ Zp[x] and g 6= 0 can be

4

expressed as a reversed Laurent series and we refer to this as the RLS represen-
tation of the rational function f/g. Note that the RLS representation for a given
rational function is unique. That is, if f/g = f ′/g′ then the RLS representations
of f/g and f ′/g′ are identical.

2.2 Conversion from a Rational Function to its RLS

Let f, g ∈ Zp[x], and assume deg(f) < deg(g) ≤ `. (The case deg(f) ≥ deg(g) can
be reduced to this case by first performing polynomial division with remainder.)
One can compute k > deg(g) high-order terms of the RLS representation of f/g
using the following algorithm:

RationalToRLS(f, g, k):

(1) Compute F (x) = f(x) · xk.
(2) Use polynomial division to compute Q(x) and R(x) with
F (x) = g(x) ·Q(x) +R(x) and deg(R) < deg(g).

(3) Output Q(x) · x−k.

Since F/g = Q+R/g and deg(R) < deg(g), we have Q = (F/g)[0,k+deg(f)−deg(g)].

Since F/g = xk · f/g and we assumed deg(f) < deg(g), we see that the output
consists of exactly the k high-order terms of the RLS of f/g; that is, Q(x)·x−k =
(f/g)[−k,deg(f)−deg(g)] = (f/g)[−k,−1].

The computational cost of the above algorithm is essentially just the com-
plexity of polynomial division.

2.3 Conversion from an RLS Representation to a Rational Function

The RLS representation of a rational function f/g will, in general, have infinitely
many terms. However, all “information” about f/g is contained in a finite num-
ber of high-order terms. Specifically, let f, g ∈ Zp[x] with deg(f) < deg(g) ≤ `
and g 6= 0. Then the rational function f/g is determined by the 2` high-order
terms of its RLS representation. Moreover, there is an efficient algorithm to re-
cover f/g (in reduced terms) given these 2` high-order terms and the bound `
on the degree of g. See [25, Section 17.5.1] for details.

3 Privacy-Preserving Set Union

We begin with an overview of our approach to computing set union, followed by
formal descriptions of protocols in the semi-honest and malicious settings. We
consider n parties, each of whom holds a set over some universe U ⊂ Zp where
p > n is known and U is a negligible fraction of Zp. (This can be easily obtained
by padding every element in the original universe with sufficiently many 0s.) We
further assume the size ki of each party’s set is known. (In fact, for simplicity

5

here we assume that ki = k for all i. A treatment of the general case will be
found in the full version.) By having parties pad out their sets to some maximum
size using random elements, this can be relaxed to requiring only that

∑
i ki is

known; we omit the details.

3.1 Representing Sets and Computing their Union

Given a set S ⊆ U of size |S| = d, we define the polynomial

fS(x)
def
=
∏
s∈S

(x− s).

Note that deg(fS) = |S|. We are actually going to work with the RLS representa-
tion of 1/fS(x). The set S can be recovered from the 2|S| high-order terms of the
RLS representation of 1/fS(x): given the high-order terms, we first reconstruct
fS(x) using the conversion algorithm; the entire set S can then be obtained by
factoring fS(x) (which can be done in polynomial time over the finite field Zp).

Given sets S1, . . . , Sn held by n parties P1, . . . ,Pn, note that f∪iSi
(x) =

lcm(fS1
(x), . . . , fSn

(x)). Rather than have the parties compute the least common
multiple directly (which would be difficult to do securely), we have them compute
it using the following high-level approach:

1. The parties collectively define random polynomials r1(x), . . . , rn(x) of degree
(at most) d − 1 in such a way that no coalition of up to t parties knows
anything about any of the ri(x). This is done via standard techniques using
Shamir secret sharing (in the semi-honest setting) or a form of verifiable
secret sharing (in the malicious setting).

2. The parties securely compute (sufficiently many terms of the RLS of) the

sum
∑
i
ri(x)
fSi

(x) . Note that

n∑
i=1

ri(x)

fSi(x)
=

u(x)

lcm(fS1(x), . . . , fSn(x))

for some polynomial u(x) of degree at most deg(lcm(fS1(x), . . . , fSn(x)))−1.

3. Each party locally computes u′(x) and L(x) such that u′(x)/L(x) =
∑
i
ri(x)
fSi

(x)

and gcd(u′(x), L(x)) = 1. Each party then factors L(x) over Zp and outputs
the roots as

⋃
i Si.

We need to prove both correctness and privacy of the above. To do so we will
rely on the following result:

Lemma 1. Let f1(x), . . . , fn(x) be polynomials of degree d1, . . . , dn ≥ 1. Say
r1(x), . . . , rn(x) are chosen uniformly and independently from the set of polyno-
mials of degree at most di − 1, respectively, and let u(x) be such that

u(x)

lcm(f1(x), . . . , fn(x))
=

n∑
i=1

ri(x)

fi(x)
.

6

Then u(x) is uniformly distributed among polynomials having degree at most
deg(lcm(f1(x), · · · , fn(x)))− 1.

Proof We prove the lemma for n = 2; the general case follows by induction.
Let f1(x) and f2(x) be polynomials of degree d1, d2, respectively. Say r1(x)
and r2(x) are chosen uniformly and independently from the set of polynomials
of degree at most d1 − 1 and d2 − 1, respectively, and let u(x) be such that
r1(x)
f1(x)

+ r2(x)
f2(x)

= u(x)
lcm(f1(x),f2(x))

. We show that u(x) is uniformly distributed among

polynomials of degree at most deg(lcm(f1(x), f2(x)))− 1.
Define f ′1(x) = f1(x)/ gcd(f1(x), f2(x)), with f ′2(x) defined analogously. We

have

r1(x)

f1(x)
+
r2(x)

f2(x)
=
r1(x)f2(x) + r2(x)f1(x)

f1(x)f2(x)

=
gcd (f1(x), f2(x)) · u(x)

f1(x)f2(x)
=

u(x)

lcm (f1(x), f2(x))

where u(x) = r1(x)f ′2(x) + r2(x)f ′1(x) has degree at most

d′
def
= deg(lcm(f1(x), f2(x)))− 1.

Identifying a polynomial of degree at most d with a vector over Zp of length

d + 1, consider the map M : Zd1p × Zd2p → Zd′+1
p defined via M(r1(x), r2(x)) =

r1(x)f ′2(x) + r2(x)f ′1(x). Say M(r1(x), r2(x)) = M(r′1(x), r′2(x)). This implies

(r1(x)− r′1(x)) · f ′2(x) = (r′2(x)− r2(x)) · f ′1(x).

Since gcd(f ′(x), g′(x)) = 1, the above holds iff there exists some h(x) ∈ Zp[x]
such that

r1(x)− r′1(x) = h(x) · f ′1(x)

r′2(x)− r2(x) = h(x) · f ′2(x).

Note that deg(h) ≤ gcd(f1(x), f2(x))− 1 because of the bound on the degrees of
r1(x), r′1(x), r2(x), and r′2(x). The above means that each point M(r1(x), r2(x))

in the image of M has exactly K
def
= pgcd(f1(x),f2(x)) pre-images. Furthermore,

since

|Zd1p × Zd2p |/K = pd1+d2/pgcd(f1(x),f2(x))

= plcm(f1(x),f2(x)) = pd
′+1 = |Zd

′+1
p |,

we see that M is also surjective. Since M is regular and surjective, choosing
r1(x), r2(x) uniformly and independently at random yields a uniform element
u(x) = M(r1(x), r2(x)) in its range.

Correctness and privacy now follow easily from the lemma. Since u(x) is
random, and the universe U is a negligible fraction of Zp, the probability that

7

u(x) and lcm(fS1
(x), . . . , fSn

(x)) have a factor in common is negligible. Thus,
u′(x) = u(x) and L(x) = lcm(fS1(x), . . . , fSn(x)) with overwhelming probability
and so correctness holds. Moreover, the view of any coalition of up to t parties can
be simulated given the result

⋃
i Si, implying privacy. This simulation is done as

follows. Let D = |
⋃
i Si|. Compute f∪iSi

(x), choose a random polynomial u(x)
of degree at most D − 1, and then compute (sufficiently many high-order terms
of) the RLS representation of u(x)/f∪iSi(x).

In the next sections, we fill in the missing details in the above description
and give a protocol for computing set union in the semi-honest setting. We then
show how to extend the protocol to the malicious setting as well.

3.2 (Verifiable) Secret Sharing of Polynomials

In our protocols, we use Shamir’s secret-sharing scheme [24] in the semi-honest
model, and the verifiable secret-sharing (VSS) protocol of Gennaro et al. [12],
denoted GRR-VSS scheme, in the malicious model. (We assume the availability
of private channels between all pairs of parties.) In either case, addition of shares
can be performed locally (without interaction), and multiplication of shares can
be done using a suitable multiplication sub-protocol (i.e., Simple-Mult in the
semi-honest model, and Mult in the malicious model [12]).

A polynomial can be (verifiably) shared by (verifiably) sharing each of its
coefficients. Addition and multiplication of polynomial shares follows from addi-
tion and multiplication of the underlying shares of the coefficients. In particular,
addition of polynomial shares can be done locally. Multiplication of two shared
polynomials of degrees d1, d2 requires O(d1 ·d2) invocations of an underlying Mult
protocol (plus local additions); nevertheless, because these can be parallelized,
the entire process takes only a constant number of rounds.

3.3 A Protocol Secure against Honest-but-Curious Adversaries

We propose a privacy-preserving set-union protocol, denoted PPSU-HBC, for the
honest-but-curious (HBC) adversary model. Every party contributes to obtain-
ing ∪i∈[1,n]Si, where Si is the private set of the i-th party; however, a semi-honest
adversary corrupting less than n/2 parties should not obtain additional infor-
mation about the set of any other party (except for its size). For simplicity here,
we assume that for each set Si has the same cardinality, denoted by k.

In Figure 1, we present the protocol. The basic idea follows the overview
from Section 3.1. Each party Pi contributes random polynomials rij(x) for j ∈
{1, . . . , n}. Define rj(x) =

∑n
i=1 rij(x). The parties then (privately) compute the

high-order 2nk terms of the RLS representation of

U(x) =
∑
j∈[1,n]

rj(x)

fj(x)
,

where fj(x) is the polynomial associated with the set of party Pj . To compute
the 2nk higher-order terms of U(x), we utilize the fact that the 2nk higher-order

8

Private Input for each party Pi (i ∈ [1, n]): A set Si ⊂ U of size k.
Goal: Each party obtains

⋃
i∈[1,n] Si.

Each party Pi:

1. Constructs fi(x) =
∏
α∈Si

(x − α), runs RationalToRLS(1, fi(x), (2n + 1)k −
1)→ (1

fi(x)
)[−(2n+1)k+1,−k], defines f̃i(x) := (1

fi(x)
)[−(2n+1)k+1,−k] ·x(2n+1)k−1,

and chooses random polynomials rij(x) of degree at most k − 1 for j ∈ [1, n].
2. Secret shares f̃i(x) and rij(x) for ∀j ∈ [1, n] in parallel.
3. Locally sums his shares of rij(x) to obtain shares of rj(x) =

∑
i∈[1,n] rij(x) for

∀j ∈ [1, n].
4. Runs (in parallel) a shared polynomial multiplication protocol to compute

shares of f̃j(x) · rj(x) for ∀j ∈ [1, n].
5. Locally sums his shares of f̃j(x)rj(x) to obtain shares of the 2nk high-order

terms of U ′(x) =
∑
j∈[1,n] f̃j(x)Rj(x) (i.e., U ′(x)[k−1,(2n+1)k−2]).

6. All parties reconstruct the 2nk high-order terms of the RLS representation
of U(x), and then use these to recover two polynomials u(x) and L(x) such that

(u(x)
L(x)

)[−2nk,−1] = U(x)[k−1,(2n+1)k−2] · x−(2n+1)k+1 and gcd(u(x), L(x)) = 1.

Then, each party extracts all roots of L(x).

Fig. 1. The PPSU-HBC protocol.

terms of ∑
j∈[1,n]

rj(x) · (1

fj
)[−(2n+1)k−1,−k]

is equal to that of U(x), where the degree of rj is k − 1. Then, each party
can recover (the rational function) U(x) from its RLS representation using the
conversion algorithm; each party can then compute the union by factoring the
denominator of U(x).

Privacy follows from Lemma 1, along with the fact that the rj(x) are random
polynomials for any coalition of fewer than n/2 corrupted parties. (This security
threshold comes from the threshold needed by the Simple-Mult protocol.)

Theorem 1. The PPSU-HBC protocol presented in Figure 1 is statistically t-
secure against a semi-honest adversary, for any t < n/2.

Proof Let C be a coalition of t corrupted parties controlled by the adversary
A, and let H be the set of honest parties. Given all private inputs of corrupted
parties and the result S = ∪i∈[1,n]Si, we construct a simulator Sim as follows:

It first divides S \ (∪i∈CSi) into sets Ŝi (for i ∈ H) such that the number of
elements in each set is exactly k. (An element may appears in multiple sets,
if necessary.) Now, ∪i∈H Ŝi = S \ (∪i∈CSi) and |Ŝi| ≤ k. Then, Sim runs the
PPSU-HBC protocol by treating each Ŝi as private input of an honest party.

We argue that the view of A in the simulation is identically distributed to
the view of A in the real world. It is easy to see that this holds for steps (1)–

9

(5) of the protocol. In step (6), the only information revealed consists of the
polynomials u(x) and L(x). But (with all but negligible probability) L(x) exactly
encodes the union (i.e., L(x) =

∏
α∈S(x−α)), and u(x) is a random polynomial

of appropriate degree (using here the fact that the ri are uniform conditioned
on the adversary’s view, since they are generated by summing over random
contributions from all parties).

Complexity Analysis: Secret sharing requires O(n2) multiplications in Zp, and
an execution of also uses O(n2) multiplications.

The computation overheads of Pi in each step of PPSU-HBC protocol is as
follows:

– To compute fi(x) and f̃i(x), O(nk2) multiplications are required.

– To secret-share the ((2n+1)k−1)-degree polynomial f̃i(x) and (k−1)-degree
polynomial rij(x) for j ∈ [1, n], O(n3k) multiplications are required.

– To compute U ′(x) =
∑
j∈[1,n] f̃j(x)(

∑
i∈[1,n] rij(x)) from f̃j(x) and rij(x), we

need O(n2k2) multiplications and O(n2k2) additions. Therefore, all parties
should run Simple-Mult and the local addition O(n2k2) times; hence, each
party requires O(n4k2) multiplications in all.

– To recover U ′(x)[k−1,(2n+1)k−2], O(n3k) multiplications are required.

– To recover a rational function G(x)
F (x) from U ′(x)[k−1,(2n+1)k−2] · x−(2n+1)k+1,

O(n2k2) multiplications are required. To factor a polynomial F (x) with a
degree of at most nk, O((nk)1.5+o(1) + (nk)1+o(1) log p) multiplications are
required [20, 26].

Therefore, the total computation cost is O(n4k2 + n2k2 log p) multiplications
in Zp.

The communication overheads of secret-sharing and Simple-Mult are O(n)
integers modulus p for each party; hence, the PPSU-HBC protocol’s communica-
tion cost is O(n3k2) elements in Zp. Further, the round complexity is constant
since, in each step, all transmissions can be performed in parallel.

3.4 A Protocol Secure against Malicious Adversaries

We can extend the protocol presented in Section 3.3 to obtain security in the
presence of malicious adversaries by using verifiable secret sharing and adding
zero-knowledge proofs. Intuitively, in the PPSU-HBC protocol, if we utilize GRR-
VSS and Mult instead of secret sharing and Simple-Mult, respectively, no coali-
tion of fewer-than-half corrupted parties can behave maliciously without detec-
tion. In addition, however, we require each party to prove that they honestly
follow Step (1). Namely, they must prove that f̃j(x) is well-formed; that is,
that it is the RLS representation of 1/f(x) for some f of degree k. We let
ZKPK[Com(f(x)),Com(g(x))] denote a zero-knowledge proof that (committed)
polynomials f, g of known degree satisfy g(x) = (1

f(x))[−(2n+1)k+1,−k]·x(2n+1)k−1.

We give the details of such a proof now.

10

Pedersen commitment scheme. To commit an element in a ∈ Zp, we use the
Pedersen commitment scheme [22]. Here, a commitment of a is Com(a; r) = gahr

for random r ∈ Zp, where g, h are group elements of a cyclic group G of order
p. (When there will be no confusion, we write Com(·) instead of Com(·; ·).) The
Pedersen commitment scheme is additively homomorphic. That is,

Com(a; r) · Com(b; s) = gahrgbhs = ga+bhr+s = Com(a+ b; r + s).

In addition, the Pedersen commitment scheme is perfectly hiding and computa-
tionally binding under the discrete logarithm assumption in G.

Define a commitment of a polynomial f(x) =
∑
i∈[0,k] aix

i to be a tuple of

commitments to its coefficients. Given Com(f(x)) and Com(g(x)) where f, g are
monic polynomials of degree k and deg(g(x)) = 2nk−1, respectively, we provide
a zero-knowledge proof that g(x) = (1

f(x))[−(2n+1)k+1−,−k] · x(2n+1)k−1. (Note

that the degrees of f, g can be verified if they are known to be monic by simply
decommitting to their high-order coefficient.) The main observation is that the
desired relation holds iff deg(f(x)g(x)− xdeg(f(x))+deg(g(x))) < deg(f(x)), using
the following lemma.

Lemma 2. If f(x), g(x) satisfy deg(f(x)g(x)−xdeg(f(x))+deg(g(x))) < deg(f(x)),
then g(x) = (1

f(x))[− deg(f(x))−deg(g(x)),− deg(f(x))] · xdeg(f(x))+deg(g(x)).

Proof Let df = deg(f) and dg = deg(g). The assumption of the lemma is
that deg(f(x)g(x)− xdf+dg) < df . Then,

f(x)g(x) = xdf+dg +
∑

i∈[0,df−1]

aix
i,

and hence,

g(x) · x−df−dg =
1

f(x)
+

1

f(x)
·

 ∑
i∈[−df−dg,−dg−1]

aix
i

for some ai ∈ Zp.

Since g(x) · x−df−dg and 1
f(x) · (

∑
i∈[−df−dg,−dg−1] aix

i) have no common

monomials, we obtain

g(x) · x−df−dg = (
1

f(x)
)[−df−dg,−df].

This concludes the proof.

Given the above, a zero-knowledge protocol for ZKPK[Com(f(x)),Com(g(x))]
can be constructed using standard techniques, following [5]. We omit the details.

By applying all above changes to PPSU-HBC, we obtain a protocol PPSU-
MAL for the malicious adversary model; see Figure 2. Note that GRR-VSS and
our zero-knowledge proofs use the Pedersen commitment scheme, which is bind-
ing under the discrete logarithm assumption so that the security of PPSU-MAL
requires such a computational assumption. The following theorem proves the
security of PPSU-MAL.

11

Common Input: A domain of private data P ⊂ Zp. Description of GRR-VSS and
Mult: common reference strings for public parameters in GRR-VSS.
Private Input for each party Pi (i ∈ [1, n]): A set Si of k private elements in P .
Goal: Each party obtains ∪i∈[1,n]Si without learning other information.

Each party Pi

1. Constructs fi(x) =
∏
α∈Si

(x − α), runs RationalToRLS(1, fi(x), (2n + 1)k −
1)→ (1

fi(x)
)[−(2n+1)k+1,−k], defines f̃i(x) := (1

fi(x)
)[−(2n+1)k+1,−k] ·x(2n+1)k−1,

and chooses random polynomials rij(x) of degree at most k − 1 for j ∈ [1, n].
2. Commits to fi(x) and f̃i(x), runs ZKPK[Com(fi),Com(f̃i)] protocol.
3. Verifiably secret shares f̃i(x) and rij(x) for ∀j ∈ [1, n] in parallel.
4. Locally sums his shares of rij(x) to obtain shares of rj(x) =

∑
i∈[1,n] rij(x) for

each j ∈ [1, n].
5. Runs (in parallel) a shared polynomial multiplication protocol to compute

shares of f̃j(x) · rj(x) for ∀j ∈ [1, n].
6. Locally sums his shares of f̃j(x)rj(x) to obtain shares of 2nk high-order terms

of U ′(x) =
∑
j∈[1,n] f̃j(x)rj(x) (i.e., U ′(x)[k−1,(2n+1)k−2]).

7. All parties reconstruct U ′(x)[k−1,(2n+1)k−2], and then use it to recover two

polynomials u(x) and L(x) such that (u(x)
L(x)

)[−2nk,−1] = U ′(x)[k−1,(2n+1)k−2] ·
x−(2n+1)k+1 and gcd(u(x), L(x)) = 1. Then, each party extracts all roots of
L(x).

Fig. 2. PPSU-MAL protocol in the malicious adversary model

Theorem 2. Assuming that the number of corrupted parties is t < n/2, where
n is the number of all parties of the PPSU-MAL protocol in Figure 2, and that the
discrete logarithm assumption holds in the underlying cyclic group, then PPSU-
MAL protocol is computationally t-secure in the malicious setting.

Proof We prove this theorem by showing that for any arbitrarily malicious
adversary A controlling all corrupted parties (t < n/2), there exists an efficient
simulator S such that for any inputs to all parties, the view of the corrupted
parties and the outputs of the honest parties in the PPSU-MAL protocol are
computationally indistinguishable from the outputs of S and the honest parties
in the ideal world interacting with a trusted third party F computing set union.

Now, we describe S. Let C be a coalition of corrupted parties controlled by
A, and H be a set of honest parties.

1. S generates public parameters for GRR-VSS and Mult and publishes them
with securely keeping the discrete logarithms between parameters as a trap-
door. Then, Sim interacts with C on behalf of H. First, it chooses random
polynomials fi(x) of degree at most k, the corresponding f̃i(x), and random
polynomials rij(x) of degree at most k− 1 for i ∈ H and j ∈ [1, n]. Then, it
runs Steps 2 of the PPSU-MAL protocol.

12

2. From the ZKPK[Com(fi(x)),Com(f̃i(x))] protocol for i ∈ C, Sim extracts
witnesses fi(x) for i ∈ C using the strong soundness property of the zero-
knowledge proof protocol. Then, it computes all roots of fi(x), which are
the inputs of the corrupted parties, using a polynomial factoring algorithm.

3. Let C ′ be a set of corrupted parties who correctly pass the zero-knowledge
proofs protocol in Step 2 and secret-share their inputs in Step 3. Sim par-
ticipates with the inputs of C ′ in the ideal world. It receives the result of
the ideal PPSU functionality, which is the union of the inputs of C ′ and H.

Then, it computes U(x) = u(x)
L(x) , where L(x) is the polynomial associated

with the result set of the ideal PPSU functionality and u(x) is a random
polynomial of degree at most deg(L(x))− 1.

4. Sim rewinds A with the same auxiliary inputs and runs protocol through
Step 6 with the same public parameters and polynomials fi(x) of H as the
previous execution.

5. In Step 7, Sim contributes to recover U(x)[−2nk,−1] ·x(2n+1)k−1. Since Sim has
a trapdoor of GRR-VSS, Sim can equivocate on the recovered secret-shared
values. Further, Sim already knows shared secrets of corrupted parties so
that Sim can contribute U(x)[−2nk,−1] ·x(2n+1)k−1 to be recovered in Step 7.

6. Sim outputs a transcript of all interactions with A in the last execution.

At the end of the simulation, A obtains the union of all inputs of C ′ and H.
GRR-VSS, Mult and ZKPK are secure against any probabilistic polynomial-time
adversary A under the discrete logarithm assumption. That is, any probabilis-
tic polynomial-time adversary A cannot anomalously behave without detec-
tion during the protocols GRR-VSS, Mult and ZKPK when the discrete loga-
rithm assumption holds in the underlying cyclic group. Furthermore, if A fol-
lows the predetermined description of PPSU-MAL protocol, then Sim’s out-
put (outSF,S(aux)(1

λ,x)) and outputs of H (outhon
F,S(aux)(1

λ,x)) in the ideal

world is identical to the view of A (viewΠ,A(aux)(1
λ,x)) and outputs of H

(outhon
Π,A(aux)(1

λ,x)) in the real world, respectively, since GRR-VSS, Mult and
ZKPK are perfectly simulatable when the honest parties are majority. Therefore,
there exists only negligible chance in the security parameter that two distribu-
tions will be different so that{

realΠ,A(aux)(1
λ,x)

}
λ∈N,x∈{0,1}∗ and

{
idealF,S(aux)(1

λ,x)
}
λ∈N,x∈{0,1}∗

are computationally indistinguishable.

Complexity Analysis: In GRR-VSS, the dealer requires O(n) exponentiations
and O(n2) multiplications in G. The verifier requires O(1) exponentiations. In
the reconstruction phase of GRR-VSS, each party requires O(n) exponentiations
and O(n2) multiplications. In Mult, each party requires O(n2) exponentiations
and O(n2) multiplications. In local addition, O(n) multiplications are required
for each party. The zero-knowledge proofs protocol do not significantly affect the
computational and communication complexity. The overall computational over-
heads and communication overheads of PPSU-MAL are O(n4k2) exponentiations
in G, and O(n3k2) group elements G, respectively. The round complexity of the
malicious protocol is still O(1).

13

4 Conclusion

We introduced the Reversed Laurent Series (RLS) representation of a rational
function, and showed a surprising relationship between rational function arith-
metics (in particular, addition and multiplication) and set union computations.
On the basis of these approach, we developed constant-round private set union
protocol in both the semi-honest setting and the malicious setting. Our protocol
is the first constant-round multi-party private set union protocol without aids
of third party.

To the best of our knowledge, this paper shows the first instantiation of
using the Reversed Laurent Series for cryptographic purpose. We leave finding
other cryptographic applications, either inside or outside secure computing of
set operations, as an interesting open problem.

References

1. G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) Size Matters: Size-Hiding Private
Set Intersection. In 14th Intl. Conference on Practice and Theory in Public Key
Cryptography — PKC 2011, volume 6571 of LNCS, pages 156-173. Springer, 2011.

2. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In TCC 2005, volume 3378 of LNCS, pages 325-341, Springer, 2005.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In 20th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 1–10. ACM Press, 1988.

4. J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-
honest model. In Advances in Cryptology — Asiacrypt 2005, volume 3788 of LNCS,
pages 236–252. Springer, 2005.

5. J. Camenisch. Proof systems for general statements about discrete logarithms.
Technical Report 260, Dept. of Computer Science, ETH Zurich, March 1997.

6. J. Camenisch and G. M. Zaverucha. Private intersection of certified sets. In
Financial Cryptography and Data Security, volume 5628 of LNCS, pages 108–127.
Springer, 2009.

7. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private
set intersection. In 7th Intl. Conference on Applied Cryptography and Network
Security (ACNS), volume 5536 of LNCS, pages 125–142. Springer, 2009.

8. E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection
protocols secure in malicious model. In Advances in Cryptology — Asiacrypt 2010,
volume 6477 of LNCS, pages 213–231. Springer, 2010.

9. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear complexity. In Financial Cryptography and Data Security 2010, volume 6052
of LNCS, pages 143–159. Springer, 2010.

10. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In Advances in Cryptology — Eurocrypt 2004, volume 3027 of LNCS,
pages 1–19. Springer, 2004.

11. K. B. Frikken. Privacy-preserving set union. In 5th Intl. Conference on Applied
Cryptography and Network Security (ACNS), volume 4521 of LNCS, pages 237–
252. Springer, 2007.

14

12. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In 17th Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 101–111. ACM
Press, 1998.

13. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a
completeness theorem for protocols with honest majority. In 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

14. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In 5th Theory of Cryp-
tography Conference — TCC 2008, volume 4948 of LNCS, pages 155–175. Springer,
2008.

15. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious
adversaries. In 13th Intl. Conference on Theory and Practice of Public Key Cryp-
tography — PKC 2010, volume 6056 of LNCS, pages 312–331. Springer, 2010.

16. J. Hong, J. Kim, J. Kim, K. Park and J. Cheon. Constant-Round Privacy Pre-
serving Multiset Union. Available at http://eprint.iacr.org/2011/138.

17. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In 6th Theory of
Cryptography Conference — TCC 2009, volume 5444 of LNCS, pages 577–594.
Springer, 2009.

18. E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite
fields. In Mathematics of Computation, volume 67, number 223, July 1998, pages
1179-1197

19. L. Kissner and D. X. Song. Privacy-preserving set operations. In Advances in
Cryptology — Crypto 2005, volume 3621 of LNCS, pages 241–257. Springer, 2005.
See also Technical Report CMU-CS-05-133, Carnegie Mellon University.

20. K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic.
in 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 146-155, IEEE computer Society, 2008.

21. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology — Eurocrypt ’99, volume 1592 of LNCS, pages 223–238.
Springer, 1999.

22. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology — Crypto ’91, volume 576 of LNCS, pages
129–140. Springer, 1992.

23. Y. Sang and H. Shen. Efficient and secure protocols for privacy-preserving set
operations. ACM Trans. Information and System Security, 13(1), 2009.

24. A. Shamir. How to share a secret. In Communications of the ACM, volume 22,
pages 612–613. ACM, 1979.

25. V. Shoup. A Computational Introduction to Number Theory and Algebra, second
edition. Cambridge University Press, 2009.

26. C. Umans. Fast polynomial factorization and modular composition in small char-
acteristic. In 40th Annual ACM Symposium on Theory of Computing (STOC),
pages 481-490, ACM, 2008.

15

