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Abstract. Authenticated Key Exchange protocols enable several parties
to establish a shared cryptographically strong key over an insecure net-
work using various authentication means, such as strong cryptographic
keys or short (i.e., low-entropy) common secrets. The latter example is
definitely the most interesting in practice, since no additional device is
required, but just a human-memorable password, for authenticating the
players.
After the seminal work by Bellovin and Merritt, many settings and secu-
rity notions have been defined, and many protocols have been proposed,
in the two-user setting and in the group setting.

1 Introduction

Key exchange protocols are cryptographic primitives used to provide several
users (two or more), communicating over a public unreliable channel, with a
secure session key. This thus allows establishment of virtual secure channels over
insecure networks, which is one of the main practical applications of cryptogra-
phy. Bellare and Rogaway gave the first foundations in [13, 14], but password-
based authentication required more work: in this setting, where the authenti-
cation means is a short secret chosen from a small set of possible values (a
four-digit pin, for example), the brute-force method which consists in trying all
the possible values in the dictionary succeeds after a rather small number of
attempts. This attack is called on-line dictionary attack and is unavoidable. But
its damages can be limited by a policy that invalidates or blocks the use of a
password if a certain number of failed attempts has occurred, unless failures are
undetectable [27].

This paper presents a brief survey on Password-based Authenticated Key
Exchange (PAKE) protocols, with a presentation of some security models in
Section 2, and relations to practice. Section 3 deals with some practical con-
structions.

2 Security Models

Bellare, Pointcheval and Rogaway [12], and Boyko, MacKenzie and Patel [16]
first formalized security of Password-based Authenticated Key Exchange, in two
different frameworks.
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2.1 Game-based Security

The former model [12], the so-called Find-then-Guess scenario, is in the indis-
tinguishability-based framework where an adversary should not be able to get
an advantage significantly greater than qS/N (or at most O(qS)/N for some
technicality reasons) in distinguishing a random session key from a real session
key, if qS is the number of active attacks and N the size of the dictionary. It has
thereafter been improved to the Real-or-Random scenario [7]. More precisely,
the adversary is given access to oracles: Execute-queries model passive attacks,
Send-queries model active attacks, Corrupt-queries model corruptions with the
leakage of long-term secrets, Reveal-queries model bad uses of session keys and
thus the leakage of ephemeral secrets, and Test-queries model the semantic se-
curity of the session key with a real or random answer. In the Find-then-Guess
scenario, only one Test-query can be asked, whereas in the Real-or-Random sce-
nario many Test-queries can be asked with either always-real or always-random
answers. The latter is clearly at least as strong as the former. But while both
scenarios were known to be equivalent for encryption schemes [11], a linear loss
in the number of Test-queries makes them quite different for PAKE, where the
advantage should remain in O(qs)/N , whatever the number of Test-queries. We
have then showed [7] that in this Real-or-Random scenario, Reveal-queries are
not useful anymore, hence simplifying the security games.

2.2 Simulation-based Security

The latter model [16] is in the simulation-based framework, with an ideal func-
tionality in which the adversary is allowed to check one password per session.
This models on-line dictionary attacks. Excepted this test instance password, no
information is leaked about the passwords and the session keys.

2.3 Universal Composability

In both above models, one formalized the fact that, with an active attack, the
adversary can basically test one password, whereas passive eavesdropping does
not (computationally) leak any information. The goal is essentially to rule out
off-line dictionary attacks in which the adversary makes some active and passive
attacks, and then makes an off-line brute-force attack on the dictionary. On-line
brute-force attacks, which are unavoidable, should be the only possible way to
have some information about the session keys, and thus many interactions with
a real player are required.

However, there were still some limitations on the password distributions and
for composition with other protocols, which were overcome by Canetti, Halevi,
Katz, Lindell and MacKenzie [24]. They indeed provided an ideal functional-
ity in the Universally Composable (UC) security framework [23], see Figure 1.
This functionality also models on-line dictionary attacks with a TestPwd-query
that can be asked once to each user in sessions. An important property is that
passwords are chosen by the environment which then hands them to the parties



The functionality FPAKE is parameterized by a security parameter k. It interacts with
an adversary S and a set of parties P1,. . . ,Pn via the following queries:

– Pi asks for a (NewSession, sid, Pi, Pj, pw): Send (NewSession, sid, Pi, Pj) to S.
If this is the first NewSession-query, or if this is the second NewSession-query
and there is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw) and mark this record
fresh.

– S asks for a (TestPwd, sid, Pi, pw
′): If there is a record of the form (Pi, Pj , pw)

which is fresh, then do:
• If pw = pw ′, mark the record compromised and reply with “correct guess”;
• If pw 6= pw ′, mark the record interrupted and reply with “wrong guess”.

– S asks for a (NewKey, sid, Pi, sk): If there is a record of the form (Pi, Pj , pw),
and this is the first NewKey-query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then out-

put (sid, sk) to player Pi;
• If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw ′ = pw ,
and a key sk ′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then
output (sid, sk ′) to Pi;

• In any other case, pick a new random key sk ′ of length k and send (sid, sk ′)
to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Fig. 1. The PAKE Ideal Functionality FPAKE

as inputs. This guarantees security even in the case where two honest players
execute the protocol with two different passwords: the environment can emu-
late any distribution, mistypes of passwords and related passwords. Also note
that allowing the environment to choose the passwords guarantees forward se-
crecy. This functionality mimics quite well some concrete requirements, but still,
some leakage of information is not modeled, and could be exploited by a real-life
adversary, whereas the ideal functionality does not allow it to the ideal-world
adversary.

Explicit Authentication. With the above functionality, if neither party is cor-
rupted, then they both end up with a uniformly-distributed session key, either
the same key if the passwords are the same (success), or independent keys if
the passwords are different (failure). Furthermore, the adversary learns nothing
about the keys and the passwords, and even nothing about the status of the ses-
sion (success or failure), but the users either. Explicit authentication, or mutual
authentication modeled in [5], provides the players with a session key if and only
if the passwords are the same, informing the adversary of success or not. This
is an interesting additional feature, which is also more relevant in practice. In
the real life, the adversary anyway learns whether the protocol succeeded or not,
since in the latter case the communication stops.

Combined with the split functionality [10], it also allows to remove the
TestPwd-query since the NewKey-query would reveal to the adversary whether



the passwords are the same or not, by leaking the success or failure status. The
split functionality allows the adversary to split a session between users Alice and
Bob into two sessions, one between Alice and the adversary trying to imperson-
ate Bob, and a second one between Bob and the adversary trying to impersonate
Alice. When the adversary plays with Alice, in case of success, this means it has
guessed Alice’s password, which is similar to the TestPwd-query.

Contributiveness. In the FPAKE functionality, if one party is corrupted, or if the
adversary successfully guessed the player’s password, the adversary is granted
the right to fully determine the session key. Note that as soon as a party is
corrupted, the adversary anyway learns the key, so one can think that nothing
is lost by allowing it to fully determine it. But this is precisely the difference
between key agreement and key distribution protocols.

In case of groups, this makes a huge difference. Hence the more recent func-
tionality proposed by Abdalla, Catalano, Chevalier and Pointcheval [4] which

The functionality FGPAKE is parameterized by a security parameter k, and the param-
eter t of the contributiveness. It interacts with an adversary S and a set of parties
P1, . . . , Pn via the following queries:

– Pi asks for a (NewSession, sid,Pid, Pi, pw i): If this is the first NewSession-
query for Pi, where Pid is a set of at least two distinct identities containing Pi,
record (sid,Pid, Pi, pw i), mark it fresh, and send (sid,Pid, Pi) to S. Ignore any
subsequent NewSession-queries with a different Pid set. If all the players involved
in Pid have submitted their NewSession-queries, then record (sid,Pid, ready) and
send it to S.

– S asks for a (TestPwd, sid,Pid, Pi, pw
′): If there exists a record of the form

(sid,Pid, Pi, pw i) which is fresh:
• If pw i = pw ′, mark the record compromised and reply with “correct guess”;
• If pw i 6= pw ′, mark the record interrupted and reply with “wrong guess”.

– S asks for a (NewKey, sid,Pid, sk): If there is a record of the form
(sid,Pid, ready), then, denote by nc the number of corrupted players, and
• If all Pi ∈ Pid have the same passwords and nc < t, choose sk ′ ∈ {0, 1}k

uniformly at random and store (sid,Pid, sk ′).
• If all Pi ∈ Pid have the same passwords but nc ≥ t, store (sid,Pid, sk).

In both cases, for all Pi ∈ Pid, mark the record (sid,Pid, Pi, pw i) completed.
In any other case, store (sid,Pid, error), and for all Pi ∈ Pid, mark the record
(sid,Pid, Pi, pw i) error. When the key is set, report the result (either error or
completed) to S.

– S asks for a (SendKey, b, sid,Pid, Pi): If Pi ∈ Pid and there is a recorded tuple
(sid,Pid, α) where α ∈ {0, 1}k ∪ {error}, send (sid,Pid, α) to Pi if b = 1 or
(sid,Pid, error) if b = 0.

– S asks for a (Corrupt, sid,Pid, Pi): If there is a recorded tuple (sid,Pid, Pi, pw i),
then reveal pw i to S. If there also is a recorded tuple (sid,Pid, sk), that has not
yet been sent to Pi, then send (sid,Pid, sk) to S.

Fig. 2. The Contributory GPAKE Ideal Functionality FGPAKE



provides the contributiveness property to Group Password-based Authenticated
Key Exchange (GPAKE), see Figure 2. PAKE is a particular case of GPAKE with
groups of size 2. The latter property allows the adversary to fully determine the
session key only if it has corrupted enough players, more than a threshold. This
threshold can even be maximal: as soon as a player is honest, if a common key
is generated, it is uniformly distributed in an unpredictable way. This means
that no player has a more important role, and so there is no player to corrupt in
priority for the adversary. As explained above, and as done in [5], one can even
remove TestPwd-queries, allowing the adversary to split the group into several
subgroups, with sub-session-IDs, where the adversary plays the role of the other
users.

3 Constructions

3.1 Two-Party Password-based Authenticated Key Exchange

Bellovin and Merritt [15] proposed the first scheme, the so-called Encrypted
Key Exchange (EKE), see Figure 3 for a sketch of the protocol, where E is
assumed to be an encryption scheme onto the group G, sometimes modeled
as an ideal cipher. A first security analysis has been provided in the indistin-
guishability-based framework, in the ideal-cipher model [12], followed by several
proofs of variations [8, 18, 19], trying to reduce the need of ideal models but
still keeping the initial efficiency of EKE. EKE has also been studied in the
simulation-based framework, in the random-oracle model [16], followed by studies
in the UC framework [3] with security against adaptive corruptions, but still in
ideal models. Our “simple PAKE” protocols [8] are definitely the most efficient,
with a random oracle only for extracting the session key, with a security analysis
in the Find-then-Guess scenario, under the CDH assumption.

Katz, Ostrovsky and Yung [33] proposed the first practical scheme, but still
less efficient than above schemes, in the standard model with a common reference
string, followed by a generalization from Gennaro and Lindell (GL) [28, 29],
using the power of smooth-projective hash functions [26], in the Find-then-Guess

A pw B pw

x
R←{1, . . . , |G|}

X ← gx, X ′ ← Epw (X) A‖X ′
- y

R←{1, . . . , |G|}
Epw (gy)� Y ← gy, Y ′ ← Epw (Y )

Y ← Dpw (Y ′) X ← Dpw (X ′)
Z ← Y x Z ← Xy

sk ← H(A‖B‖X‖Y ‖Z)

Fig. 3. Encrypted Key Exchange



scenario. Many variations [6,24,31,34,35] have thereafter been proposed, to get
security in the UC framework, to improve round efficiency, or to rely on new
assumptions.

Whereas the huge majority of the protocols rely on Diffie-Hellman assump-
tions, some efficient schemes have also been proposed on factoring-related as-
sumptions [25, 30, 36, 37]. Besides the Secure Remote Password (SRP) proto-
col [39] and the Simple Password Exponential Key Exchange (SPEKE) proto-
col [32] that have been standardized, EKE-like and GL-like schemes are the two
main streams, with security analyses in the UC framework.

3.2 Group Password-based Authenticated Key Exchange

For groups, while the first proposals were extensions of the group Diffie-Hellman
key exchange [17, 20, 38], the Burmester and Desmedt construction [21, 22] be-
came more appropriate, because of its constant number of rounds, independently
of the size of the group. Several group password-based authenticated key ex-
change protocols have then been proposed [1, 2, 5, 9], essentially combining a
two-party PAKE with the Burmester and Desmedt methodology.

Acknowledgments
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