
Generating Provable Primes Efficiently
on Embedded Devices

Christophe Clavier1, Benoit Feix1,2, Löıc Thierry2,?, and Pascal Paillier3

1 XLIM, University of Limoges,
christophe.clavier@unilim.fr

2 INSIDE Secure
bfeix@insidefr.com,thierry.loic@hotmail.fr

3 CryptoExperts
pascal.paillier@cryptoexperts.com

Abstract. This paper introduces new techniques to generate provable
prime numbers efficiently on embedded devices such as smartcards, based
on variants of Pocklington’s and the Brillhart-Lehmer-Selfridge-Tuckerman-
Wagstaff theorems. We introduce two new generators that, combined
with cryptoprocessor-specific optimizations, open the way to efficient and
tamper-resistant on-board generation of provable primes. We also report
practical results from our implementations. Both our theoretical and ex-
perimental results show that constructive methods can generate provable
primes essentially as efficiently as state-of-the-art generators for probable
primes based on Fermat and Miller-Rabin pseudo-tests. We evaluate the
output entropy of our two generators and provide techniques to ensure
a high level of resistance against physical attacks. This paper intends to
provide practitioners with the first practical solutions for fast and secure
generation of provable primes in embedded security devices.

Keywords: Prime Numbers, Pocklington’s theorem, Public Key Cryp-
tography, Embedded Software, Modular Exponentiation, Cryptographic
Accelerators, Primality Proving.

1 Introduction

Large prime numbers are a basic ingredient of keys in several standardized primi-
tives such as RSA [21], Digital Signature Algorithm (DSA) [12] or Diffie-Hellman
key exchange (DH) [10]. This paper precisely addresses the generation of prov-
able prime numbers in embedded, crypto-enabled devices.

When it comes to RSA key generation, two approaches coexist: key pairs may
be generated off-board (i.e. out of the device) in a secure environment such as a
certified Hardware Security Module (HSM) running in a personalization center,
and loaded into devices afterwards. Key pairs may also be generated on-board,

? Part of this work was carried out when the author was doing his Master’s thesis at
Inside Secure.



that is, by the device itself. In this case the private key cannot be compromised
as it is never transmitted to the outside world. This capability also allows the
device to generate new keys later on, when deployed in the field. However it
implies that the device must be able to generate large primes very efficiently and
in a side-channel-secure manner.

Surprisingly enough, in spite of a quite abundant literature on primality
testing and on the validation of provable primes, research works that specifically
suggest generators for embedded devices are pretty inexistant. Commonly found
prime number generators rely on primality (pseudo-)tests to provide a high level
of confidence that the output number is prime. It is widely known that this con-
fidence level can be increased arbitrarily by applying sufficiently many iterations
of the Miller-Rabin test [12].

Technical requirements for the generation of prime numbers well-suited for
RSA, DSA and ECDSA are described in industry standards such as FIPS 186-
3 [12]. To ensure compliance, generating a 1024-bit DSA prime number requires
as many as 40 Miller-Rabin iterations, which can be reduced to 3 when perform-
ing an additional Lucas test. However carrying out a Lucas test is more costly
on an embedded device than a single modular exponentiation, and thus leads
to a performance loss. This paper investigates another approach, namely the
application of constructive techniques to achieve truly provable primality.

In this paper, we introduce two efficient methods for generating provable
primes and present fast implementations of these methods on a popular smart-
card cryptoprocessor. Our methods rely on Pocklington’s theorem and an ex-
tended result due to Brillhart, Lehmer and Selfridge. We establish bounds on
the entropy of the output distribution of each method and provide evidence that
both of them are secure and can be used for cryptographic purposes. Performance
measurements are given that demonstrate the efficiency of our algorithms and
how they compare with probable prime generation. We also suggest a number
of countermeasures against state-of-the-art side-channel and fault-based analysis
to ensure security in an untrusted environment.

Roadmap. Section 2 recalls the usual methods for primality testing, where
we distinguish between probabilistic and true tests. Generation algorithms for
provable primes are discussed in Section 3, where we introduce our two efficient
constructive methods. The security of these methods in terms of output entropy
is discussed in Section 4. Practical results are reported in Section 5 together
with performance comparisons for smartcard implementations of our probable
prime and provable prime generators. Section 6 addresses threats arising from
side-channel attacks and shows how to adapt our algorithms to resist these. We
conclude in Section 7.

2 Prime Number Generation based on Primality Testing

In the broadest possible sense, a primality test > is a procedure that outputs a
guess>(n) ∈ {true, false} as to whether a positive integer n is prime or composite.
It can be a pseudo-primality test (also called compositeness test), in which case

2



the guess can be a false positive with some probability, or a true primality test
that never fails and provides a proof for primality when positively answered.
Once one is given some primality test >, it is natural to derive Algorithm 2.1
which provides a generic method for generating prime numbers.

Alg. 2.1 Generic Prime Number Generation

Input: a primality test >, a constraining property P
Output: a prime integer n

1. generate a random candidate n verifying property P
2. while >(n) = false do
3. update n while preserving property P
4. return n

Following the naming of Brandt and Damg̊ard [18], we refer to the list of
tested candidates as the search sequence. In the generic prime number generator,
each candidate along the search sequence is required to verify some property P.
The purpose of this requirement is to reduce the average number of calls to >,
which is assumed to be the most time-consuming subroutine of the algorithm,
by avoiding candidates known to be composite.

Without this requirement – or equivalently, when P is satisfied for any n – the
average number of calls to > when generating an `-bit prime is close to ln(2`).
An obvious improvement is to let P be the property that n is odd and proceed to
updating a candidate by adding 2 to it. In that case the average number of calls to
> drops to ln(2`)/2. A straightforward generalization of this idea is to take for P
the property that n is relatively prime with the t smallest primes p1, . . . , pt. The
first candidate in the search sequence thus requires the generation of an invertible
element modulo Π =

∏t
i=1 pi, which can be done either with trial divisions

by each of p1, . . . , pt, using Chinese remaindering (e.g. Garner [13] or Gauss
algorithms), or using a technique due to [16] based on Carmichael’s theorem.
Several methods can be applied to update n while preserving gcd(n,Π) = 1;
Π can simply be added to n, or one can keep track of an array of indicators
ωi = n mod pi for i = 1, . . . , t and modular-add 2 to all of those until none
is equal to zero. Alternately, an efficient method for preserving gcd(n,Π) = 1
for maximally large Π is found in Joye et al. [15,16]. Overall, the techniques
described in [15,16] provide the most efficient approach on a cryptoprocessor
as they generate an invertible element modulo Π faster than the classical trial
division method. Irrespective of the chosen methods to implement the different
subroutines of Algorithm 2.1, the average number of calls to > is close to

N(`,Π) = ln(2`) · φ(Π)

Π

where φ is Euler’s function. The optimal choice therefore consists in taking the
largest possible prime product Π = p1 · · · · · pt. While N(`,Π) obviously further

3



decreases with larger t, the relative gain rapidly decreases as well as Π becomes
larger.

2.1 Pseudo-Primality Tests

Pseudo-primality tests may erroneously view a composite number as being prime.
Among these, Fermat and Miller-Rabin tests are the most commonly used in
embedded applications as they are particularly fast and easy to implement. The
random-base Miller-Rabin test has an error probability ε < 1/4. By iterating
this test h times with different random bases this probability is (often quite
loosely) upper bounded by 1/4h. Practitioners choose the number h of itera-
tions depending on the bitsize of the tested number, the cryptosystem intended
to make use of the generated prime, and the specific security requirements im-
posed by industry standards. Referring to FIPS 186-3, a 1024-bit prime to be
used as a DSA parameter requires 40 Miller-Rabin tests (or 3 Miller-Rabin tests
followed by a Lucas test). For a 2048-bit RSA key, each 1024-bit prime must
pass 4 Miller-Rabin tests, and although applying the Lucas test is not required,
it is highly recommended. The random-base Fermat test has approximately the
same efficiency as the random-base Miller-Rabin test while its error probability
is higher. However, it is more simple to implement and leads to optimally effi-
cient pseudo-testing when using a base fixed to 2: modular multiplications by
2 can then be replaced with modular additions in the modular exponentiation
2n−1 mod n. Fermat testing is usually performed first with a = 2, and only when
n passes the Fermat test, does it undergo several Miller-Rabin rounds with ran-
dom bases before being considered to be prime. This leads to the efficient prime
number number generator referred to as Algorithm 2.2, where Fa(n) and MRa(n)
respectively denote Fermat and Miller-Rabin tests with base a.

Alg. 2.2 Efficient Generation of Probable Primes

Input: a bitsize `, Π = 2 · 3 · 5 · . . . · pt, a confidence parameter h
Output: an `-bit probable prime n

1. generate a random `-bit integer n with gcd(n,Π) = 1 and go to 3
2. update n such that gcd(n,Π) = 1
3. if F2(n) = false then go to 2
4. for i = 1 to h do
5. pick a base a at random from [2, n− 2]
6. if MRa(n) = false then go to 2
7. return n

Neglecting the probability that the output prime is a Fermat or a strong pseu-
doprime, and denoting respectively by Ti, Tu, TF2 and TMRa the execution times
of the routines for generating the first candidate, updating the current candidate
and performing Fermat and Miller-Rabin tests, the average total execution time

4



to generate a probable l-bit prime amounts to

Tprobable(`) = Ti(`)− Tu(`) +N(`,Π) · (Tu(`) + TF2
(`)) + h · TMRa(`) . (1)

This generation method is among the most popular ones in use in the embed-
ded security industry at the present time. Section 5 reports practical performance
figures for a typical smartcard implementation of this generator.

2.2 True Primality Tests

Prime number generators make use of pseudo-primality tests because of their
efficiency. However, to fully eliminate the error probability ε, one has to rely on
true primality testing a.k.a. primality proving. The asymptotically fastest true
primality test is the AKS method [1], which is the only known algorithm that
runs in polynomial time. However, the preferred general-purpose method for
testing large numbers is currently the Elliptic Curve Primality Proving test [4]
which was used to ascertain the primality of the largest general number, a prime
with more than 20′000 decimal digits. Unfortunately the AKS and ECPP meth-
ods are way too complex to be of any interest for embedded implementations,
where algorithms are preferably based on simple arithmetic operations such as
modular exponentiations.

A possible step in this direction relates to a deterministic variant of the Miller-
Rabin criterion. Following a result from Ankeny [3], Bach [5] proved under the
Extended Riemann Hypothesis (ERH) that any composite number n has a strong
witness4 upper bounded by 2 ln2 n. Thus, verifying that n passes Miller-Rabin
testing for all bases smaller than 2 ln2 n would actually prove that n is prime.
The drawback of this approach is the fairly large amount of bases to consider
before making sure that n is prime. Proving the primality of a 512-bit number
would require more than 250′000 Miller-Rabin rounds. A secondary drawback is
that the primality proof only holds under ERH.

Instead of relying on the existence of a small witness, it may be better to rely
on the existence of a small set containing at least one witness. Given an upper
bound x on candidates, a reliable set of witnesses is a setW such that every odd
composite integer n ≤ x has a witness in W. An interesting result from Alford
et al. [2] unconditionally proves the existence of a reliable set containing at most
(6/5) lnx integers smaller than x. This result does not rely on any conjecture and
proves that n is prime with much fewer Miller-Rabin rounds (only 426 rounds
for 512-bit numbers). Unfortunately the constructive method put forward by the
authors for identifying such a reliable set does not seem to be computationally
practical.

3 Constructive Generation of Provable Primes

As previously discussed, there does not seem to be any practical true primal-
ity test that would suit our context. Rather than testing the true primality of

4 A strong witness for a composite number n is an integer a such that n does not pass
the Miller-Rabin test with base a, thereby proving its compositeness.

5



candidates along a search sequence, we revisit Maurer’s approach [18] wherein
provable primes are generated in a constructive manner using Pocklington’s cri-
terion:

Theorem 1 (Pocklington’s theorem). Let n > 3 be an odd integer, and let
n = rF + 1 where the factorization of F is known as F =

∏s
j=1 q

ej
j . If there

exists an integer a such that

(i) an−1 ≡ 1 (mod n) and
(ii) gcd(a(n−1)/qj − 1, n) = 1 for each j = 1 . . . s,

then every prime divisor p of n is congruent to 1 modulo F . In particular, if
F >

√
n− 1 then n is prime.

As opposed to Fermat and Miller-Rabin’s theorems, Pocklington’s theorem
isolates sufficient conditions for true primality. Unfortunately it cannot be used
to test any given integer since the factorization of n−1 must be partially known.
Based on Pocklington’s theorem, Maurer [18] suggested a constructive method
for generating provable primes. The main idea there is to construct a prime n
such that n − 1 is divisible by one or more smaller primes. A recursive use of
the criterion then allows to generate larger primes at each round starting from
small integers whose primality proof is trivial.

Theorem 2. Let p be an odd prime, and r an integer such that r < p. Let
n = 2rp+ 1.

(i) If there exists an integer a with 2 ≤ a < n such that an−1 ≡ 1 (mod n)
and gcd(a2r − 1, n) = 1 then n is prime.

(ii) If n is prime, the probability that a random value a satisfies an−1 ≡ 1
(mod n) and gcd(a2r − 1, n) = 1 is 1− 1/p.

A generation algorithm can be derived from Theorem 2 (i) by iteratively
producing provable primes twice larger at each iteration. Maurer proposed an
iterative (and recursive) provable generation method based on this approach [19].
This iterative method requires precomputing and storing the intermediate bitsize
of all provable primes from the highest to the lowest. In Maurer’s algorithm,
the number of iterations is variable and depends on a parameter r which is
computed in order to provide the best output entropy. The main drawback of
this implementation is that it is not efficient enough and therefore not suited to
embedded implementations.

3.1 The Square Root Method

We now show how to generate provable primes more efficiently using Theorem 2
with fixed bitsizes for intermediate primes. We generate a provable prime by
doubling at each iteration the size of the current prime p to derive the new
prime n = 2rp+ 1. While the entropy of this approach – estimated later in the

6



paper – is not as optimized as in Maurer’s algorithm, this offers a more suitable
and efficient algorithm in embedded environments.

The intermediate prime sizes can be seen as equivalent to those in Maurer’s
algorithm when fixing r = 0.5. An iterative and recursive method relying on this
idea – doubling each time the size of primes – was also proposed by Shawe-Taylor
in [22] before Maurer’s publication and is recommended by the NIST [12] to
generate provable primes for public key schemes. The first algorithm we propose
can therefore be seen as an adaptation of the Shawe-Taylor method, which also
relies on Pocklington’s theorem. As opposed to Shawe-Taylor, our algorithm
is not recursive but directly generates the primes iteratively from the smallest
to the largest and many additional optimizations are put forward to improve
efficiency.

Initialization. Before making use of Pocklington’s theorem, one starts the gen-
eration with a first prime with initial bitsize l0. In his algorithm, Maurer sug-
gests generating the first prime (which is 20-bit long in the best case) using
Erathostene’s sieve. Our approach here is different and applies the Miller-Rabin
criterion to generate initial primes up to 232. Indeed, Pomerance et al. [20] and
Jaeschke [14] have proven that any number lesser5 than 232 is proven prime if
it successfully passes the Miller-Rabin test with the three bases 2, 7 and 61.
Making use of this trick, we obtain the algorithm InitGenPrime(`0) (given in
Appendix A). We define the bitsize of the initial prime as

`0 = min
k>0

{⌈
`n − 1

2k

⌉
+ 1 such that

⌈
`n − 1

2k−1

⌉
+ 1 > 32

}
.

As indicated previously, we make use of InitGenPrime(`0) to generate the initial
prime p for any given size `0 lesser than 32. To illustrate the different steps of
our method, Table 1 gives for different bitsizes `n, the initial prime size `0, the
number k of iterations of Pocklington’s theorem, and the intermediate prime
sizes `i at each iteration.

`n k `0 `1 `2 `3 `4 `5 `6 `7
512 5 17 33 65 129 257 512 - -

768 5 25 49 97 193 385 768 - -

1024 6 17 33 65 129 257 513 1024 -

2048 7 17 33 65 129 257 513 1025 2048

Table 1. Intermediate bitsizes (`0 and `i) and number k of iterations.

In order to reduce the number of Fermat tests throughout the generation,
we apply the same idea as in the generation of probable primes: we get rid of

5 More precisely, the exact bound is 4′759′123′141.

7



candidates n which are not coprime to a product Π of the smallest primes. We
thus obtain the provable prime generator presented as Algorithm 3.1.

Alg. 3.1 Efficient-Square-Root-Generation(`n)

Input: a bitsize `n, Π = 3 · 5 · . . . · pt
Output: an `n-bit provable prime n

1. `← `n
2. while ` > 31 do
3. `← `/2
4. `← `+ 1
5. n← GenInitPrime(`) [compute the initial small prime]
6. while ` < `n do
7. p← n
8. `← min(2`− 1, `n)

9. I ← b 2
`−1

2p
c

10. Select r at random from [I + 1, 2I] such that n← 2rp+ 1 is coprime to Π and
go to 12

11. Update r in [I + 1, 2I] such that n← 2rp+ 1 is coprime to Π
12. if ` < 129 then
13. pick an integer a at random from [2, n− 2]
14. else
15. a← 2
16. if an−1 mod n 6= 1 then go to 11
17. if gcd(a2r − 1, n) 6= 1 then go to 11
18. return n

Selection and Update of r and n. A first solution for finding a suitable
r at Step 10 of Algorithm 3.1 consists in randomly selecting a first value r ∈
[I + 1, 2I], setting n = 2rp + 1, and then incrementing r by 1 and n by 2p
until the modular residues (ωi = n mod pi)i=1,...,t are all non zero. Each ωi is
then incremented by 2p mod pi. An efficient trick consists in obtaining the values
2p mod pi by doubling modulo pi the residues ωi of the previous iteration since
the previous value of n corresponds to the new value of p in the current iteration.
At Step 11, the same incremental update of r and n is applied for generating
the next candidate coprime to Π.

A second solution consists in generating n simultaneously compliant with
Pocklington’s property (an even multiple of p plus one) and coprime to Π. This
is done by first selecting r as (x− (2p)−1 mod Π) where x is randomly selected
from Z?Π using the technique of [15] based on Carmichael’s function. Then r
is added to a random multiple of Π so that it lies in [I + 1, 2I], and the first
candidate n is computed as 2rp+ 1. Doing so, n is constructively coprime to Π.
At Step 11, the next candidate is computed in the same vein from the updated
value x← pt+1 · x mod Π.

8



Fixing a = 2 in Fermat testing. From Theorem 2 (ii), we know that the
probability that a random value a rejects a prime n at Step 16 or 17 is 1/p.
Assuming that the fraction of rejected primes does not vary much from one
value of a to another, choosing a constant value a has a negligible impact on
the distribution of the generated primes when the bitsize ` is sufficiently large.
For instance when generating a 128-bit prime number n = 2rp+ 1 from a 65-bit
provable prime p, less than 1/264 of the primes would never be reached. We
accept this negligible loss of entropy and use a = 2 for the Fermat test when
` > 128. This leads to faster exponentiations for steps 16 and 17 where modular
multiplications by the base can be replaced with modular additions.

Estimated Performance. Denoting respectively by Tinit, TI , Tu, TFa
and

Tg the execution times taken by the initialization, computing I, updating the
candidate n, the Fermat test with base a and the gcd computation, the total
average execution time of Algorithm 3.1 amounts to

Tprovable(`n) = Tinit(`0) +

k∑
i=1

(TI(`i) +N(`i, Π) · (Tu(`i) + TFa(`i)) + Tg(`i)) . (2)

We report experimental results from our smartcard implementation of this prime
number generator in Section 5. Note that the value N(`i, Π) equals the average
number of primality tests in the generation of probable primes for `i-bit integers
coprime to Π. Also, as expected, we observed in our simulations that only one
gcd is computed per `i-bit prime so that its execution time is almost negligible
compared to the overall execution time.

3.2 The Cube Root Method

Our second method relies on (what we refer to) as the Cube Root Theorem put
forward by Brillhart, Lehmer and Selfridge in 1970. More details on this result
can be found in [6].

Theorem 3 (Brillhart-Lehmer-Selfridge-Tuckerman-Wagstaff [6]). Let
n > 3 be an odd integer, let n = rF + 1 where F is completely factored and
gcd(F, r) = 1. Suppose there exists an integer a such that

(i) an−1 ≡ 1 (mod n),
(ii) gcd(a(n−1)/q − 1, n) = 1 for each prime factor q of F .

Let r = uF + s, 1 ≤ s < F , and suppose n < 2F 3 + 2F , F > 2. If u is odd, or
if u is even and s2 − 4u is not a perfect square, then n is prime.

As a corollary of Theorem 3, we derive the following result:

Theorem 4 (Cube Root Theorem). Let p be an odd prime, n = 2rp+1 with
r an integer such that r < p2 + 1. If there exists an integer a with 2 ≤ a ≤ n
such that

9



(i) an−1 ≡ 1 (mod n) and gcd(a2r − 1, n) = 1,
(ii) r = up+ s, 1 ≤ s < p for odd u,

then n is prime.

Theorem 4 makes it possible to put together a prime number generator that
iteratively produces proven primes three times larger at each iteration (instead
of twice larger in the Square Root method). In order to speed-up the whole
generation, we only consider cases where the quotient u is odd. This reduces
the output entropy by one bit but has no significant impact on the security of
cryptosystems such as RSA and DSA. To generate a provable prime of `n bits,
our algorithm starts with the generation of an initial prime p of `0 bits, where
`0 is established as follows:

`0 ← `n
while (`0 > 31) `0 ← b`0/3c+ 1

The generation of this `0-bit initial prime is performed as previously using the
Miller-Rabin criterion and algorithm InitGenPrime(`0) of Appendix A. The sizes
`i of intermediate primes are displayed on Table 2.

`n k `0 `1 `2 `3 `4
512 3 20 59 176 512 -

768 3 29 86 257 768 -

1024 4 14 41 122 365 1024

2048 4 26 77 230 689 2048

Table 2. Intermediate sizes (`0 and `i) and number k of iterations.

We then obtain the Cube Root prime number generator described in Algo-
rithm 3.2.

Initial Selection and Update of r and n. A first solution for selecting a
suitable r at Step 10 of Algorithm 3.2 is similar to the one used in the Square
Root algorithm 3.1. An additional step is necessary that consists in computing
u and s in r = up+ s in order to avoid candidates for which u is even.

Our second and most efficient solution for Step 10 consists in generating n in
a constructive manner so that n is simultaneously compliant with Pocklington’s
requirement (an even multiple of p plus one), is coprime to Π and such that
the quotient u = br/pc is forced to be odd. To this end, we keep track of an
invertible element x ∈ Z?Π which will serve as the residue of n modulo the prime
product Π, and set r = x − 1/(2p) mod Π to ensure that n = 2xp mod Π is
invertible modulo Π, so that the first two requirements are fulfilled. Now note
that letting r = up + s, u is odd if and only if r and s have opposite parities.
Therefore, if s is set to a fixed odd value throughout the search sequence, it is

10



Alg. 3.2 Efficient-Cube-Root-Generation(`n)

Input: a bitsize `n, Π = 3 · 5 · . . . · pt
Output: an `n-bit provable prime n

1. `← `n
2. while ` > 31 do
3. `← b`/3c
4. `← `+ 1
5. n← GenInitPrime(`) [compute the initial small prime]
6. while ` < `n do
7. p← n
8. `← min(3`− 1, `n)

9. I ← b 2
`−1

2p
c

10. Select r at random from [I + 1, 2I] such that r = up + s, 1 ≤ s < p for odd u
and n← 2rp+ 1 is coprime to Π and go to 12

11. Update r in [I + 1, 2I] such that r = up+s, 1 ≤ s < p for odd u and n← 2rp+1
is coprime to Π

12. if ` < 129 then
13. select a at random from [2, n− 2]
14. else
15. a← 2
16. if an−1 mod n 6= 1 then go to 11
17. if gcd(a2r − 1, n) 6= 1 then go to 11
18. return n

enough to ensure that r is even to force the parity of u to one. We now describe
our method in more detail. Focusing on the search sequence associated with the
i-th iteration, our generator proceeds as follows:

1. Fetch precomputed values Π ← Π[i] and Λ ← Λ[i] from code data. Π ≈
2`i−1−2 is a product of small odd primes (thereby excluding 2 from the
factorization of Π), and Λ is the Carmichael function of Π.

2. Use [15] to generate a random invertible element x ∈ Z?Π , namely:
(a) Randomly select x modulo Π
(b) Compute t = xΛ mod Π
(c) If t 6= 1

i. Randomly select z modulo Π
ii. Update x = x+ z(1− t) mod Π
iii. Goto 2b

3. Compute 1/(2p) = (2p)Λ−1 mod Π and derive 1/p mod Π
4. Randomly select an odd value s modulo p
5. Use Chinese remaindering to compute r ∈ [0, 2pΠ] such that r = x −

1/(2p) mod Π, r = s mod p and r = 0 mod 2. More precisely:
(a) Compute rΠp = (((x− 1/(2p)− s)/p) mod Π) · p+ s
(b) Compute r = (rΠp mod 2) ·Π · p+ rΠp
(c) Add appropriate multiple of 2pΠ to r to get r ∈ [I + 1, 2I]

11



This concludes the initialization of the i-th loop i.e. the random selection
of r at Step 10 at the i-th iteration. Updating r consists in just refreshing x
as x = 2x mod Π and performing a new round of Chinese remaindering as
per Step 5 above. It is worthwhile noticing optimizations here: since p and s are
fixed throughout the search sequence, the generator can just compute 1/p mod Π
and (−1/(2p) − s) mod Π once and for all and store these values. Step 5 then
amounts to a couple of multiplications and additions. Also, modular exponenti-
ations modulo Π are particularly efficient since Λ is small due to the particular
form – extreme smoothness – of Π.

4 Estimating the Output Entropy

The rule for deriving at each iteration an `i-bit provable prime from an `i−1-bit
other provable prime (n ← 2rp + 1) intrinsically generates primes pi such that
pi − 1 is a multiple of a half-size prime pi−1. This particular structure is not
representative of the majority of prime integers, and obviously does not allow to
generate them all. This section establishes the entropy of the output distribution
of primes generated by Algorithms 3.1 and 3.2 6 and compare the output entropy
with that obtained by a perfect generator that outputs uniformly random primes
of a given bitsize `n.

Let us denote by R`i the number of `i-bit primes that are attainable by the
Square Root method at the end of iteration i. Note that any one of them can be
uniquely derived from the sequence (r1, . . . , ri) of the values taken by r at each
iteration. Since r is drawn at random, this suggests the heuristic approximation
that the distribution of generated primes is uniform and that its entropy is equal
to H`i = log2(R`i). According to Gauss’s theorem, the number π(x) of primes
lesser than x is well approximated by x

ln(x) for large x. The number of exactly

`-bit primes can thus be estimated by

S` =
2`

ln(2`)
− 2`−1

ln(2`−1)
.

In an initial step, the algorithm randomly generates an `0-bit prime p0, so that
R`0 = S`0 . For x ∈

[
2`i−1−1, 2`i−1

]
, consider an interval of width dx centered

on x. Every pi−1 in this interval can generate I = b 2`i−1

2·pi−1
c ' 2`i−2

x candidates

among which 2`i−2

x·ln(2`i ) are prime numbers7. The total number of primes – that

can or cannot be reached by the generator – in the considered interval is dx
ln(x) ,

6 Note that for efficiency purposes Algorithm 3.2 only selects r values for which u =
b r
p
c is odd. In the sequel we first derive the entropy of our method when ignoring

this trick. We subsequently address the effect of this feature later on.
7 This derives from a commonly accepted approximation that the Chebotarëv density

theorem also stands for large intervals. This theorem actually implies that for any
coprime integers a and d, the proportion of primes less than x belonging to the
arithmetic progression {a+ nd}n tends to 1

φ(d)
when x tends to infinity.

12



but only a fraction
R`i−1 · ln(2`i−1)

2`i−1−1

of these can be generated at iteration (i− 1), so that the number of primes pi−1
to consider in the interval is

R`i−1 · ln(2`i−1) · dx
2`i−1−1 · ln(x)

.

Integrating over
[
2`i−1−1, 2`i−1

]
the number of primes that each pi−1 can gener-

ate, we obtain

R`i
R`i−1

'
∫ 2`i−1

2`i−1−1

ln(2`i−1) · 2`i−2

2`i−1−1 · ln(2`i)
· dx

x ln(x)

' `i−1 · 2`i−2

`i · 2`i−1−1
·
∫ 2`i−1

2`i−1−1

dx

x lnx

' `i−1
`i
· 2`i−`i−1−1 ·

(
ln(`i−1)− ln(`i−1 − 1)

)
' `i−1

`i
· 2`i−`i−1−1

`i−1 − 1

whence

R`n = S`0 ·
`0
`n
· 2`n−`0−k∏k

i=1(`i−1 − 1)
(3)

where examples cases for k, `0 and `i are given in Tables 1 and 2.

As mentioned above, Equation (3) does not take into account that only half
of the values for r are selected as prime candidates in Algorithm 3.2. Assuming
that even and odd values of u are evenly distributed for r ranging from I + 1
to 2I, the effect of ignoring half of potential candidates is that every prime pi−1
in the neighborhood of x can generate only 2`i−3

x·ln(2`i ) primes. This results in the

following expression for the number of ln-bit primes generated by Algorithm 3.2
when only odd u values are selected:

R`n = S`0 ·
`0
`n
· 2`n−`0−2k∏k

i=1(`i−1 − 1)
. (4)

The estimated entropies H`n provided by Algorithms 3.1 and 3.2 are given
in Table 3 for different output bitsizes `n together with the entropy H∗`n of a
perfectly uniform distribution.

The entropy loss of the proposed prime generation ranges from 36 bits for
512-bit primes to 57 bits for 2048-bit primes for the Square Root method, and
only from 24 to 37 bits for the Cube Root method. While somewhat larger than
the entropy loss of about 4 bits found in Maurer’s method, it is noticeable that it
is small enough so that exhaustive search remains infeasible for currently secure

13



`n 512 768 1024 1536 2048

H∗`n 503 758 1014 1525 2037

H`n (Alg. 3.1, Eq. (3)) 467 720 968 1476 1980

H`n (Alg. 3.2, Eq. (4)) 479 733 981 1490 2000

Table 3. Entropy loss w.r.t. ideal prime generation

bitsizes. We believe that the security of RSA and DSA cryptosystems is not (or
only marginally) affected by using either Algorithm 3.1 or 3.2 for generating
provable primes.

5 Implementation Results and Practical Aspects

5.1 On-board Generation of Probable Primes

Our implementation relies on an AT90SC chip supplied by Inside Secure em-
bedding the Ad-X cryptoprocessor and the 8-bit AVR core both running at 30
MHz. The chip manufacturer provides a cryptographic toolbox for cryptography
developers with all basic operations over large integers: modular multiplication,
modular exponentiation, GCD, inversion, division, and so forth. The associated
documentation provides estimated performances (cycle count) for these oper-
ations. Using this information we know the exact cycle count for any step of
the generation algorithm. The exact average timings of our prime number gen-
erators can then be deduced on this component using Equation 1. Using the
development kit from IAR running on a chip emulator loaded with the toolbox,
the performance of our implementation of the generator for probable primes was
experimentally confirmed to coincide perfectly with Equation 1.

The Fermat test with base 2 runs in 11 ms for a 512-bit integer n while the
Miller-Rabin test with a random base is computed in 18 ms. We chose t = 54,
so that Π is the product of small primes ranging from 2 to 251 and we choose
h = 3 (the number of Miller-Rabin rounds).

On average, our generator outputs 512-bit probable primes in 580 ms (N(512, Π) =
35.6), 768-bit probable primes in 2′130 ms (N(768, Π) = 53.4) and 1024-bit
probable primes in 5′780 ms (N(1024, Π) = 71.2).

5.2 Generating Provable Primes

Similarly, we deduced from Equation 2 the execution timings for our generator
of provable primes on the same smartcard platform. We made use of the base-2
Fermat test when ` is greater than 128 bits, and took the same value for Π as
in the case of probable primes. We have also implemented Algorithm 3.1 on the
target chip. As a result, using the Square Root method to generate provable
primes of respectively 512, 768 and 1024 bits requires on average 810, 2′580 and
5′940 ms. The Cube Root method decreases these figures to 760, 2′240 and 5′700
ms respectively.

14



5.3 Comparing Generators for Probable and Provable Primes

Given the expressions of TProb(`) and TProvable(`), a rough guesstimate is that
about the same number of modular exponentiations should be required to gener-
ate probable and provable primes of the same size, assuming trial divisions and
identical values for Π. This is because the extra workload needed to generate
the sequence of intermediate primes in the provable case remains fairly small
compared to the resources needed to generate the full-length `n-bit provable
prime. Moreover, this extra workload is somewhat compensated by the absence
of final Miller-Rabin rounds or the Lucas test. All in all, we observe that the
generation of a provable prime is slightly less efficient that the one of a probable
prime when only a few Miller-Rabin rounds are required. However, the Cube
Root algorithm becomes the fastest option when either a significant amount of
Miller-Rabin iterations or a Lucas test is needed.

Figure 1 provides performance measurements for the various generation meth-
ods discussed in the paper.

Bitlength `n h 512 768 1024 1536 2048 Lucas test

Algorithm 2.2 3 640 2130 5780 25700 74400 yes

Algorithm 2.2 40 1170 3700 9290 36800 98900 no

Algorithm 3.1 - 810 2580 5940 26500 75600 provable

Algorithm 3.2 - 760 2240 5700 24400 73550 provable

Fig. 1. Time (in milliseconds) measurements for various prime number generators.

We find that a Lucas test, as defined in FIPS 186-3, is roughly equivalent
to 3.5 Miller-Rabin rounds and is therefore rather efficient on the AT90SC –
comparatively to higher ratios found on other architectures. Overall, our exper-
imental validation shows that the Cube Root method is essentially as efficient
as the state-of-the-art generation algorithms for probable primes.

6 Achieving Leakage-Resistant Prime Number
Generation

This section addresses side-channel attacks and ways to protect prime number
generation from information leakage. Recent research works [11,8] have high-
lighted that prime number generation may be subject to power analysis. It is
therefore necessary to ensure resistance against side-channels, especially when
the device is operated in an untrusted environment. We give in this section a
few guidelines for designing a protected implementation.

Assets to be protected are the output prime number as well as the secret
elements used throughout its generation, more precisely the random values r
and the sequence of intermediate primes reached by each iteration. It is therefore

15



necessary to ensure that the implementation does not leak these values either
during their generation or while they are being manipulated by the generation
algorithm.

A first information leakage can occur during the generation of the first `0-
bit prime. Since this is done using the Miller-Rabin criterion, the Miller-Rabin
test itself has to be protected against side-channel attacks. A typical protection
mechanism consists in performing an atomic modular exponentiation in the sense
of [7] but since the base we use here is small, there is a risk that the exponent n−1
leaks at each multiplication as explained in [9]. The exponentiation may therefore
be computed using a Square and Multiply-Always exponentiation which is a
regular algorithm. A second operation to protect is the computation of I. This
step involves the manipulation of p which must be kept secret. We therefore
suggest to implement a secure division algorithm as described in [17].

Finke et al.presented in [11] an attack that specifically targets the computa-
tion of the next prime candidate (coprime to Π) at Step 2. of Algorithm 2.2. The
attack is particularly applicable when a trial update operation is done with in-
crements of 2 or Π. This attack does not seem applicable on Step 9 (performed
with trial updates) of Algorithm 3.1 since the value used for next value of n
is n + 2p and p is unknown to the attacker. We recommend to implement the
constructive method which is not sensitive to this attack and resists physical
observation if the computation of p is done with the same exponentiation as the
one used when applying the Miller-Rabin criterion.

We also note that the exponentiation an−1 mod n in Step 11 must be per-
formed securely and that the atomic exponentiation is neither resistant nor effi-
cient when a = 2. This part can be computed in a regular way using a Square
and Multiply-Always exponentiation. In this case using a = 2 still results in neg-
ligible computational time for the multiplication and the computation remains
protected against the SPA attack published in [9]. However the first squaring
and multiplication operations (when the accumulator is still a power of 2 smaller
than the modulus n) could leak information. It would then reveal the first bits
of the exponent (about 10). It is then recommended to blind the modulus with a
random value: in that case the computation would be (2n−1 mod r1 · n) mod n.

The final computations to protect from power analysis lie in Step 12. The ex-
ponentiation 22r mod n must be protected against the disclosure or r by using,
as previously, the Square and Multiply-Always exponentiation technique. Also,
the GCD operation gcd(22r−1, n) could reveal the value of p if not implemented
in a secure way. Our implementation of the GCD calculation has been carried
out in constant time using dummy operations.

Applying these methods we obtain a side-channel protected efficient genera-
tor for provable primes. Finally, we note that fault-based attacks are not consid-
ered as a serious threat for prime number generators at the present time. This
is mainly due to the inherently randomized nature of the generation algorithms.

16



7 Conclusion

The paper introduced two new methods to efficiently generate provable primes in
embedded environments. We put forward novel algorithmic solutions and report
practical results from our smartcard implementations. We have demonstrated
that efficient generators exist for provable primes in constrained environments
and compared the new methods with state-of-the-art generators for probable
primes. We addressed side-channel analysis to ensure secure implementations of
our generation methods. Overall, the paper opens the way to embedded gener-
ation of provable primes in nearly similar or better performances than current
generators.

Acknowledgments

The authors would like to thank Vincent Verneuil for his valuable comments on
this manuscript.

References

1. M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics,
2:781–793, 2002.

2. W. R. Alford, A. Granville, and C. Pomerance. On the difficulty of finding reliable
witnesses. In Proceedings of the First International Symposium on Algorithmic
Number Theory, pages 1–16, 1994.

3. N. C. Ankeny. The least quadratic non residue. Annals of Mathematics, 55:65–72,
1952.

4. A. O. L. Atkin and F. Morain. Elliptic Curves And Primality Proving. Mathematics
of Computation, 61:29–68, 1993.

5. E. Bach. Explicit bounds for primality testing and related problems. Mathematics
of Computation, 55:355–380, 1990.

6. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and Jr. S. S. Wagstaff.
Factorization of bn ± 1, b = 2, 3, 5, 7, 10, 11, 12 Up to High Powers, volume 22.
American Mathematical Society, 1988.

7. B. Chevallier-Mames, M. Ciet, and M. Joye. Low-Cost Solutions for Preventing
Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Transactions on
Computers, 53(6):760–768, 2004.

8. C. Clavier and J-S. Coron. On the Implementation of a Fast Prime Generation
Algorithm. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware
and Embedded Systems - CHES 2007, volume 4727 of Lecture Notes in Computer
Science, pages 443–449. Springer, 2007.

9. J.-C. Courrege, B. Feix, and M. Roussellet. Simple Power Analysis on Exponentia-
tion Revisited. In D. Gollman and J.-L. Lanet, editors, Ninth Smart Card Research
and Advanced Application IFIP Conference - CARDIS 2010, volume 6035 of Lec-
ture Notes in Computer Science, pages 65–79. Springer, 2010.

10. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

17



11. T. Finke, M. Gebhardt, and W. Schindler. A New Side-Channel Attack on RSA
Prime Generation. In C. Clavier and K. Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, volume 5747 of Lecture Notes in Computer
Science, pages 141–155. Springer, 2009.

12. FIPS PUB 186-3. Digital Signature Standard. National Institute of Standards and
Technology, october 2009.

13. H. L. Garner. The residue number system. In Proceedings of the Western Joint
Computer Conference, pages 146–153, 1959.

14. G. Jaechke. On strong pseudoprimes to several bases. Mathematics of Computation,
61:915–926, 1993.

15. M. Joye and P. Paillier. Fast generation of prime numbers on portable devices: An
update. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2006, volume 4249 of Lecture Notes in Computer Science,
pages 160–173. Springer, 2006.

16. M. Joye, P. Paillier, and S. Vaudenay. Efficient Generation of Prime Numbers.
In Ç. K. Koç and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
340–354. Springer, 2000.

17. M. Joye and K. Villegas. A protected division algorithm. In Proceedings of the
Fifth Smart Card Research and Advanced Application Conference, CARDIS ’02,
2002.

18. U. M. Maurer. Fast Generation of Secure RSA-Moduli with Almost Maximal
Diversity. In Advances in Cryptology - EUROCRYPT ’89, pages 636–647.

19. Ueli M. Maurer. Fast generation of prime numbers and secure public-key crypto-
graphic parameters. J. Cryptology, 8(3):123–155, 1995.

20. C. Pomerance, C. Selfridge, and J.L Wagstaff. The pseudoprimes to 25.10e9. Math-
ematics of Computation, 35:1003–1026, 1990.

21. R. L. Rivest, A Shamir, and L. Adleman. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Communications of the ACM 21, pages
120–126, 1978.

22. J. Shawe-Taylor. Generating strong primes. Electronic Letters, 22(16):875–877,
1986.

A Detailed Efficient Algorithms for our Method

Alg. A.1 Generation of the initial prime based on Miller-Rabin testing.

Input: bitsize `0 < 32 of the initial (provable) prime, Π = 2 · 3 · 5 · . . . · pt
Output: GenInitPrime(`0): a `0-bit provable prime

1. generate a random `0-bit integer n with gcd(n,Π) = 1 and go to 3
2. update n such that gcd(n,Π) = 1,
3. if F2(n) = false then go to 2
4. if MR2(n) = false then go to 2
5. if MR7(n) = false then go to 2
6. if MR61(n) = false then go to 2
7. return n

18


