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Abstract. In this paper, we propose an efficient, standard model, semi-
generic transformation of selective-secure (Hierarchical) Identity-Based
Encryption schemes into fully secure ones. The main step is a proce-
dure that uses admissible hash functions (whose existence is implied by
collision-resistant hash functions) to convert any selective-secure wild-

carded identity-based encryption (WIBE) scheme into a fully secure
(H)IBE scheme. Since building a selective-secure WIBE, especially with a
selective-secure HIBE already in hand, is usually much less involved than
directly building a fully secure HIBE, this transform already significantly
simplifies the latter task. This black-box transformation easily extends
to schemes secure in the Continual Memory Leakage (CML) model of
Brakerski et al. (FOCS 2010), which allows us obtain a new fully secure
IBE in that model. We furthermore show that if a selective-secure HIBE
scheme satisfies a particular security notion, then it can be generically
transformed into a selective-secure WIBE. We demonstrate that several
current schemes already fit this new definition, while some others that do
not obviously satisfy it can still be easily modified into a selective-secure
WIBE.

1 Introduction

The concept of identity-based encryption (IBE) is a generalization of the stan-
dard notion of public-key encryption in which the sender can encrypt messages
to a user based only on the identity of the latter and a set of user-independent
public parameters. In these systems, there exists a trusted authority, called pri-
vate key generator, that is responsible for generating decryption keys for all
identities in the system. Since being introduced by Shamir in 1984 [28], IBE has
received a lot of attention due to the fact that one no longer needs to maintain
a separate public key for each user. Despite being an attractive concept, it was
only in 2001 that the first practical IBE construction was proposed based on
elliptic curve pairings [11]. Later that year, Cocks proposed an alternative IBE
construction based on the quadratic residuosity problem [19].

⋆ Work done while at ENS.
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The now-standard definition of security of IBE schemes, first suggested by
Boneh and Franklin [11], is indistinguishability under adaptive chosen-identity
attacks (we refer to it as full security). In this security model, the adversary is
allowed to obtain secret keys for adaptively chosen identities before deciding the
identity upon which it wishes to be challenged. By allowing these queries, this
notion implicitly captures resistance against collusion attacks as different users
should be unable to combine their keys in an attempt to decrypt ciphertexts
intended to another user.

In 2002, Horwitz and Lynn introduced the notion of hierarchical identity-
based encryption (HIBE), which allows intermediate nodes to act as private
key generators. They also provided a two-level HIBE construction based on the
Boneh-Franklin IBE scheme, but their scheme could provide full collusion resis-
tance only in the upper level. The first HIBE scheme to provide full collusion
resistance in all levels is due to Gentry and Silverberg [22]. Like the Horwitz-
Lynn HIBE scheme, the Gentry-Silverberg HIBE scheme was also based on the
Boneh-Franklin IBE scheme and proven secure in the random-oracle model [6].

The first HIBE to be proven secure in the standard model is due to Canetti,
Halevi, and Katz [16], but in a weaker security model, called the selective-identity
model. Unlike the security definitions used in previous constructions of (H)IBE
schemes, the selective-identity model requires the adversary to commit to the
challenge identity before obtaining the public parameters of the scheme. Despite
providing weaker security guarantees, Canetti, Halevi, and Katz showed that
the selective-identity model is sufficient for building forward-secure encryption
schemes, which was the main motivation of their paper.

Although the selective-identity model has been considered in many works,
and is interesting in its own right (e.g., it implies forward-secure public key
encryption), if we focus solely on the (H)IBE application, then the selective
notion is clearly unrealistic because it does not model the real capabilities of an
adversary attacking a (H)IBE scheme. So while the design of selective-identity
secure schemes seems to be an easier task, the quest for fully secure solutions is
always considered the main goal for (H)IBE construction.

It is therefore a very interesting problem to investigate whether there are
ways to efficiently convert a selective secure scheme into a fully secure one.
In the random oracle model, this question has been resolved by Boneh, Boyen
and Goh [9], who provided a very efficient black-box transformation. In the
standard model, however, no such conversion is known3, and all fully-secure
(H)IBE schemes (e.g., [8], [30], [18]) had to be constructed and proved secure
essentially from scratch.

Our results. In this paper, we explore the relationship between selective-identity
and fully secure (H)IBE schemes in the standard model.

3 It was shown by Boneh and Boyen in [7] that any selective secure IBE scheme is
already fully secure, but the concrete security degrades by a factor 1/|ID |, where ID
is the scheme’s identity space. Since ID is usually of exponential size, this conversion
is too expensive in terms of efficiency to be considered practical.
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From selective-secure WIBE to fully-secure HIBE.Our first main con-
tribution is a generic construction of fully-secure HIBE schemes from selective-
pattern-secure wildcarded identity-based encryption (WIBE) schemes. The no-
tion of a WIBE, introduced by Abdalla et al. [1], is very similar to the notion of
a HIBE except that the sender can encrypt messages not only to a specific iden-
tity, but to a whole range of receivers whose identities match a certain pattern
defined through a sequence of fixed strings and a special wildcard symbol (*).
The security notion, called selective-pattern security, requires the adversary to
commit ahead of time to the pattern P ∗ that he intends to attack. He can then
ask for the secret keys of any identity not matching P ∗, and for the challenge
ciphertext on any pattern P matching P ∗. This notion of security is slightly
more general than that given in [1]. Yet, as noted in Remark 1 at the end of
Section 2, it is satisfied by all known WIBE constructions.

Our transformation from any selective-pattern-secure WIBE to a fully-secure
HIBE is generic and relies on the notion of admissible hash functions (whose ex-
istence is implied by collision-resistant hash functions) introduced by Boneh and
Boyen in [8]. Since building selective-pattern-secure WIBE schemes seems to be
much easier than directly building a fully secure HIBE scheme, this transforma-
tion already significantly simplifies the latter task. In fact, it is worth noticing
that the selective-pattern security of all currently-known instantiations of WIBE
schemes (see [1]) follows from the selective-identity security of their respective
underlying HIBE schemes.

One direct consequence of our construction is that several existing fully se-
cure (H)IBE schemes can be seen as a particular case of our transformation.
For instance, the fully secure IBE scheme of Boneh and Boyen in [8] turns out
to be a particular case of our generic construction when instantiated with the
selective-pattern-secure Boneh-Boyen WIBE scheme given in [1]. Likewise, the
fully secure HIBE by Cash, Hofheinz, Kiltz, and Peikert [18] can be seen as
the result of our generic transformation when applied to our new WIBE scheme
in Section 5. Another consequence of our transformation is that one can obtain
new constructions of fully secure HIBE schemes by applying our methodology to
existing selective-pattern-secure WIBE schemes, such as the Boneh-Boyen-Goh
WIBE in [1]. Interestingly, the result obtained from this instantiation closely
resembles the Waters (H)IBE scheme [30].

An important point about our transformation from WIBE to (H)IBE is that
it also works in the Continual Memory Leakage (CML) model [15, 20]. In partic-
ular, we show how to modify the IBE scheme in [15] into a WIBE scheme and
prove it selective-pattern-secure in the CML model under the same assumption.
Then, by applying our transformation to this newly-constructed WIBE, we ob-
tain a (CML) fully-secure version of the IBE in [15]. For lack of space we fully
describe these extensions in the full version of our work.

The role of WIBE in our transformation. Somewhat surprisingly, our
transformation seems to imply that the WIBE notion is of central importance
when going from selective to full security in (H)IBE. To see why, one has to
take a look at our proof strategy and at the notion of Admissible hash functions
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(AHF). AHFs are a tool which allows to partition the identity space into two
subsets, B and R (both of which are of exponential size) so that in the security
proof the identities of secret key queries fall in B while the challenge identity falls
in R. In particular, by carefully selecting the AHFs parameters (as described in
[8], for instance) one can make sure that the above (good) event occurs with non-
negligible probability. In our proof from selective-secure WIBE to fully-secure
HIBE, the simulator first uses AHFs to partition the identity space into B and R.
Next, it declares to the WIBE challenger a challenge pattern which corresponds
to R, by expressing R in the form of a pattern. By the property of AHFs, if
the good event occurs (for all key derivation queries and the challenge identity
chosen by the adversary), then the simulator can easily forward all queries to
the WIBE challenger. In particular, it is guaranteed that the challenge identity
falls in R. When that happens, the simulator can output the challenge identity
chosen by the adversary as its own challenge.

We remark that the proof strategy described above does not work if one
starts from a selective-secure HIBE instead of a WIBE. Unlike the selective-
WIBE simulator, the simulator against the selective security of a HIBE should
commit to the challenge identity ID∗ at the very beginning. And even if the
simulator chooses the AHFs parameters so that all secret key queries fall in
B and the challenge identity falls in R, it still needs to guess ID∗ in R at the
very beginning. But the probability that the challenge identity chosen by the
adversary matches such ID∗ is 1/|R|, which is negligible (recall that both B and
R are of exponential size).

Selective WIBE from selective HIBE. The second contribution of this pa-
per is to identify conditions under which we can generically transform a selective-
identity-secure HIBE scheme into a selective-pattern-secure WIBE scheme. To-
wards this goal, we introduce a new notion of security for HIBE schemes, called
security under correlated randomness, which allows us to transform a given HIBE
into a WIBE by simply re-encrypting the same message to a particular set of
identities by reusing the same randomness. Informally speaking, in order for a
HIBE scheme to be secure under correlated randomness, it must satisfy the fol-
lowing two properties. First, when given an encryption of the same message under
the same randomness for two identity vectors ID0 = (ID0,1, . . . , ID0,j, . . . , ID0,λ)
and ID1 = (ID1,1, . . . , ID1,j , . . . , ID1,λ) differing in exactly one position (say j),
one can easily generate a ciphertext for any identity vector matching the pat-
tern ID = (ID1,1, . . . , *, . . . , ID1,λ). Secondly, when given these two ciphertexts,
the adversary should not be able to generate an encryption of the same mes-
sage under the same randomness for any identity vector that does not match
the pattern. In Section 4 we show that selective-correlated-randomness-secure
HIBE schemes can be converted to selective-pattern-secure WIBEs. Moreover,
in the full version, we show that several existing HIBE schemes already sat-
isfy this slightly stronger notion of security, e.g., [7, 9, 30], and in particular we
show that their security under correlated randomness black-box reduces to their
selective-identity security.
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Hence, if we combine our first generic transformation from selective-pattern-
secure WIBE to fully-secure (H)IBE, together with our second result described
above, we obtain a compiler that allows us to construct a fully secure (H)IBE
starting from a selective-secure (H)IBE. In particular, the resulting transforma-
tion works in the standard model and is semi-generic because the second part
assumes a specific property of the underlying scheme (i.e., security under cor-
related randomness). Nevertheless, by reducing the task of building fully secure
HIBE schemes to that of building a selective-pattern-secure WIBE scheme, we
believe that our result makes the former task significantly easier to achieve.

New WIBE schemes. One final contribution of this paper are two construc-
tions of selective-pattern-secure WIBE schemes. The first one, whose description
is given in the full version of this paper, is obtained by modifying the IBE in
[15]. It is based on pairings and is secure under the Decision Linear assump-
tion in the CML model. Such modification essentially follows the correlated-
randomness paradigm. Since for some technical reasons (related to the specific
scheme) the selective-pattern security of this WIBE cannot be black-box reduced
to the selective-identity security of the related IBE (like we do for other pairing-
based WIBEs), we give a direct proof under the Decision Linear assumption.
However, we notice that such proof closely follows the one in [15]. The second
WIBE is based on lattices and its security follows from the selective-identity se-
cure HIBE construction from [18]. Even though the Cash-Hofheinz-Kiltz-Peikert
HIBE scheme does not meet the notion of security under correlated randomness
introduced in Section 4 (because the scheme is not secure when the same ran-
domness is reused for encryption), we show in Section 5 that one can easily
modify it to obtain a selective-pattern-secure WIBE scheme. Similarly to the
case of pairing-based WIBE schemes, the selective-pattern security of the new
WIBE can be reduced directly to the selective-identity security of the original
Cash-Hofheinz-Kiltz-Peikert HIBE scheme. However, in this case, it turns out
to be even simpler to prove the selective-pattern security of our scheme directly
from the decisional Learning With Errors Problem (LWE) [27, 26].

Discussion. In this paper, we concentrate on building HIBE schemes that are
adaptive-identity-secure against chosen-plaintext attacks. As shown by Boneh,
Canetti, Halevi, and Katz [17, 13, 10], such schemes can easily be made chosen-
ciphertext-secure with the help of one-time signature schemes or message au-
thentication codes. Similarly to the (H)IBE schemes by Boneh and Boyen [8],
by Waters [30], and by Cash, Hofheinz, Kiltz, and Peikert [18], the schemes
obtained via our transformation are only provably secure when the maximum
hierarchy’s depth L is some fixed constant due to the loss of a factor which is
exponential in L. While for lattice-based HIBE schemes [18, 3, 4], this seems to
be the state of the art, the same is not true for pairing-based HIBE schemes.
More precisely, there have been several proposals in recent years (e.g., [21, 29,
25, 24]), which are fully secure even when the HIBE scheme has polynomially
many levels. Most of these schemes use a new proof methodology, known as dual
system encryption [29].
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Organization. The paper is organized as follows. In Section 2, we start by
recalling some standard definitions and notations used throughout the paper.
Next, in Section 3, we present our first main contribution, which is a generic
construction which can transform any selective-pattern-secure WIBE into a fully
secure HIBE scheme. Then, in Section 4, we introduce the notion of security
under correlated randomness for HIBE schemes and show how such schemes
can be used to build selective-pattern-secure WIBEs. In Section 5, we show
a selective-pattern-secure WIBE scheme that is obtained by transforming the
Cash-Hofheinz-Kiltz-Peikert HIBE. Finally, in Section 6, we summarize some
future directions left open by our work.

2 Basic Definitions

(Hierarchical) Identity Based Encryption. A hierarchical identity-based
encryption scheme (HIBE) is defined by a tuple of algorithms HIBE = (Setup,
KeyDer,Enc,Dec), a message space M, and an identity space ID . The algo-
rithm Setup is run by a trusted authority to generate a pair of keys (mpk ,msk)
such that mpk is made public, whereas msk is kept private. The users are
hierarchically organized in a tree of depth L whose root is the trusted au-
thority. The identity of a user at level 1 ≤ ℓ ≤ L is represented by a vector−→
ID = (ID1, . . . , IDℓ) ∈ ID ℓ. A user at level ℓ with identity

−→
ID = (ID1, . . . , IDℓ)

can use the key derivation algorithm KeyDer(sk−→
ID

,
−→
ID ′) to generate a secret key

for any of its children
−→
ID ′ = (ID1, . . . , IDℓ, IDℓ+1) at level ℓ+ 1. Since this pro-

cess can be iterated, every user can generate keys for all its descendants. Then,
every user holding the master public key mpk , can encrypt a message m ∈ M
for the identity

−→
ID by running C

$← Enc(mpk ,
−→
ID ,m). Finally, the ciphertext

C can be decrypted by running the deterministic decryption algorithm, m ←
Dec(sk−→

ID ′
, C). For correctness, it is required that for all honestly generated mas-

ter keys (mpk ,msk)
$← Setup, for all messages m ∈ M, all identities

−→
ID ∈ ID ℓ

and all
−→
ID ′ ancestors of

−→
ID , m← Dec(KeyDer(msk ,

−→
ID ′),Enc(mpk ,

−→
ID ,m)) holds

with overwhelming probability. An IBE is defined as an HIBE with a hierarchy
of depth 1.

The security of a HIBE scheme is captured by the standard notion of in-
distinguishability under chosen-plaintext attacks. Informally, this is captured by
the following game. The adversary A receives as input the master public key
and it can ask for the secret key of any identities of its choice. Then it chooses

a challenge identity
−→
ID∗ and two messages m0 and m1, and it is given the en-

cryption of mβ under
−→
ID∗ for a random β. The goal of the adversary is to guess

β under the restriction that A never asks for the secret key of
−→
ID∗.

In the context of hierarchical identity-based encryption a lot of works in the
literature also considered a weaker notion of security, called selective-identity
indistinguishability under chosen-plaintext attacks (IND-sHID-CPA). The main
difference with the standard IND-HID-CPA notion is that here the adversary

is required to commit ahead of time to the challenge identity
−→
ID∗. The rest of
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the game is the same as IND-HID-CPA. Sometimes, in order to have a clear
distinction with the standard notion of IND-HID-CPA, the latter is called “full
security”.

Identity Based Encryption with Wildcards. The notion of Identity-Based
Encryption with Wildcards was introduced by Abdalla et al. in [1] as a gener-
alization of the HIBE’s notion. A WIBE scheme is defined by a tuple of algo-
rithms WIBE = (Setup,KeyDer,Enc,Dec) that works exactly as a HIBE, except
that here the encryption algorithm takes as input a value P ∈ (ID ∪ *)ℓ (for
1 ≤ ℓ ≤ L), i.e., the pattern, instead of an identity vector. Such pattern may
contain a special “don’t care” symbol *, the wildcard, at some levels. An identity−→
ID = (ID1, . . . , IDℓ) ∈ ID ℓ is said to match a pattern P ∈ (ID ∪*)ℓ′ , denoted as−→
ID ∈* P , if and only if ℓ ≤ ℓ′ and ∀i = 1, . . . , ℓ: ID i = Pi or Pi = *. Note that un-
der this definition, any ancestor of a matching identity is also a matching identity.
This makes sense for the notion of WIBE, as any ancestor can derive the secret
key of a matching descendant identity anyway. For any pattern P ∈ (ID ∪ *)ℓ,
we denote with W(P ) the set of indices j ∈ [ℓ] such that Pj = *. For correctness,

it is required that for all honestly generated master keys (mpk ,msk)
$← Setup,

for all messages m ∈ M, all patterns P ∈ (ID ∪ *)ℓ′ and all identities
−→
ID ∈ ID ℓ

such that
−→
ID ∈* P , m ← Dec(KeyDer(msk ,

−→
ID),Enc(mpk , P,m)) holds with all

but negligible probability.

Similarly to HIBEs, WIBE schemes allow for similar notions of security under
chosen-plaintext attacks. In particular, in our work we consider only the notion
of selective security that we call IND-sWID-CPA. Roughly speaking, it is similar
to the IND-sHID-CPA notion for HIBE, except that here the adversary has to

commit to a pattern P ∗ (instead of an identity
−→
ID∗) at the beginning of the

game. Next, when he has to choose the challenge pattern, he can provide any P
that matches P ∗, i.e., such that either P is an identity matching P ∗, or P is a
sub-pattern of P ∗.

Remark 1 We notice that our notion of selective-security for WIBE schemes
is slightly more general than the one that was originally proposed in [1]. The
main difference is that in the original work of Abdalla et al. the notion is purely
selective, meaning that the adversary declares the challenge pattern P ∗ at the
beginning of the game, and later it receives an encryption of either m0 or m1

under P ∗. Instead, our notion allows for more flexibility. Indeed, the adversary
still declares P ∗ at the beginning of the game, but later it may ask the challenge
ciphertext on a pattern P , possibly different from P ∗, but such that P matches
P ∗. We stress that this property is not artificial for at least two reasons. First, it
is more general than the previous one. Second, it is satisfied by all known WIBE
schemes, and in particular we will show that it is satisfied by those schemes
obtained through our transformation, from selective-secure HIBE to selective
WIBE, that we describe in Section 4.
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3 Fully-Secure HIBE from Selective-Secure WIBE

In this section we concentrate on the first part of our main result. We show how
to construct a fully-secure HIBE scheme starting from any WIBE scheme that
is secure only in a selective sense. Our transformation is black-box and makes
use of admissible hash functions, a notion introduced by Boneh and Boyen in [8]
that we recall below.

Admissible Hash Functions. Admissible hash functions were first introduced
by Boneh and Boyen in [8] as a tool for proving the full security of their identity-
based encryption scheme in the standard model. Such functions turn out to be
particularly suitable for this purpose as they provide a way to implement the
so-called “partitioning technique”, a proof methodology that allows to secretly
partition the identity space into two sets, the blue set and the red set, both of
exponential size, so that there is a non-negligible probability that the adversary’s
secret key queries fall in the blue set and the challenge identity falls in the red set.
This property has been shown useful to prove the full security of some identity-
based encryption schemes (e.g., [8, 30, 18]). In particular, it fits those cases when,
in the reduction, one can program the simulator so that it can answer secret key
queries for all the blue identities, whereas it is prepared to generate a challenge
ciphertext only for red identities.

In our work we employ admissible hash functions for a similar purpose, i.e.,
constructing a fully-secure HIBE from a selective-secureWIBE, and in particular
we adopt a definition of admissible hash functions which follows the one used by
Cash et al. in [18]. The formal definition follows.

Let k ∈ N be the security parameter, w and λ be two values that are at most
polynomial in k, and Σ be an alphabet of size s. Let H = {H : {0, 1}w → Σλ}
be a family of functions. For H ∈ H, K ∈ (Σ ∪ {*})λ and any x ∈ {0, 1}w we
define the following function which colors strings in {0, 1}w as follows:

FK,H(x) =

{
R if ∀i ∈ {1, . . . , λ} : H(x)i = Ki or Ki = *

B if ∃i ∈ {1, . . . , λ} : H(x)i 6= Ki

For any µ ∈ {0, . . . , λ}, we denote with K(λ,µ) the uniform distribution over
(Σ∪{*})λ such that exactly µ components are not *. Moreover, for everyH ∈ H,
K ∈ K(λ,µ), and every vector x ∈ ({0, 1}w)Q+1 we define the function

γ(x) = Pr[FK,H(x0) = R∧FK,H(x1) = B∧FK,H(x2) = B∧ · · · ∧FK,H(xQ) = B].

Definition 2 [Admissible Hash Functions] H = {H : {0, 1}w → Σλ} is a family
of (Q, δmin)-admissible hash functions if for every polynomial Q = Q(k), there
exists an efficiently computable function µ = µ(k), efficiently recognizable sets
badH ⊆ ({0, 1}w)∗ and an inverse of a polynomial δmin = 1/δ(k,Q) such that
the following properties holds:

1. For every PPT algorithmA that, on inputH ∈ H, outputs x ∈ ({0, 1}w)Q+1,
there exists a negligible function ǫ(k) such that:

Advadm
H (A) = Pr[x ∈ badH : H ← H,x← A(H)] ≤ ǫ(k)



From Selective to Full Security 9

2. For every H ∈ H, K $← K(λ,µ), and every vector x ∈ ({0, 1}w)Q+1 \ badH
such that x0 /∈ {x1, . . . , xQ} we have: γ(x) ≥ δmin.

Our transformation. Let WIBE be a WIBE scheme with identity space ID =
Σ of size s and depth ≤ λ · L, and H = {H : {0, 1}w → Σλ} be a family of
functions. Then we construct the following HIBE scheme that has identity space
ID

′ = {0, 1}w and depth at most L:

HIBE .Setup: run (mpk ′,msk ′)
$← WIBE .Setup and select H1, . . . , HL

$← H.
Output mpk = (mpk ′, H1, . . . , HL) and msk = msk ′.

HIBE .KeyDer(msk ,
−→
ID): let

−→
ID = (ID1, . . . , IDℓ) and define I = (H1(ID1), . . . ,

Hℓ(IDℓ)) ∈ Σλ·ℓ. Output sk−→
ID

= WIBE .KeyDer(msk , I).

HIBE .Enc(mpk ,
−→
ID ,m): let

−→
ID = (ID1, . . . , IDℓ) and define I = (H1(ID1), . . . ,

Hℓ(IDℓ)) ∈ Σλ·ℓ. Output C = WIBE .Enc(mpk , I,m).
HIBE .Dec(sk−→

ID
, C): return m = WIBE .Dec(sk−→

ID
, C).

Our scheme is very simple. Essentially, the HIBE algorithm uses the algorithms
of the WIBE scheme in a black-box way, where each identity component ID i is
first hashed using a function Hi ∈ H. Boneh and Boyen show how to construct
admissible hash functions based on collision-resistance and error-correction, and
propose some concrete parameters for their instantiation (which satisfy our def-
inition). In particular, for convenience of their construction, they consider func-
tions that map to strings in an alphabet Σ of size s = 2. Here we notice that if
the given WIBE has an alphabet Σ′ of size s′ > 2, then one can simply choose
two values x1, x2 ∈ Σ′, set Σ = {x1, x2}, and then consider the same WIBE
restricted to these two identities.

The security of our scheme follows from the following theorem, whose proof
is deferred to the full version.

Theorem 3 If H = {H : {0, 1}w → Σλ} is a family of (Q, δmin)-admissible
hash functions, and WIBE is IND-sWID-CPA-secure, then the scheme HIBE
given in Section 3 is IND-HID-CPA-secure, where the maximum hierarchy’s
depth L is some fixed constant.

Intuitively speaking, the proof of Theorem 3 proceeds by showing an algo-
rithm B that plays game IND-sWID-CPA against the scheme WIBE and simu-
lates the game IND-HID-CPA to an adversaryA against HIBE . B first generates
the parameters for the admissible hash functions, which define the partitions B
and R, and then it declares the set R as the challenge pattern (notice that by
definition of K ∈ K(λ,µ), R can be described using a pattern). In this way, all
secret key queries made by A for identities in B can be forwarded by B to its
own challenger, and the same can be done if the challenge identity chosen by A
falls in R. In particular, by the properties of admissible hash functions, the event
that the identities of secret key queries fall in B and the challenge identity falls
in R occurs with non-negligible probability. However, things are not that simple,
as there may be unlucky events in which B is unable to simulate the right game
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to A and thus it needs to abort. As it already occurred in other works [30, 18],
these events may not be independent of the adversary’s view, and one solution is
to force the simulator to run an expensive artificial abort step. Our proof of The-
orem 3 proceeds in this way, requiring B to (eventually) artificially abort at the
end of the simulation. Alternatively, one can extend the techniques introduced
by Bellare and Ristenpart in [5] to obtain a proof of Theorem 3 which avoids
the need of artificial aborts. However, this requires a slightly different definition
of admissible hash functions.

Remark 4 Even though our transformation requires a WIBE scheme with λ ·L
levels to get a HIBE with L levels, we observe that the HIBE key derivation
algorithm will use the WIBE key derivation at most L times. The point is that
while L is supposed to be a constant, λ can be instead non-constant, as it is
the case for known constructions of admissible hash functions, whose output
length depends on the number of secret key queries made by the adversary.
This might have been a problem for those WIBE schemes that do not support
key derivation (delegation) for a polynomial number of levels, such as the new
lattice-based scheme described in the full version of this paper.

Extensions. Our transformation easily allows for two extensions. First, it can
be used to build an IBE by using a WIBE without the delegation property.
Second, we show that it works also in the Continual Memory Leakage model of
[15, 20]. We provide a complete description of these extensions in the full version
of our work.

4 Selective WIBE schemes from selective HIBE

In this section we investigate methodologies that allow to build a selective-
pattern secure WIBE scheme starting from a HIBE which is selective-identity
secure. In particular, we identify conditions under which this transformation
works, and then, in the full version we will show that such conditions are satis-
fied by many known schemes, e.g., [7, 9, 30]. Then, by combining this result, i.e.,
a transformation from selective-identity secure HIBE to selective-pattern secure
WIBE, with the result of Section 3, i.e., a conversion from selective-pattern se-
cure WIBE to fully-secure HIBE, we obtain a methodology which allows to turn
a selective-secure HIBE into a fully-secure one.

Security under correlated randomness. Towards this goal, our first contri-
bution is a notion of security for HIBE schemes, called security under correlated
randomness .The main idea can be described as follows. Assume that one is
given encryptions of the same message with the same randomness but for dif-

ferent identities
−→
ID0, . . . ,

−→
IDn. Then there should be an efficient algorithm that

allows to efficiently generate a new ciphertext encrypting the same message but

intended to another identity
−→
ID ′ ∈ ID ′ ⊆ ID . The first technical point is to

delineate which is this subspace ID ′ of the identity space. So, our first contri-
bution is to show that ID ′ follows from the differences between the identities
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−→
ID0, . . . ,

−→
IDn. More technically, we will show that starting from any set of identi-

ties
−→
ID0, . . . ,

−→
IDn one can define a matrix ∆ whose column i contains the vector

which is computed as the difference between
−→
ID0 and

−→
ID i (i.e.,∆(i) =

−→
ID0−−→ID i).

Then the identity subspace ID ′ fixed by
−→
ID0, . . . ,

−→
IDn is the set of all identities

that can be obtained by making affine operations over
−→
ID0 and ∆. (i.e.,

−→
ID0 plus

vectors obtained from integer linear combinations of vectors in ∆). Given this

property, encrypting a message with the same randomness for
−→
ID0, . . . ,

−→
IDn is

equivalent to encrypting for the entire ID ′, that we call Span(
−→
ID0, . . . ,

−→
IDn). As

one may guess, this is already a first step towards building a WIBE, in which
the set of recipients of an encryption is actually a subspace of ID described by
the pattern P .

Given the intuitive notion of Span described above, we define below the prop-
erty for HIBE schemes that we call Ciphertext Conversion.

Property 1 (Ciphertext Conversion) A HIBE scheme satisfies Ciphertext
Conversion if there exists an algorithm Convert that, on input n+ 1 ciphertexts
(C0, . . . , Cn) encrypting the same message with the same randomness r, under

identities (
−→
ID0, . . . ,

−→
IDn) respectively, can generate a new ciphertext (encrypting

the same message) intended to any
−→
ID ∈ Span(

−→
ID0, . . . ,

−→
IDn).

For any HIBE satisfying Property 1, the notion of selective security under
correlated randomness (IND-sCR-CPA) is defined by a game which is the same
as the IND-sID-CPA one except that: at the beginning the adversary chooses

n + 1 identities
−→
ID0, . . . ,

−→
IDn; it receives n+1 challenge ciphertexts generated

using the same randomness under identities
−→
ID0, . . . ,

−→
IDn respectively; it cannot

ask for the secret keys of identities in Span(
−→
ID0, . . . ,

−→
IDn). The IND-sCR-CPA

notion is parametrized by a distribution R on the identities
−→
ID0, . . . ,

−→
IDn that

can be chosen by the adversary.
We defer the interested reader to the full version of our work for more formal

and precise definitions.

From HIBE selective-secure under correlated randomness to selective-
secure WIBE. Now that we have defined the notion of selective security under
correlated randomness (IND-sCR-CPA), we can show how to build a selective-
pattern secure WIBE from an IND-sCR-CPA-secure HIBE. Towards this goal,
let us first introduce some notation and basic definitions.

Let ID = Z
λ
q be the identity space, for some q ≥ 2 and λ ≥ 1. For any pattern

P ∈ (ID ∪ {*})ℓ we define the function (
−→
ID0, . . . ,

−→
IDn) ← F (P ) as follows. Let

{j1, . . . , jn′} = W(P ) ⊆ {1, . . . , ℓ} be the set of levels in which P contains *. Let

n = n′ · λ, (−→ID0, . . . ,
−→
IDn) is defined as:

ID0
i =

{
Pi if Pi 6= *

0λ if Pi = *

IDk+l−1
i,m =

{
−1 if i = jk ∧m = l

ID0
i,m otherwise

:
1 ≤ k ≤ n′, 1 ≤ l ≤ λ
1 ≤ i ≤ ℓ, 1 ≤ m ≤ λ
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Moreover, we let B =
[
B(1)|| · · · ||B(ℓλ)

]
∈ {0, 1}ℓλ×ℓλ be the canonical basis

of Rℓλ.
The function F (P ) allows to specify a set of identities (

−→
ID0, . . . ,

−→
IDn) such

that the induced subspace Span(
−→
ID0, . . . ,

−→
IDn) is exactly the same subspace de-

scribed by the pattern P . Intuitively, this can be seen by looking at the way the

identities are defined.
−→
ID0 is equal to P on all the positions different from * and

0 elsewhere. Instead each identity
−→
ID i is such that its difference with

−→
ID0 leads

to a 1 in the single position where they differ and 0 elsewhere. Basically, this
means that the matrix ∆ obtained from F (P ) contains a subset of vectors in B.

In this way, adding linear combinations of these vectors to
−→
ID0 allows to reach

identities
−→
ID such that ID i = Pi where Pi 6= *, while ID i can take any value in

ID in those positions i where Pi = *. Notice that the number n of such linearly
independent vectors strictly depends on the number of * in P . We formally show
this property of F (·) by proving the following claim (the proof appears in the
full version of our paper):

Claim 5 For any P ∈ (ID ∪{*})ℓ and any
−→
ID ∈ ID ℓ it holds

−→
ID ∈ Span(F (P ))

iff
−→
ID ∈* P .

Our WIBE scheme. Let HIBE = (Setup′,KeyDer′,Enc′,Dec′,Convert) be a
HIBE scheme with identity space ID = Z

λ
q (for q ≥ 2 and λ ≥ 1), and equipped

with an efficient algorithm Convert satisfying Property 1. Then we construct the
scheme WIBE = (Setup,KeyDer,Enc,Dec) as follows.

Setup: Return the output of Setup′.

KeyDer(sk−→
ID ′

,
−→
ID): Run sk−→

ID

$← KeyDer′(sk−→
ID ′

,
−→
ID) and output sk−→

ID
.

Enc(mpk , P,m): Let (
−→
ID0, . . . ,

−→
IDn)← F (P ). For all i = 0 to n, compute Ci

$←
Enc′(mpk ,

−→
IDk,m; r), where r is taken at random from the randomness space of

HIBE .Enc. Finally, output C = (C0, . . . , Cn).

Dec(sk−→
ID

, C, P ): If
−→
ID 6∈* P , then output ⊥. Otherwise, compute (

−→
ID0, . . . ,

−→
IDn)← F (P ), run C′ ← Convert(mpk , C0,

−→
ID0, . . . , Cn,

−→
IDn,

−→
ID) and then out-

put m← Dec′(sk−→
ID

, C′).

Remark 6 We notice that our transformation assumes a HIBE scheme that
works with the identities returned by our function F (·). This function is defined
so that it assigns to the identities values Pi, 0 or −1. However, it may be the
case that 0 and/or 1 are not considered valid values in some specific identity
space (e.g., assume ID = Zq \ {0}). This issue can be overcome by observing
that everything still works if one takes any two different (and valid) values of
the identity space, instead of 0 and 1. All we want is that when we compute the
matrix ∆, if two identity components are equal, then their difference becomes
0, otherwise they lead to some value c (not necessarily 1). To see that every-
thing works even with any constant c, observe that it is possible to consider our
operations over ∆/c.
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Now, we state the security of our scheme via the following theorem, whose
proof can be found in the full version.

Theorem 7 If HIBE satisfies Property 1 and is IND-sCR-CPA-secure w.r.t.

R = ID ℓ×(n+1), then the scheme WIBE described above is correct and IND-
sWID-CPA secure.

A sufficient distribution for building a WIBE. In the previous section, we
showed that an HIBE scheme satisfying Property 1 and the notion of selective-
security under correlated randomness can be transformed into a WIBE. In par-
ticular, Theorem 7 considers the most general definition where the distribution

R is arbitrary, i.e., R = ID ℓ×(n+1). However, we observe that in order for the
transformation to work, it is sufficient to consider a more restricted distribution
that we call RWIBE .

Let B =
[
B(1)|| · · · ||B(ℓλ)

]
∈ {0, 1}ℓλ×ℓλ be the canonical basis. defined in

the previous section. We define the distribution

RWIBE = {(−→ID0, . . . ,
−→
IDn) :

−→
ID0 ∈ Z

λℓ
q ,
−→
ID i =

−→
ID0 + ki · B(ji), 1 ≤ i ≤ n,

ji ∈ {1, . . . , λℓ},k ∈ Z
n}

It is interesting to observe that for any pattern P the identities obtained from
F (P ) follow the distribution RWIBE . We show the following claim whose proof
appears in the full version.

Claim 8 For any pattern P ∈ (ID ∪ {*})ℓ we have F (P ) ∈ RWIBE .

Hence, we can combine the results of Theorem 7 and Claim 8 to obtain the
following Corollary.

Corollary 9 If HIBE satisfies Property 1 and is secure under the IND-sCR-
CPA notion w.r.t. RWIBE , then the scheme WIBE described above is correct
and IND-sWID-CPA-secure.

5 Lattice-Based WIBE

In this section, we give a construction of a lattice-based selectively-secure WIBE,
based on the hardness of the LWE Problem [27], that very closely resembles the
selectively-secure HIBE construction from [18]. In fact, the master/secret key
generation and delegation procedures are exactly the same for the HIBE and the
WIBE. The only difference lies in the encryption and decryption procedures; yet
even there, the distinction is fairly minor. For the benefit of those readers familiar
with the HIBE of [18], we present the constructions of the WIBE along with the
construction of the HIBE and also try to use the same notational conventions.

Algorithms used in constructing the HIBE and WIBE. We now briefly
describe the algorithms that were used in [18] to construct the HIBE, which we
will be using in this section for constructing the WIBE.



14 Michel Abdalla, Dario Fiore, and Vadim Lyubashevsky

1. GenBasis(1n, 1m, q) : This algorithm generates a matrix A ∈ Z
n×m
q (where

m = Ω(n log q)) and a basis S ∈ Z
m×m of Λ⊥(A) such that the distribution

of A is negligibly close to uniform over Zn×m
q and ‖S̃‖ = O(

√
n log q).

2. ExtBasis(S,A′ = A||Ā) : This algorithm takes as input a matrix A′ =

A||Ā ∈ Z
n×(m+m̄)
q and a matrix S ∈ Z

m×m, which is basis of Λ⊥(A), and
outputs a matrix S′ ∈ Z

(m+m̄)×(m+m̄) that is a basis of Λ⊥(A′) such that

‖S̃‖ = ‖S̃′‖.
3. SampleD(S,A,y, s) : This algorithm takes as input a basis S ∈ Z

m×m of the
lattice Λ⊥(A), a vector y ∈ Z

n
q , and a real number s ≥ ‖S̃‖ · ω(

√
logn) and

outputs a vector z ∼ DΛ⊥
y
(A),s.

4. RandBasis(S, s) : This algorithm takes as input an m×m lattice basis S and
a real number s ≥ ‖S̃‖ ·ω(

√
logn), and outputs a basis S′ of the same lattice

such that ‖S′‖ ≤ s
√
m. Furthermore, if S0,S1 are bases of the same lattice

and s > max{‖S̃0‖, ‖S̃1‖}, then the distributions of RandBasis(S0, s) and
RandBasis(S1, s) are statistically close.

The Lattice-Based WIBE scheme. We now describe the master key genera-
tion, key derivation, encryption and decryption algorithms of our WIBE scheme.
For any distribution χ over Z, and any vector x ∈ Z

n
q let Noisyχ(x) be the dis-

tribution obtained by first creating a vector y ∈ Z
n each of whose coordinates

is independently sampled according to χ, and then outputting x+ y mod q.

Master Key Generation. We assume that the identities are of the form
{0, 1}t, for all t ≤ L. The generation of the master public and secret keys is
done exactly in the same fashion in the HIBE and in the WIBE. The WIBE
is parametrized by the integers n,m, q where n is the security parameter, m is
an integer of size Ω(n log q) and q is some prime whose size is related to the
number of allowable key derivations, and is discussed in Section 5. We first run
the GenBasis(1n, 1m, q) procedure to obtain a matrix A0 ∈ Z

n×m
q and a basis

S0 ∈ Z
m×m of Λ⊥(A). Then for all (i, j) ∈ {0, 1} × {1, . . . ,L}, we generate a

uniformly random matrix A
(i)
j ∈ Z

n×m
q , and choose a uniformly-random y ∈ Z

n
q .

The master public key is

[
A0,A

(0)
1 ,A

(1)
1 , . . . ,A

(0)
L

,A
(1)
L

,y
]
,

and the master secret key is S0.

Key Derivation. The key derivation procedure is again performed exactly the
same for the HIBE and the WIBE. The public key of identity id = (id1, . . . , idt)

is (Aid,y), where Aid = A0‖A(id1)
1 ‖ . . . ‖A(idt)

t . The secret key of user id is
(Sid,xid) where Sid is a “short” basis of the lattice Λ⊥(Aid) and xid is a “short”
vector satisfying AT

idxid = y. The matrix Sid will be used for delegation, while
the vector xid will be used for decryption.

If a user with id = (id1, . . . , idt) would like to generate a secret key for a user
id′ = (id1, . . . , idt, idt+1, . . . , idt′) whose public key is (Aid′ = Aid||Ā,y), where
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Ā = A
(idt+1)
t+1 ‖ . . . ‖A(id

t′
)

t′ , he computes the following:

Sid′ ← RandBasis(ExtBasis(Sid,Aid′), s)

xid′ ← SampleD(ExtBasis(Sid,Aid′),Aid′ ,y, s)

where s ≥ ‖S̃id‖ · ω(
√
logn). We point out that with every key derivation, the

value of ‖S̃id‖ increases by a factor of Õ(
√
n). When the norm of the secret

key gets too large, decryption becomes impossible, and so, just like in [18], it
is important to adjust the ratio of the size of the secret key S0 and the prime
q based on how many levels of delegations one wishes to have. With each level
of delegation increasing the norm of the user id by a factor of Õ(

√
n), the ratio

between ‖S̃0‖ and q should be on the order of
√
n
d
, where d is the maximum

allowable levels in the hierarchy. Since the LWEn,q,χ problem becomes easier as q
gets larger (and the distribution χ stays the same), there is a trade-off between
security and the maximum number of delegation levels. We direct the reader to
[18] for the precise parameters.

Encryption and Decryption. In the HIBE, encryption of a message κ ∈ {0, 1}
is performed to identity id = (id1, . . . , idt) by picking a random r ∈ Z

n
q and

outputting the pair (uid, v) ∈ Z
m(t+1)+1
q , where

(uid, v) =
(
Noisyχ

(
AT

idr
)
, Noisyχ

(
yT r+ κ · ⌊q/2⌋

))

where
Aid = A0‖A(id1)

1 ‖ . . . ‖A(idt)
t (1)

and χ is some “narrow” distribution such that the LWEn,q,χ problem is hard.
The decryption of the HIBE ciphertext by the identity id = (id1, . . . , idt) is

performed as follows: for a ciphertext (uid, v) and secret key xid, the algorithm
computes v−xT

iduid mod q and outputs 0 if the result is closer to 0 than to q/2,
and outputs 1 otherwise.

In our WIBE, encryption is defined in essentially the same way as in the
HIBE. To encrypt to a pattern pat = (pat1, . . . , patt) ∈ {0, 1, *}t, we pick a
random r ∈ Z

n
q , define

Apat = A0‖A(pat1)
1 ‖ . . . ‖A(patt)

t (2)

where A*

i := A
(0)
i ‖A

(1)
i , and output the pair (upat, v) ∈ Z

m(t+t*+1)+1
q (where t*

is the number of * in the pattern pat),

(upat, v) =
(
Noisyχ(A

T
patr), Noisyχ

(
yT r+ κ · ⌊q/2⌋

))
.

Notice that instead of the matrix Apat being n×mt as in the HIBE, it can be
as large as n×2mt because every position pati that contains the wildcard * results

in the concatenation of both A
(0)
i and A

(1)
i into the matrix Apat. Therefore the

ciphertext of the WIBE could be twice as large as the HIBE ciphertext.
The decryption procedure of the WIBE is also very similar to that of the

HIBE. For every id = (id1, . . . , idt) ∈ {0, 1}t, the matrix Apat contains the
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matrix Aid, where Aid is defined as in (1). Therefore, since we know upat =
Noisyχ(A

T
patr), we can retrieve from it uid = Noisyχ(A

T
idr). And now, using

the secret key xid, the user can decrypt the ciphertext (uid, v) the same way
as in the HIBE scheme by computing v − xT

iduid mod q and outputting 0 if the
result is closer to 0 than to q/2, and 1 otherwise.

Security. The security proof of our scheme, which can be found in the full
version of this paper, is a simple adaptation of the HIBE security proof in [18].

Theorem 10 Given an adversary A who breaks the WIBE with parameters
n,m, q allowing d key derivations, there exists an algorithm S that solves the
LWEn,q,χ problem where q > σ · nd/2 · poly(n) where σ is the standard deviation
of the distribution χ and poly(n) is some fixed polynomial function in n.

6 Future Directions

First, in its most general form (i.e., without restrictions on R), our notion of
security under correlated randomness gives a generic methodology for encrypting

messages to sets S of recipients that are defined by Span(
−→
ID0, . . . ,

−→
IDn). In this

sense, a WIBE can be seen as a special case of this notion in which the recipients’
sets always have a fixed form specified by the pattern P , i.e., S = Span(F (P )).
However, one may think of a more general notion in which these sets can have a

more “irregular” form that we can express using a set of identities (
−→
ID0, . . . ,

−→
IDn)

and its Span.
Since we were mostly interested in building WIBE schemes in this work, we

considered security under correlated randomness w.r.t. the distribution RWIBE .
However, as a future direction, it would be interesting to explore whether there
exist HIBE schemes that are IND-sCR-CPA-secure according to the most generic
notion, i.e., without any restriction on R. Perhaps more interestingly, the result-
ing primitive could be seen as the dual version of the notion of Spatial Encryption
proposed by Boneh and Hamburg in [12]. In Spatial Encryption, ciphertexts are
associated to points in Z

ℓ
p, while secret keys correspond to affine subspaces of

Z
ℓ
p. In this setting, a ciphertext for x ∈ Z

ℓ
p can be decrypted by any secret key

for W ⊆ Z
ℓ
p as long as x ∈ W . In contrast, our new notion would consider

ciphertexts that are associated to affine subspaces of ID ℓ.

As a second direction, it would be interesting to investigate whether our tech-
niques can be applied to other cryptographic primitives. Indeed, the problem of
selective vs. full security has already been considered in the context of other
cryptographic notions, such as attribute-based encryption or verifiable random
functions (VRFs). In the particular case of VRFs, finding a fully secure scheme
has been a long standing open problem until the very recent works by Hohen-
berger and Waters [23] and by Boneh et al. [14]. In fact, both of these works can
be seen as obtaining a fully secure VRF from a selective secure one. While the
work of Boneh et al. explicitly builds a selective-secure VRF and then turns it
into a fully secure one, the work of Hohenberger and Waters can be interpreted
as a fully secure version of the selective-secure VRF scheme of Abdalla et al. [2].
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