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Abstract. Waters, in 2009, introduced an important technique, called
dual system encryption, to construct identity-based encryption (IBE)
and related schemes. The resulting IBE scheme was described in the
setting of symmetric pairing. A key feature of the construction is the
presence of random tags in the ciphertext and decryption key. Later
work by Lewko and Waters removed the tags and proceeding through
composite-order pairings led to a more efficient dual system IBE scheme
using asymmetric pairings whose security is based on non-standard but
static assumptions. In this work, we have systematically simplified Wa-
ters 2009 IBE scheme in the setting of asymmetric pairing. The simplifi-
cations retain tags used in the original description. This leads to several
variants, the first one of which is based on standard assumptions and
in comparison to Waters’ original scheme reduces ciphertexts and keys
by two elements each. Going through several stages of simplifications,
we finally obtain a simple scheme whose security can be based on two
standard assumptions and a natural and minimal extension of the deci-
sion Diffie-Hellman problem for asymmetric pairing groups. The scheme
itself is also minimal in the sense that apart from the tags, both en-
cryption and key generation use exactly one randomiser each. This final
scheme is more efficient than both the previous dual system IBE scheme
in the asymmetric setting due to Lewko and Waters and the more recent
dual system IBE scheme due to Lewko. We extend the IBE scheme to
hierarchical IBE (HIBE) and broadcast encryption (BE) schemes. Both
primitives are secure in their respective full models and have better ef-
ficiencies compared to previously known schemes offering the same level
and type of security.
Keywords: identity-based encryption, dual system encryption, asym-
metric pairing.



1 Introduction

Constructions of identity-based encryption schemes constitute one of the most
challenging problems of public-key cryptography. The notion of IBE was pro-
posed in [14] and solved in [3, 7]. This lead to a great deal of research on the
topic. The solution in [3], though simple and elegant, had several features which
were not satisfactory from a theoretical point of view.

In this work, we will be interested in IBE schemes built from bilinear pair-
ings. Till date, most pairing based cryptographic schemes have been based on
a bilinear map e : G × G → GT , where G is a prime-order group of elliptic
curve points over a finite field and GT is a subgroup of a finite field. Such maps
arise from Weil and Tate pairings and there is an extensive literature on effi-
cient implementation of such maps. Since the two components of the domain of
e are same, such an e is called a symmetric pairing. Another kind of pairings,
where the order of G is composite has been proposed [4]. Such pairings are called
composite-order pairings and provide additional flexibility in designing schemes.
The trade-off, however, is that computing the pairing itself becomes significantly
slower and also the representation of the group elements becomes substantially
longer.

Symmetric pairings (over prime order groups), are neither the most general
nor the most efficient of possible pairings over elliptic curves. A general bilinear
map is of the form e : G1 × G2 → GT , where G1 is a prime-order group of
points of an elliptic curve over a finite field F and G2 is a group (of the same
prime-order) of points of the same curve over an extension of F. Such maps are
called asymmetric pairings. Studies [16, 8, 5] have indicated that compared to
symmetric pairings, asymmetric pairings are much faster and more compact to
implement.

An important work on pairing based IBE is [17] which builds upon earlier
work in [1, 2] to provide an efficient IBE scheme with full security without random
oracles. Variants have been reported [6, 12] which result in IBE schemes which
are efficient and have practical sized parameters. Though important, a drawback
of the scheme in [17] is that the size of the public parameters grows linearly with
the security parameter.

In a major innovation, Waters [18] introduced a new technique – called dual
system encryption – for construction of IBE schemes and related primitives. The
scheme presented in [18] has the feature that the size of the public parameters
is constant while retaining full security. Dual system encryption is by itself an
interesting notion and worthy of further investigation. The goal of a better un-
derstanding of dual system encryption would be to obtain IBE schemes with
improved efficiency compared to the one proposed in [18].

An immediate follow-up work [11] took the route of composite-order pairings.
Such pairing groups have ‘more structure’ which can possibly help in getting a
clearer understanding of the technique. (Waters remarks in [18] that his scheme
was first obtained for composite order groups.) The approach taken by [11] is to
look at a realization of the IBE scheme of [1] in the setting of composite order
groups so as to obtain adaptive-id security. They also gave a conversion of their



composite-order IBE scheme to an IBE scheme using prime-order asymmetric
pairing. In a very recent work [10], the framework of dual system encryption
has been thoroughly investigated and an IBE scheme using prime-order pairing
has been presented. We note that the conversion from composite-order to prime-
order pairings in [11] and considering prime-order groups in [10] are motivated
by efficiency considerations.

Waters IBE scheme in [18] is based on symmetric pairings. The security of
the scheme is based on the hardness of the decision linear (DLin) and the de-
cision bilinear Diffie-Hellman (DBDH) assumptions. It is of interest to convert
this to asymmetric pairings. For one thing, this will enable faster and smaller im-
plementations which will arise from the advantages of asymmetric pairings over
their symmetric variants. There is, however, another reason. Use of asymmetric
pairings brings forward the possibility of reducing the number of group elements
in ciphertexts and keys. In fact, Waters [18] himself mentions: “using the SXDH
assumption we might hope to shave off three group elements from both cipher-
texts and private keys”. The rationale for this comment is that for asymmetric
pairings with no known efficiently computable isomorphisms between the groups
G1 and G2, the decision Diffie-Hellman (DDH) assumption holds for both G1

and G2. This is the symmetric external Diffie-Hellman (SXDH) assumption. For
symmetric pairings the DDH assumption does not hold in G. Using the SXDH
assumption will potentially lead to a simpler scheme requiring a lesser number
of group elements.

Following up on the above mentioned remark by Waters, we have systemati-
cally investigated the various possibilities for using asymmetric pairings. To start
the study, we performed a straightforward conversion to the setting of asymmet-
ric pairings. The scheme in [18] is quite complex. Several scalars are used in
the public parameters, encryption and key generation. These have definite and
inter-connected roles in the security proof. Our first task was to pin down the
relationships between these scalars and separate them out. This enabled us to
work with one group of scalars with minimal changes to other groups.

With a good understanding of the roles of the scalars, we are able to apply
simplifications in a stage-wise manner. The first simplification gives an IBE
scheme (Scheme 1) which shrinks ciphertexts and keys by two elements each
and whose security can be based on DDH1 (DDH assumption in G1), DLin and
DBDH assumptions. We argue that the DDH2 assumption cannot be directly
used. So, the afore-mentioned suggestion by Waters cannot be fulfilled. On the
other hand, we show that using a natural and minimal extension of the DDH2
assumption, a significantly more efficient scheme (Scheme 6) can be obtained.

Waters original scheme [18] used random tags in the ciphertext and the
decryption key. Simplification of this scheme by both Lewko-Waters [11] and
Lewko [10] yielded IBE schemes which did not use such tags. In contrast, all our
simplifications retain the tags used in the original description [18]. Even then, we
are able to obtain significant simplifications and efficiency improvements. This
suggests that for the purpose of simplification as an IBE it is not important to



do away with the tags. Removing them has other positive consequences such as
obtaining a constant size ciphertext hierarchical IBE [11].

Scheme 6 has the interesting feature that, apart from the tags, exactly one
randomiser each is used for encryption and key generation which is minimal in
case of ciphertext. However, it is not known whether the key generation could
be made deterministic within the dual system framework. To show that our
simplification retains the flexibility of the original technique byWaters, we obtain
an analogue of the HIBE scheme and prove it secure in the full security model.
This HIBE scheme inherits all the security properties from [18], but, provides
improved efficiency. From this HIBE scheme we construct an adaptively secure
BE scheme which is more efficient than all the previously known BE schemes
with adaptive security. We provide only the construction of the BE scheme here;
the full version of this paper [13] contains the security proof. The construction
and proof for the HIBE scheme will appear in the full version [13].

A comparison of the features of various IBE schemes based on the dual
system technique is shown in Tables 1 and 2. The columns #PP , #MSK,
#cpr, #key provide the number of group elements in the public parameters, the
master secret key, ciphertexts and decryption keys. The public parameters and
ciphertexts consist of elements of G1 while the master secret key and decryption
keys consist of elements of G2. Encryption efficiency counts the number of scalar
multiplications in G1 while decryption efficiency counts the number of pairings
that are required. Key generation (a less frequent activity) efficiency is given
by the number of scalar multiplications in G2. Currently, Scheme 6 is the most
efficient among all the known dual system IBE schemes.

scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

Waters-09 [18] 13 5 9 8 14 9 12 DLin, DBDH

Lewko-11 [10] 24 30 6 6 24 6 6 DLin

Scheme 1 9 8 7 6 10 6 9 DDH1, DLin, DBDH
Table 1. Comparison of dual system IBE schemes secure under standard assumptions.
Waters-09 and Lewko-11 use symmetric pairings while Scheme 6 uses asymmetric pair-
ings.

scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

LW [11] 9 6 6 6 9 6 10 LW1, LW2, DBDH

Scheme 6 6 7 4 4 7 3 6 DDH1, DDH2v, DBDH
Table 2. Comparison of dual system IBE schemes secure under non-standard but static
assumptions. Both the schemes use asymmetric pairings. DDH1 is a weaker assumption
than LW1 and DDH2v is a weaker assumption than LW2.

The figures in the table indicate that Scheme 6 is more efficient than Lewko-
Waters scheme. In particular, decryption in Scheme 6 is about twice as fast as
that of LW scheme (note that both constructions are based on Type-3 pairings).
Since Scheme 1 and Scheme 6 use Type-3 pairings which offer much better



performance compared to symmetric pairings, the gain in speed over Waters’
scheme and Lewko’s scheme cannot be quantified just in terms of the number of
operations performed. It also depends on the performance gain of asymmetric
pairings over their symmetric variants for the chosen security level.

2 Prerequisites

We follow standard definitions and corresponding full security models of IBE,
HIBE and BE schemes. Here we briefly describe asymmetric pairings and related
assumptions. For more details on these the reader is referred to [16, 8, 5].

2.1 Bilinear maps

Let G1, G2 and GT be cyclic groups of prime order p. G1 and G2 are written
additively while GT is written multiplicatively. A cryptographic bilinear map
e : G1 ×G2 → GT has the following properties.

1. Bilinearity: For elements A1, B1 ∈ G1 and A2, B2 ∈ G2, e(A1 + B1, A2) =
e(A1, A2)e(B1, A2) and e(A1, A2 +B2) = e(A1, A2)e(A1, B2).

2. Non-degeneracy: If e(P1, P2) = 1T , the identity of GT , then either P1 is
the identity of G1 or P2 is the identity of G2.

3. Efficiency: The map e is efficiently computable.

A bilinear map is called symmetric or a Type-1 bilinear map if G1 = G2;
otherwise it is asymmetric. Asymmetric bilinear maps are further classified into
Type-2 and Type-3 bilinear maps. In the Type-2 setting, there is an efficiently
computable isomorphism either from G1 to G2 or from G2 to G1 whereas in the
Type-3 setting no such isomorphisms are known. Previous works [16, 8, 5] have
established that the Type-3 setting is the most efficient from an implementation
point of view.

We introduce some notation: Given generators P1 of G1 and P2 of G2 and
elements R1 ∈ G1 and R2 ∈ G2, the notation R1 ∼ R2 indicates that R1 has
the same discrete logarithm to base P1 as that of R2 to base P2. For a set X, let
x ∈R X denote that x is a uniform random element of X.

In the following, we will assume the availability of a Type-3 bilinear map
e : G1 ×G2 → GT where G1 = 〈P1〉, G2 = 〈P2〉 and both G1 and G2 are groups
of the same prime order p. Being of prime order, any non-identity element of G1

is a generator of the group and the same holds for G2.

2.2 Hardness Assumption

We introduce a new hardness assumption for Type-3 pairings. Here we provide
a discussion of this. The other standard hardness assumptions required in this
work are DDH in G1, DLin and DBDH assumptions.

Let P1 and P2 be random generators of G1 and G2 respectively. The DDH
problem in G1 is to decide, given (P1, x1P1, x2P1, P2, Z1), whether Z1 = x1x2P1



or Z1 is a random element of G1. Here x1, x2 ∈R Zp. Similarly one can de-
fine the DDH assumption in G2. In this case, an instance will have the form
(P1, P2, x1P2, x2P2, Z2) and the task is to determine whether Z2 = x1x2P2 or
whether Z2 is a random element of G2. For convenience we will denote the DDH
problem in G1 as DDH1 and that in G2 as DDH2. The symmetric external Diffie-
Hellman (SXDH) assumption is that both DDH1 and DDH2 problems are hard.
Note that for a symmetric pairing (i.e., for G1 = G2 = G = 〈P 〉), DDH is easy
to solve by comparing e(P,Z2) with e(x1P, x2P ).

We will use DDH1 in our proofs. But DDH2 is not directly applicable to
our proofs. An instance of DDH2 has a single element P1 of G1. For our proofs,
we will require some information about x1P1 to be carried as part of the in-
stance. If the instance is directly augmented by x1P1, then the problem be-
comes easy, since one can compute the pairing e(x1P1, x2P2) and compare to
e(P1, Z2). Suppose that instead of x1P1 we include the elements zP1 and zx1P1

where z is chosen randomly from Zp. This pair of elements carries some in-
formation about x1P1, but, not the element itself. An instance will now be
(P1, zP1, zx1P1, P2, x1P2, x2P2, Z2). It, however, is easy to check whether Z2

equals x1x2P2 by checking whether e(zx1P1, x2P2) equals e(zP1, Z2). This sug-
gests that the information about zP1 itself needs to be blinded by another ran-
domiser. So, instead of having zP1 directly, the elements dP1, dzP1 and dP2 are
included where d is a random element of Zp. The information about x1P1 is
carried by the elements dP1, dzP1, zx1P1 and dP2. Augmenting an instance of
DDH2 with these elements embeds information about x1P1 but, does not seem
to provide any way to use this information to determine whether Z2 is real
or random. The entire thing can now be formulated as an assumption in the
following manner.

Assumption DDH2v. Let P1, P2 be random generators of G1, G2 respectively
and let x1, x2, d, z be random elements of Zp. The DDH2v problem is to decide,
given (P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, Z2), whether Z2 = x1x2P2 or
Z2 is a random element of G2.

This corresponds to a two-level blinding of x1P1. We have seen that providing
x1P1 directly or using a single-level blinding makes the problem easy. So, a two-
level blinding is the minimum that one has to use to get to an assumption about
hardness.

The assumption DDH2v (the “v” stands for variant) is no harder than DDH2.
This is because an instance of DDH2v contains an embedded instance of DDH2
and an algorithm to solve DDH2 can be invoked on this embedded instance to
solve the instance of DDH2v. On the other hand, there is no clear way of using
an algorithm to solve DDH2v to solve DDH2. Intuitively, this is due to the fact
that an instance of DDH2v contains some information about x1P1 whereas an
instance of DDH2 does not contain any such information.

In our reduction, we will use the assumption DDH2v. Since assumption
DDH2v does not appear earlier in the literature, it is a non-standard assump-
tion. Having said this, we would also like to remark that DDH2v arises naturally
as a minimal assumption when one tries to augment an instance of DDH2 with



some information about x1P1 while maintaining the hardness of the problem.
A proof of security of this assumption in the generic group model is provided
in the full version [13]. We feel that assumption DDH2v will have applications
elsewhere for schemes based on asymmetric pairings.

3 Framework for Conversion

Our goal is to transform Waters-2009 IBE scheme to the asymmetric setting
so that we can reduce the number of components both in the ciphertext and
the key. To that end, we first perform a straightforward conversion of Waters
IBE from the setting of symmetric pairing to the setting of asymmetric pairing.
(See [18] for the original description of Waters 2009 scheme.)

Let e : G1 × G2 → GT be a Type 3 bilinear map and let P1 and P2 be
generators of G1 and G2 respectively. After the conversion, either the ciphertext
or the key will consist of elements of G1; the other will consist of elements from
G2. Elements of G1 have shorter representation compared to those of G2. For
encryption, we want the ciphertext to be short and hence we choose its elements
to be from G1. The public parameters will consist of elements of G1 whereas
the master secret key will consist of elements of G2. We note that if the final
goal were to construct a signature scheme, then one would perform a conversion
where the secret key consists of elements of G1.

A straightforward conversion will have the same structure as the one de-
scribed in [18]. We use the convention in this and later schemes that the sub-
script 1 will denote elements of G1 while the subscript 2 will denote elements of
G2. Further, messages are elements of GT and identities are elements of Zp.

To generate the public parameters PP, first choose α, b, a1, a2 at random from
Zp and consider the following. Let v, v′ and v′′ be random elements of Zp and
define V2 = vP2, V

′
2 = v′P2 and V ′′

2 = v′′P2. Let τ = v+ a1v
′ and τ ′ = v+ a2v

′′.
Set T1 = τP1 and T ′

1 = τ ′P1. The PP will have elements Q1, U1,W1 ∈ G1 and
correspondingly the master secret key will have elements Q2, U2,W2 ∈ G2 with
Q2 ∼ Q1, U2 ∼ U1 and W2 ∼ W1. The structure of the PP and the MSK are
as follows.

PP : (P1, bP1, a1P1, a2P1, ba1P1, ba2P1, T1, T
′
1, bT1, bT

′
1,

Q1,W1, U1, e(P1, P2)
ba1α).

MSK: (P2, αP2, a1αP2, V2, V
′
2 , V

′′
2 , Q2,W2, U2).

Encrypt(M, id,PP): Randomisers s1, s2, t, ctag are chosen from Zp and define
s = s1 + s2. The ciphertext is (C0, C1, . . . , C7, E1, E2, ctag) where the various
elements are defined as follows.

C0 = M · e(P1, P2)
ba1αs2

C1 = bsP1, C2 = ba1s1P1, C3 = a1s1P1, C4 = ba2s2P1,

C5 = a2s2P1, C6 = s1T1 + s2T
′
1, C7 = s1bT1 + s2bT

′
1 − tW1

E1 = t(idQ1 + ctagW1 + U1), E2 = tP1



KeyGen(id,MSK,PP): Randomisers r1, r2, z1, z2, ktag are chosen from Zp and
define r = r1+r2. The key SKid is (K1, . . . ,K7, ktag) where the various elements
are defined as follows.

K1 = a1αP2 + rV2, K2 = −αP2 + rV ′
2 + z1P2, K3 = −z1bP2

K4 = rV ′′
2 + z2P2, K5 = −z2bP2, K6 = r2bP2, K7 = r1P2

D = r1(idQ2 + ktagW2 + U2).

The decryption algorithm (as described by Waters) requires 9 pairings and suc-
ceeds only if ctag in the ciphertext is not equal to ktag of the decryption key, an
event which occurs with overwhelming probability (see [18] for the details).

Waters defines algorithms to generate semi-functional ciphertexts and keys.
These cannot be computed without knowledge of the secret components and
are only used in the security reduction. They are defined such that one should
be able to decrypt a semi-functional ciphertext with a normal key and a nor-
mal ciphertext with a semi-functional key; but decryption of a semi-functional
ciphertext with a semi-functional key should fail.

Semi-functional Ciphertext: Let C ′
0, . . . , C

′
7, E

′
1, E

′
2, ctag be the ciphertext ele-

ments normally generated by the Encrypt algorithm for message M and iden-
tity id. Choose µ ∈ Zp at random. Let V ′

1 = v′P1 and V ′′
1 = v′′P1 so that V ′

1 ∼ V ′
2

and V ′′
1 ∼ V ′′

2 . The semi-functional ciphertext generation algorithm will modify
the normal ciphertext as: C0 = C ′

0, C1 = C ′
1, C2 = C ′

2, C3 = C ′
3, E1 = E′

1,
E2 = E′

2 and

C4 = C ′
4 + ba2µP1, C5 = C ′

5 + a2µP1, C6 = C ′
6 − a2µV

′′
1 , C7 = C ′

7 − ba2µV
′′
1 .

Semi-functional Key: Let K ′
1, . . . ,K

′
7, D

′, ktag be secret key components nor-
mally generated by theKeyGen algorithm for the identity id. Choose at random
γ ∈ Zp. The semi-functional key generation algorithm will modify the normal
key as: K3 = K ′

3, K5 = K ′
5, K6 = K ′

6, K7 = K ′
7, D = D′ and

K1 = K ′
1 − a1a2γP2, K2 = K ′

2 + a2γP2, K4 = K ′
4 + a1γP2.

It is easy to see that one can decrypt a semi-functional ciphertext with a nor-
mal key and a normal ciphertext with a semi-functional key. However, decryption
of a semi-functional ciphertext with a semi-functional key will fail because the
masking factor e(P1, P2)

ba1αs2 will be blinded by the factor e(P1, P2)
ba1a2µγ .

Security proof. The security argument for the scheme proceeds through q+3
games where q is the number of key extraction queries made by the adversary.
These games are

Gamereal,Game0, . . . ,Gameq,Gamefinal.

The transition between these games can be seen as three different reductions.



First reduction: The transition from Gamereal to Game0 is made by replacing
the challenge ciphertext by a semi-functional ciphertext. It is argued that
detecting this change should be hard.

Second reduction: There is a sequence of q changes from Gamek−1 to Gamek
(for k = 1, . . . , q). The k-th change is as follows. For the queries numbered 1
to k − 1, the adversary is given a semi-functional key; for queries numbered
k + 1 to q, the adversary is given a normal key. For the k-th query, the
adversary is given a response such that deciding whether the response is
normal or semi-functional is hard. The challenge ciphertext is semi-functional
as in the first reduction.

Third reduction: This tackles the transition from Gameq to Gamefinal. At
this point, all responses to key extraction queries are semi-functional and so
is the challenge ciphertext. In the last transition, the challenge ciphertext
is changed such that deciding whether it is the encryption of a message or
whether it is statistically independent of the challenge messages is hard.

The first and second reductions are based on the hardness of the DLin problem
whereas the third reduction is based on the hardness of the DBDH problem. In
the proof, the second reduction is the most complex step. The subtle point is
that the simulator should not be able to generate a semi-functional ciphertext
for the k-th identity which will allow it to easily determine whether the key
for this identity is semi-functional or not. This is ensured by using algebraic
techniques from [1] to create ktag using a pair-wise independent function so
that the simulator is able to create a semi-functional ciphertext for idk only
with ctag = ktag, in which case decryption fails unconditionally and hence the
simulator gains no information.

3.1 An Analysis

Our conversion to asymmetric pairing and subsequent simplifications are based
on an analysis of the various scalars used in the scheme and their respective roles
in the proof. Based on the scheme itself and a study of the three reductions used
by Waters, we make the following observations.

1. PP uses the scalars a1, a2 and b, while MSK uses the scalars α and a1.
2. Key generation uses scalar randomisers r1, r2 and z1, z2. The scalar r is set

to r1 + r2. We will call this the split of r.
3. Ciphertext generation uses the scalar randomisers s1, s2 and t. The scalar s

is set to s1 + s2. We will call this the split of s.
4. The first two reductions in Waters proof are based on the DLin assumption.

The first reduction uses the split of s whereas the second reduction uses the
split of r.

For conversion to asymmetric pairing, the following points are to be noted. These
have been inferred from a careful analysis of the security proof in [18].

1. The scalar α needs to be retained.



2. The tags are chosen randomly and they play a crucial role in the security
argument. We do not consider the question of removing tags in this paper.
If the tags are removed, then it will be necessary to introduce copies of the
identity-hash (as done in [11]) to obtain the functionality of tags in the semi-
functional components. This leads to an increase in the number of elements
in the ciphertext and key.

3. There are three basic possibilities for simplification: remove the split of s;
remove the split of r; remove z1, z2.

4. Getting rid of a1 and a2 and using a single a will eliminate the requirement
of the split of s. This also means that the separate z1 and z2 are not required
and instead a single z can be used.

5. Removing the split of r does not have a direct influence on the other scalars.
6. Removing the split of r and also z1, z2 means that the scalar b is no longer

required.
7. In all but one of our schemes, the scalar t is kept either as part of the

ciphertext or as part of the key. In the final scheme, we show that the scalar
t can also be removed. For this scheme, there is a single randomiser s for the
ciphertext and a single randomiser r for the key, excluding the tags.

8. If the first reduction is to be based on DLin, then the split of s and a1,a2
must be retained. If the split is removed, then we can base the first reduction
on DDH1.

9. If the split of r is retained, then the second reduction has to be based on
DLin. If it is removed, we can no longer base the second reduction on DLin.
However, it can neither be based on DDH2 for the following reason. An
instance of DDH2 will provide P1 and some elements of G2. Apart from
P1 no other element of G1 is provided. The PP consists of elements of G1

which have to be related to the instance in some way. Just having P1 does not
provide any way to construct the PP in the second reduction. So, removing
the split of r implies that the second reduction can be based on neither
DLin nor DDH2. The assumption DDH2v introduced in Section 2 provides
the necessary mechanism for carrying the proof through.

Based on the above points, we explore the different natural ways in which Waters
2009 IBE scheme can be converted to asymmetric pairing. These are discussed
below.

Scheme 1: Remove the split of s. This eliminates the requirement of having
separate a1, a2 and z1, z2. Reductions of ciphertext and key are by two ele-
ments each. Removing the split of s allows the first reduction to be based
on DDH1. Since the split of r is retained, the second reduction is still based
on DLin.

Scheme 2. Retain the split of s; this means that separate a1 and a2 are re-
quired. Remove the split of r and also remove z1 and z2; this means that
b can be removed. Leads to reductions of ciphertext and key by 3 elements
each. The first reduction of the proof can be based on DLin, but, the second
reduction cannot be based on either DLin or DDH2.



Scheme 3: Remove the split of s; retain the split of r but, remove z. Reductions
of ciphertext and key are by 3 elements each. In the proof, the first reduction
can be based on DLin. The second reduction cannot be based on DDH2.
Neither can it be based on DLin. This requires a more involved reasoning
which we provide in the full version [13].

Scheme 4: Remove the splits of both r and s, but, retain z. Ciphertext and
key are reduced by 3 elements each. In the proof, the first reduction can be
based on DDH1, but, the second reduction cannot be based on either DLin
or DDH2.

Scheme 5: Remove the splits of both r and s and also remove z. Ciphertext
and keys are reduced by 4 elements each. As in the previous case, the first
reduction of the proof can be based on DDH1, but, the second reduction
cannot be based on either DLin or DDH2.

Scheme 6: In Schemes 1 to 5, the randomiser t is present in the ciphertext.
In Scheme 6, the splits of both r and s are removed; z is removed and the
role of t is played by s. This leads to a scheme where there is exactly one
randomiser for encryption and exactly one randomiser for key generation.
Compared to Waters’ IBE [18], ciphertext size is reduced by 5 elements and
the key size by 4 elements. The first reduction of the proof can be based on
DDH1, while the second reduction is based on assumption DDH2v.

In Table 3, we provide the use of scalars in the various schemes. This illustrates
the manner in which the simplification has been obtained.

scheme PP MSK key gen enc

Waters-09 [18] α, a1, a2, b α, a1 r1, r2, (r = r1 + r2), z1, z2 s1, s2, (s = s1 + s2), t

Scheme 1 α, a, b α, b r1, r2, (r = r1 + r2), z s, t

Scheme 2 α, a1, a2 α r s1, s2, (s = s1 + s2), t

Scheme 3 α, a, b α, b r1, r2, (r = r1 + r2) s, t

Scheme 4 α, a, b α, b r, z s, t

Scheme 5 α, a α r s, t

Scheme 6 α, a α r s

Table 3. Usage of scalars in various schemes. Note that all the schemes use ktag for
key generation and ctag for encryption.

4 Constructions

In this section, we provide the description of Scheme 6. In the full version [13], the
description of Scheme 1 along with its security proof are provided. For Schemes 2
to 5, only the descriptions are provided in the full version. These schemes primar-
ily serve the purpose of showing the stepping stones in moving from Scheme 1
to Scheme 6. In Section 5, we present a security proof for Scheme 6.



4.1 Scheme 6

Descriptions of PP,MSK, ciphertext generation, key generation and decryption
are provided.

Parameters P1, P2, Q1,W1, U1, Q2,W2, U2, α are chosen as described in Sec-
tion 3. Let a, v, v′ be random elements of Zp. Set V2 = vP2, V

′
2 = v′P2 and

τ = v + av′ so that τP2 = V2 + aV ′
2 .

PP : (P1, aP1, τP1, Q1,W1, U1, e(P1, P2)
α).

MSK: (P2, αP2, V2, V
′
2 , Q2,W2, U2).

Encrypt(M, id,PP): Choose random s, ctag from Zp; ciphertext C is given by
(C0, C1, C2, C3, E, ctag) where the elements are defined as follows.

C0 = M · e(P1, P2)
αs,

C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(idQ1 + ctagW1 + U1).

KeyGen(id,MSK,PP): Choose random r, ktag from Zp; the secret key SKid is
(K1,K2,K3, D, ktag) where the elements are defined as follows.

K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2, D = r(idQ2 + ktagW2 + U2).

Decrypt (C, id,SKid,PP): As before, decryption succeeds only when ctag 6=
ktag. Define ϑ = (ctag− ktag)−1. Decryption is done by unmasking the message
as follows.

M =
C0

e(C1,K1 + ϑD)e(C2,K2)e(C3 − ϑE,K3)

The correctness of decryption is shown by the following calculations. We
break up the denominator into two parts - A1 and A2 such that the product
A1A2 gives the masking factor.

A1 = e(C1, ϑD)e(−δE,K3)

= e(C1, D)ϑe(−E,K3)
ϑ

= e(sP1, r(idQ2 + ktagW2 + U2))
ϑe(−s(idQ1 + ctagW1 + U1), rP2)

ϑ

= e(−(idQ1 + ktagW1 + U1), P2)
−rsϑe(idQ1 + ctagW1 + U1, P2)

−rsϑ

= e(ϑ(ctag − ktag)W1, P2)
rs

= e(W1, P2)
−rs

A2 = e(C1,K1)e(C2,K2)e(C3,K3)

= e(sP1, αP2 + rV2)e(asP1, rV
′
2)e(τsP1 + sW1, rP2)

= e(P1, P2)
αse(P1, V2 + aV ′

2 − τP2)
rse(W1, P2)

rs

= e(P1, P2)
αse(W1, P2)

rs



Extension to HIBE: Waters extends the IBE scheme in [18] in a natural
way to a HIBE scheme. In the full version of this paper [13], we show that our
simplification of Waters scheme retains the original flexibility and describe a
HIBE which extends Scheme 6. This HIBE scheme is secure under the DDH1,
DDH2v and the DBDH assumptions and provides lesser and smaller parameters
and better efficiencies of key generation, delegation, encryption and decryption
compared to the HIBE in [18]. The security proof for the HIBE follows the
Shi-Waters model [15] and is given in [13].

Conversion to Signature Scheme: There is a “dual” of Scheme 6 where the
ciphertext elements are in G2 and decryption keys consist of elements of G1.
Using Naor’s observation, this dual of Scheme 6 can be converted to a secure
signature scheme. The signatures will be composed of elements of G1 and will be
smaller than the signatures obtained by the conversion of Waters’ 2009 scheme
to a signature scheme. In a similar manner, one can convert the dual of our
HIBE to obtain a HIBS scheme where signatures consist of elements of G1.

4.2 Broadcast Encryption

The full version of Waters paper described a public key broadcast encryption
(BE) scheme based on the dual system IBE in [18]. In this section, we describe a
BE scheme based on Scheme 6 in the Type-3 pairing setting. The security proof
is given in the full version [13] and is based on the hardness of the DDH1, DDH2v
and the DBDH problems. The new BE scheme provides adaptive security and is
more efficient than previously known BE schemes providing adaptive security [9,
18]. In what follows, n denotes the total number of users and {1, . . . , n}, the set
of users.
Setup(n): Generators P1 ∈R G1 and P2 ∈R G2 are chosen. Also choose random
elements Q1,1, . . . Q1,n,W1 ∈ G1 and Q2,1, . . . , Q2,n,W2 ∈ G2 such that Q2,i ∼
Q1,i for 1 ≤ i ≤ n, W2 ∼ W1. Let α, a, v, v′ be random elements of Zp. Set
V2 = vP2, V

′
2 = v′P2 and τ = v + av′ so that τP2 = V2 + aV ′

2 . The public key
PK and secret key SK are given by

PK : (P1, aP1, τP1, Q1,1, . . . , Q1,n,W1, e(P1, P2)
α).

SK : (P2, αP2, V2, V
′
2 , Q2,1, . . . , Q2,n,W2).

Encrypt(PK, S ⊆ {1, . . . , n},M): Choose random s from Zp; ciphertext C for
the subset S of users is (C0, C1, C2, C3, E) where the elements are defined as
follows.

C0 = M · e(P1, P2)
αs,

C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(
∑

i∈S Q1,i).

KeyGen(SK, j ∈ {1, . . . , n}): Let r be chosen at random from Zp; secret key
for user j is SKj = (K1,K2,K3, D, ∀i6=jDi) where the elements are defined as
follows.



K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2

D = r(Q2,j +W2), Di = rQ2,i for i 6= j.

Decrypt (C, S,SKj): Decryption works only if j ∈ S. Unmask the message as

M =
C0

e(C1,K1 −D −
∑

i∈S

i6=j
Di)e(C2,K2)e(C3 + E,K3)

.

5 Security Proof for Scheme 6

First we define the semi-functional key and ciphertext for Scheme 6. As men-
tioned earlier, these are used only in the security reductions and are not part of
the scheme itself.

Semi-functional ciphertext: Let (C ′
0, C

′
1, C

′
2, C

′
3, E

′, ctag) be a normal cipher-
text. Choose a random µ from Zp. The semi-functional ciphertext is given by
(C0, C1, C2, C3, E, ctag) where C0 = C ′

0, C1 = C ′
1, C2 = C ′

2+µP1, C3 = C ′
3−µV ′

1

and E = E′.

Semi-functional key: Let (K ′
1,K

′
2,K

′
3, D, ktag) be a normal key. Choose a ran-

dom γ from Zp. The semi-functional key is (K1,K2,K3, D, ktag) where K1 =
K ′

1 − aγP2, K2 = K ′
2 + γP2, K3 = K ′

3 and D = D′.

Let Gamereal, Gamek (for 0 ≤ k ≤ q) and Gamefinal be defined as in Sec-
tion 3. Let Let Xreal, Xk and Xfinal denote the events that the adversary wins
in Gamereal, Gamek and Gamefinal for 0 ≤ k ≤ q respectively.

Lemma 1. If there exists an adversary A such that AdvAGamereal
− AdvAGame0

=
ε, then we can build an algorithm B having advantage ε in solving the DDH1
problem.

Proof. The algorithm B receives (P1, sP1, aP1, P2, Z1) as an instance of DDH1.
We describe how it will simulate each phase in the security game.
Setup: B chooses random elements α, yv, y

′
v, yq, yw, yu from Zp and sets the

parameters as follows: P1 = P1, aP1 = aP1, Q1 = yqP1, W1 = ywP1, U1 = yuP1,
P2 = P2, V2 = yvP2, V

′
2 = y′vP2, Q2 = yqP2, W2 = ywP2, U2 = yuP2. The

element τP1 is computed as yvP1 + y′v(aP1) implicitly setting τ = yv + ay′v. The
simulator computes the remaining parameters using α and gives the following
public parameters to A: PP = (P1, P2, aP1, τP1, Q1,W1, U1, e(P1, P2)

α).
Phase 1: A makes a number of key extract queries. B knows the master secret
and using that it returns a normal key for every key extract query made by A.
Challenge: B receives the target identity id∗ and two messages M0 and M1

from A. It chooses β ∈ {0, 1} at random. To encrypt Mβ , B chooses ctag∗

at random from Zp and computes the ciphertext elements as follows: C0 =
Mβ · e(sP1, P2)

α, C1 = sP1, C2 = Z1, C3 = −yv(sP1) − y′vZ1 + yw(sP1) and
E = (id∗yq + ctag∗yw + yu)(sP1). B returns C∗ = (C0, C1, C2, C3, E, ctag∗) to A.



If Z1 = asP1 then the challenge ciphertext is normal; otherwise if Z1 is a
random element of G1 i.e., Z1 = (as+c)P1 then the ciphertext is semi-functional
with µ = c. Note that, to check whether C∗ is semi-functional or not, B itself
could try to decrypt it with a semi-functional key for id∗. However since aP2 is
not known to B, it cannot create such a key.
Phase 2: As in first phase, B returns a normal key for every query.
Guess: The adversary returns its guess β′ to B.

If C∗ is normal then B simulates Gamereal and if it is semi-functional B
simulates Game0. Therefore if A is able to distinguish between Gamereal and
Game0, then the B can solve the DDH1 problem with advantage

AdvBDDH1 = |Pr[Xreal]− Pr[X0]| = AdvAGamereal
− AdvAGame0

= ε.

⊓⊔

Lemma 2. If there exists an adversary A such that AdvAGamek−1
−AdvAGamek

= ε,

then we can build an algorithm B having advantage ε in breaking the assumption

DDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, Z2) denote the instance of
DDH2v that B receives.
Setup: B chooses random elements a, α, λ, ν, y′v, yq, yu, yw ∈R Zp and sets the
parameters as follows. P1 = P1, P2 = P2, Q2 = −λ(dP2)+yqP2, U2 = −ν(dP2)+
yuP2, W2 = dP2 + ywP2, V2 = −a(x1P2) and V ′

2 = x1P2 + y′vP2 setting τ = ay′v
using which one can compute τP1 = ay′vP1. The public parameters Q1,W1, U1

can be computed since B has dP1. The remaining parameters required to provide
PP to A are computed using a, α and other elements of the problem instance.
Phases 1 and 2: The key extraction queries for identities id1, . . . , idq are
answered in the following way. For i < k, a semi-functional key is returned and
for i > k a normal key is returned. Note that normal and semi-functional keys
can be generated since B has the MSK and knows a. For i = k, a normal key
K ′

1,K
′
2,K

′
3, D

′ is generated using randomiser r′ ∈R Zp, ktag = λidk + ν and
then modified as: K1 = K ′

1 − aZ2, K2 = K ′
2 + Z2 + y′v(x2P2), K3 = K ′

3 + x2P2

and D = D + (yq id + ywktag + yu)(x2P2), thus implicitly setting r = r′ + x2.
Since dx2P2 is not known to B it can create D only when ktag = λidk + ν. If
Z2 = x1x2P2 then the key for idk will be normal and otherwise it will be semi-
functional with γ = c where Z2 = (x1x2 + c)P2. Note that a semi-functional
ciphertext for idk with any value of ctag except for 6= λidk+ν cannot be generated
without the knowledge of dx1zP1 which is neither available from the assumption
nor can be computed by B. This rules out the obvious way of checking whether
the key for idk is semi-functional or not.
Challenge: B receives two messages M0,M1 and a challenge identity id∗ dur-
ing the challenge phase. It chooses β ∈R {0, 1} and sets ctag∗ = λid∗ + ν.
Since λ and ν are chosen independently and uniformly at random, the func-
tion λX + ν is a pairwise independent function for a variable X over Zp. This
causes the tag values of the challenge ciphertext and the k-th key to appear



properly distributed from the adversary’s view. B computes the ciphertext el-
ements as: C0 = e(zx1P1, P2)

α, C1 = zx1P1, C2 = a(zx1P1) + dzP1, C3 =
(yw − ay′v)(zx1P1) − y′v(dzP1) and E = (yq id + ctag∗yw + yu)(zx1P1), setting
s = zx1 and µ = dz. It is easy to check that C3 is well-formed.

Now A will be able to distinguish between Gamek−1 and Gamek if it can
decide whether SKidk

is normal or semi-functional. In this case B can break the
assumption DDH2v with advantage

AdvBDDH2v = |Pr[Xk−1]− Pr[Xk]| = AdvAGamek−1
− AdvAGamek

= ε.

⊓⊔

Lemma 3. If there exists an adversary A such that AdvAGameq
− AdvAfinal = ε,

then we can build an algorithm B having advantage ε in breaking the DBDH
assumption.

Proof. B receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, Z) as an instance of the
DBDH problem.
Setup: With yv, y

′
v, yq, yw, yu chosen at random from Zp, B sets the parameters

as: P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′
2 = y′vP2, τP1 = yvP1 + y′v(aP1),

Q1 = yqP1, W1 = ywP1, U1 = yuP1, e(P1, P2)
α = e(xP1, aP2), thus implicitly

setting a = a, α = xa and τ = yv + ay′v. The remaining parameters can be
computed easily. B returns PP to A.
Phases 1 and 2: When A asks for the secret key for the i’th identity idi, B
chooses at random r, ktag, γ′ ∈ Zp implicitly setting γ′ = x−γ. It then computes
a semi-functional key for idi as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2

K2 = rV ′
2 − γ′P2 + xP2 = rV ′

2 − xP2 + γP2 + xP2 = rV ′
2 + γP2

K3 = rP2, D = r(idiQ2 + ktagW2 + U2).

Here B knows γ′ but not γ. Also, observe that B does not know α and hence
cannot create a normal key.
Challenge: B receives the challenge identity id∗ and two messages M0 and
M1 from A. It chooses β ∈ {0, 1} and ctag∗, µ′ ∈ Zp at random and generates a
semi-functional challenge ciphertext as follows. Here B implicitly sets µ′ = µ+as

and it does not know µ.
C0 = Mβ · Z

C1 = sP1, C2 = µ′P1 = asP1 + µP1

C3 = −yv(sP1)− µ′y′vP1 + yw(sP1) = −τsP1 − µV ′
1 + sW1

E = (yq id
∗ + ywctag

∗ + yu)(sP1)

The challenge ciphertext C∗ = (C0, C1, C2, C3, E, ctag∗) is returned to A. If
Z = e(P1, P2)

xas then C∗ will be a semi-functional encryption of Mβ ; if Z is a
random element of GT then C∗ will be a semi-functional encryption of a random



message. If A can identify whether the game simulated was Gameq or Gamefinal,
then B will be able to decide whether Z = e(P1, P2)

xas or not and hence break
the DBDH assumption with advantage

AdvBDBDH = |Pr[Xq]− Pr[Xfinal]| = AdvAGameq
− AdvAGamefinal

= ε.

⊓⊔

Theorem 1. If the DDH1, DDH2v and DBDH assumptions hold, then no poly-

nomial time adversary A making at most q key extraction queries can break the

security of Scheme 6.

Proof. Using lemmas 1, 2 and 3, we have for any polynomial time attacker A,

AdvAScheme 6 ≤ |Pr[Xreal]− Pr[X0]|+

q∑

k=1

(|Pr[Xk−1]− Pr[Xk]|)

+ |Pr[Xq]− Pr[Xfinal]|

= εDDH1 + qεDDH2v + εDBDH

which is negligible in the security parameter κ. ⊓⊔

6 Conclusion

We have convertedWaters dual system IBE scheme from the setting of symmetric
pairings to that of asymmetric pairings. This has been done in a systematic
manner going through several stages of simplifications. We have described in
detail an IBE scheme, Scheme 6, which is quite simple and minimal in the
sense that both encryption and key generation use one randomiser each. The
security of Scheme 6 is based on two standard assumptions and a natural and
minimal extension of the DDH assumption for G2. On the other hand, security of
Scheme 1 is based on standard assumptions and reduces the sizes of ciphertexts
and keys by 2 elements each from the original scheme of Waters.
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