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Abstract. Cryptosystems based on the hardness of lattice problems
have recently acquired much importance due to their average-case
to worst-case equivalence, their conjectured resistance to quantum
cryptanalysis, their ease of implementation and increasing practicality,
and, lately, their promising potential as a platform for constructing
advanced functionalities.
In this work, we construct “Fuzzy” Identity Based Encryption from the
hardness of the Learning With Errors (LWE) problem. We note that
for our parameters, the underlying lattice problems (such as gapSVP
or SIVP) are assumed to be hard to approximate within supexponential
factors for adversaries running in subexponential time. We give CPA and
CCA secure variants of our construction, for small and large universes
of attributes. All our constructions are secure against selective-identity
attacks in the standard model. Our construction is made possible by
observing certain special properties that secret sharing schemes need to
satisfy in order to be useful for Fuzzy IBE. We also discuss some obstacles
towards realizing lattice-based attribute-based encryption (ABE).

1 Introduction

Lattices have recently emerged as a powerful mathematical platform on which
to build a rich variety of cryptographic primitives. Starting from the work of
Ajtai [5], lattices have been used to construct one-way functions and collision-
resistant hash functions [5, 29], signatures [14], public-key encryption [7, 35,
36], identity-based encryption schemes [24, 17, 1, 2], trapdoor functions [24] and
even fully homomorphic encryption [22, 23, 16, 15]. Lattice-based cryptography
is attractive not only as a fallback in case factoring and discrete-log turn out
to be easy (which they are on quantum computers), but it is also an end in its



own right — lattice-based systems resist quantum and sub-exponential attacks,
and they are efficient, admit highly parallel implementations and are potentially
quite practical.

At the same time, encryption schemes have grown more and more sophis-
ticated, and able to support complex access policies. Specifically, the idea
of functional encryption has emerged as a new paradigm for encryption. In
functional encryption in its broad sense, a secret key allows its holder to unlock
data (or some piece or function of the data) based on policies and logic, rather
than by merely addressing the recipient(s). The usefulness of such a primitive
is evident — access to encrypted data moves beyond mere enumeration to
potentially arbitrary functions.

Since its introduction with Fuzzy Identity-Based Encryption by Sahai and
Waters [37], several systems have emerged that move beyond the traditional
“designated recipient(s)” paradigm of encryption. In this line of work, the key
(or, in some variants, the ciphertext) is associated with a predicate, say f ,
while the ciphertext (or the key) is associated with an attribute vector, say
x. Decryption succeeds if and only if f(x) = 1. Specifically, attribute-based
encryption [25, 32, 10, 18, 27, 28] refers to the case where the predicate is a
Boolean formula to which the attributes provide binary inputs. Fuzzy IBE is
a special case where f is a k-out-of-` threshold function. In predicate encryption
[26, 27], the predicate f is to be evaluated without leaking anything about
the attributes other than the binary output of f(x), i.e., achieving attribute
hiding along with the standard payload hiding; known constructions are currently
limited to inner-product predicates between embedded constants and attributes
living in some field, though.

Notably, all known instantiations of Functional Encryption are based on
bilinear maps on elliptic curves — and most are based on the IBE framework by
Boneh and Boyen [11]. Non-pairing constructions have remained elusive, even
though factoring-based IBE has been known since 2001 [19, 13] and lattice-based
IBE since 2008 [24]. This is even more notable in the lattice world, where we now
have an array of sophisticated (hierarchical) IBE schemes [24, 3, 17, 1, 2], but the
construction of more expressive functional encryption schemes has been lagging
far behind.

Our contributions. We take the first step in this direction by constructing a
fuzzy identity-based encryption (fuzzy IBE) scheme based on lattices. A fuzzy
IBE scheme is exactly like an identity-based encryption scheme except that
(considering identities as bit-vectors in {0, 1}n) a ciphertext encrypted under
an identity idenc can be decrypted using the secret key corresponding to any
identity iddec that is “close enough” to idenc. Examples arise when using one’s
biometric information as the identity, but also in general access control systems
that permit access as long as the user satisfies a certain number of conditions.

Our construction is secure in the selective security model under the learning
with errors (LWE) assumption and thus, by the results of [36, 34], secure under



the worst-case hardness of “short vector problems” on arbitrary lattices. We then
extend our construction to handle large universes, and to resist chosen ciphertext
(CCA) attacks. Finally, we point out some difficulties involved in extending our
approach to functional encryption systems.

This work constitutes one of the first examples of lattice-based schemes that
generalize the basic “(H)IBE” functionality.

Concurrent work. A concurrent work of Agrawal, Freeman and Vaikuntanathan
[4] gave a construction of inner product predicate encryption from lattices.
Combined with a generic transformation given by Katz, Sahai and Waters [26,
Section 5.5], this yields a lattice-based fuzzy IBE for “exact thresholds” where
decryption succeeds whenever iddec and idenc differ in exactly k positions; we
address the setting where the identities differ in at most k positions.

1.1 Overview of our Construction

Our construction borrows ideas from the pairing-based fuzzy IBE scheme of
Sahai and Waters [37] and the lattice identity-based encryption scheme of [3,
17], together with an interesting observation about the Shamir secret-sharing
scheme and the Lagrange interpolation formula.

First, consider the setting where the identities are `-bit strings. This
corresponds to the setting where there are ` attributes, and each attribute can
take two values (either 0 or 1). Decryption using SKid succeeds on a ciphertext
encrypted under identity id′ if the bitwise difference of id and id′ has Hamming
weight at most k. We then show how to extend it to the case where the universe
of attributes is (exponentially) large in a rather generic way.

Previous lattice-based IBE. We begin by recalling the IBE schemes of [3, 17],
which we view as fuzzy IBE schemes where k = `. The public parameters
consist of 2`matrices (A1,0,A1,1, . . . ,A`,0,A`,1) ∈ Zn×mq (where n is the security
parameter, q is a small prime, and m ≈ n log q is a parameter of the system)
and a vector u ∈ Znq . The master secret key then consists of the trapdoors Ti,b

corresponding to each matrix Ai,b.

We view the secret key derivation in the IBE scheme as a two-step procedure
that proceeds as follows: on input an identity id:

1. First, secret-share the vector u into ` vectors u1, . . . ,u` which are uniformly
random in Znq subject to the condition that

∑`
i=1 ui = u.

2. The secret key SKid is then a vector (e1, . . . , e`) ∈ (Zm)`, where

SKid
.
= (e1, . . . , e`) and Ai,idiei = ui

The secret key ei is computed using the trapdoor Ti,idi using the Gaussian
sampling algorithm of [24].



This is a different, yet completely equivalent, way to view the secret key
derivation in the IBE schemes of [3, 17].

To encrypt for an identity id in these schemes, one chooses a vector s ∈ Znq
and “small error terms” x1, . . . ,x` ∈ Zm and x′ ∈ Z, and outputs

CTid
.
= IBE.Enc(id, b ∈ {0, 1}) .

= (AT
1,id1s+x1, . . . ,A

T
`,id`s+x`,u

T s+x′+bbq/2c)

The key observation in decryption is that if id = id′, then “pairing” each
component of CTid′ and SKid gives us a number that is approximately uTi s.
Namely,

eTi (AT
i,idis + xi) = (Ai,idiei)

T s + eTi xi = uTi s + eTi xi ≈ uTi s (1)

By linearity, we can then add up these terms and obtain (approximately) uT s.
The “approximation” we get here is not terrible, since the error terms eTi xi are
small, and we add up only ` of them. Thus, the magnitude of the error remains
much smaller than q/2, which is sufficient for decryption.

Our approach. A natural thought to extend this methodology to fuzzy IBE
is to use Shamir’s k-out-of-` secret-sharing scheme in the first step of the key
derivation procedure. Since reconstructing the secret in Shamir’s scheme involves
computing a linear combination of the shares, we can hope to do decryption as
before. As it turns out, the resulting scheme is in fact neither correct nor secure.
For simplicity, we focus on the issue of correctness in this section.

Recall that correctness of the previous lattice-based IBE schemes lies in
bounding the decryption “error terms” eTi xi. More concretely, the analysis
bounds the “cummulative error term”

x′ −
k∑
i=1

eTi xi

by q/4. Upon instantiating the previous schemes with Shamir’s secret-sharing
scheme, we need to bound a new cummulative error term, which is given by:

x′ −
∑
i∈S

Lie
T
i xi

Here, Li are the fractional Lagrangian coefficients used in reconstructing the
secret, interpreted as elements in Zq and S identifies the subset of shares used in
reconstruction. Indeed, while we can bound both the numerator and denominator
in Li as a fraction of integers, once interpreted as an element in Zq, the value
Li may be arbitrarily large.

The key idea in our construction is to “clear the denominators”. Let D :=
(`!)2 be a sufficiently large constant, so that DLi ∈ Z for all i. Then, we multiply
D into the noise vector, that is, the ciphertext is now generated as follows:

CTid
.
= IBE.Enc(id, b ∈ {0, 1}) .

= (AT
1,id1s+Dx1, . . . ,A

T
`,id`s+Dx`,u

T s+Dx′+bbq/2c)



For correctness, it now suffices to bound the expression:

Dx−
∑
i∈S

DLie
T
i xi

by q/4. Now, further observe that each DLi is an integer bounded by D2, so
it suffices to pick the noise vectors so that they are bounded by q/4D` with
overwhelming probability.

Thus, for appropriate parameter settings, we get a fuzzy IBE scheme based on
the classical hardness of computing a sub-exponential approximation to “short
vector problems” on arbitrary lattices.

Additional related work. The idea of using Shamir’s secret-sharing scheme in
lattice-based cryptography appears in the work of Bendlin and Damg̊ard [9] on
threshold cryptosystems. The security of their scheme, as with ours, relies on the
hardness of computing sub-exponential approximation for lattice problems. In
more detail, their scheme uses a pseudorandom secret-sharing from [20] in order
to share a value in some interval, for which they do not have to address the
issue of bounding the size of Lagrangian coefficients. Our idea of “clearing the
denominator” is inspired by the work on factoring-based threshold cryptography
(e.g. [39]), where the technique is used to handle a different technical issue:
evaluating fractional Lagrangian coefficients over an “unknown” modulus φ(N),
where N is a public RSA modulus.

2 Preliminaries

Notation: We use uppercase boldface alphabet for matrices, as in A, lowercase
boldface characters for vectors, as in e, and lowercase regular characters for
scalars, as in v. We say that a function f : R+ → R+ is negligible if for all
d > d0 we have f(λ) < 1/λd for sufficiently large λ. We write f(λ) < negl(λ).
For any ordered set S = {s1, . . . , sk} ∈ Rm of linearly independent vectors,

we define ‖S̃‖ = maxj ‖s̃j‖, where S̃ = {s̃1, . . . , s̃k} refers to the Gram-
Schmidt orthogonalization of S, and ‖ · ‖ refers to the euclidean norm. We let
σTG := O(

√
n log q ) denote the maximum (w.h.p.) Gram-Schmidt norm of a

basis produced by TrapGen(q, n).

2.1 Definition: Fuzzy IBE

A Fuzzy Identity Based Encryption scheme consists of the following four
algorithms:

Fuzzy.Setup(λ, `)→ (PP,MK): This algorithm takes as input the security pa-
rameter λ and the maximum length of identities `. It outputs the public
parameters PP and a master key MK.



Fuzzy.Extract(MK,PP, id, k)→ SKid: This algorithm takes as input the master
key MK, the public parameters PP, an identity id and the threshold k ≤ `.
It outputs a decryption key SKid.

Fuzzy.Enc(PP, b, id′)→ CTid′ : This algorithm takes as input: a message bit b, an
identity id′, and the public parameters PP. It outputs the ciphertext CTid′ .

Fuzzy.Dec(PP,CTid′ ,SKid)→ b: This algorithm takes as input the ciphertext
CTid′ , the decryption key SKid and the public parameters PP. It outputs the
message b if |id ∩ id′| ≥ k.

2.2 Security Model for Fuzzy IBE

We follow the Selective-ID model of security for Fuzzy Identity Based Encryption
as given by Sahai and Waters [37, Section 2.1]. The security game is very
similar to the standard Selective-ID model for Identity-Based Encryption with
the exception that the adversary is only allowed to query for secret keys for
identities which have less than k overlap with the target identity id∗.

Target: The adversary declares the challenge identity, id∗, that he wishes to be
challenged upon.

Setup: The challenger runs the Setup algorithm of Fuzzy-IBE and gives the
public parameters to the adversary.

Phase 1: The adversary is allowed to issue queries for private keys for identities
idj of its choice, as long as |idj ∩ id∗| < k;∀j

Challenge: The adversary submits a message to encrypt. The challenger
encrypts the message with the challenge identity id∗ and then flips a random
coin r. If r = 1, the ciphertext is given to the adversary, otherwise a random
element of the ciphertext space is returned.

Phase 2: Phase 1 is repeated.

Guess: The adversary outputs a guess r′ of r. The advantage of an adversary
A in this game is defined as |Pr[r′ = r]− 1

2 |

A Fuzzy Identity Based Encryption scheme is secure in the Selective-Set
model of security if all polynomial time adversaries have at most a negligible
advantage in the Selective-Set game.

The adaptive version of the above game is identical except it does not have
the target step, hence the adversary is allowed to choose an attack identity
adversarially.

3 Preliminaries: Lattices

Throughout the paper, we let the parameters q = q(λ),m = m(λ), n = n(λ) are
polynomial functions of the security parameter λ.



3.1 Random Integer Lattices

Definition 1. Let B =
[

b1

∣∣ . . . ∣∣ bm ]
∈ Rm×m be an m ×m matrix whose

columns are linearly independent vectors b1, . . . ,bm ∈ Rm. The m-dimensional
full-rank lattice Λ generated by B is the infinite periodic set,

Λ = L(B) =
{

y ∈ Rm s.t. ∃s = (s1, . . . , sm) ∈ Zm , y = B s =

m∑
i=1

si bi

}
Here, we are interested in integer lattices, i.e, infinite periodic subsets of Zm,

that are invariant under translation by multiples of some integer q in each of the
coordinates.

Definition 2. For q prime and A ∈ Zn×mq and u ∈ Znq , define:

Λ⊥q (A) =
{

e ∈ Zm s.t. A e = 0 (mod q)
}

Λu
q (A) =

{
e ∈ Zm s.t. A e = u (mod q)

}
3.2 Trapdoors for Lattices: The algorithm TrapGen

Ajtai [6] showed how to sample an essentially uniform matrix A ∈ Zn×mq with

an associated full-rank set TA ⊂ Λ⊥(A) of low-norm vectors. We will use an
improved version of Ajtai’s basis sampling algorithm due to Alwen and Peikert
[8]:

Proposition 1 ([8]).

Let n = n(λ), q = q(λ),m = m(λ) be positive integers with q ≥ 2 and
m ≥ 5n log q. There exists a probabilistic polynomial-time algorithm TrapGen
that outputs a pair A ∈ Zn×mq ,TA ∈ Zm×mq such that A is statistically close to

uniform and TA is a basis for Λ⊥(A) with length L = ‖T̃A‖ ≤ m · ω(
√

logm)
with all but n−ω(1) probability.

3.3 Discrete Gaussians

Definition 3. Let m ∈ Z>0 be a positive integer and Λ ⊂ Rm an m-dimensional
lattice. For any vector c ∈ Rm and any positive parameter σ ∈ R>0, we define:

ρσ,c(x) = exp
(
−π ‖x−c‖

2

σ2

)
: a Gaussian-shaped function on Rm with center c

and parameter σ,
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) : the (always converging) discrete integral of ρσ,c over

the lattice Λ,
DΛ,σ,c : the discrete Gaussian distribution over Λ with center c and parameter

σ,

∀y ∈ Λ , DΛ,σ,c(y) =
ρσ,c(y)

ρσ,c(Λ)

For notational convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.



Sampling Discrete Gaussians over Lattices Gentry, Peikert and Vaikun-
tanathan [24] construct the following algorithm for sampling from the discrete
Gaussian DΛ,σ,c, given a basis B for the m-dimensional lattice Λ with σ ≥
‖B̃‖ · ω(

√
logm):

SampleGaussian(Λ,B, σ, c) [24]: On input lattice Λ, a basis B for Λ, a positive
Gaussian parameter σ, and a center vector c ∈ Rm, it outputs a fresh random
vector x ∈ Λ drawn from a distribution statistically close to DΛ,σ,c.

3.4 Preimage Sampling

We will need the following algorithm from [24]. Let q ≥ 2, m ≥ 2n log q.

Algorithm SamplePre(A,TA,u, σ): On input a matrix A ∈ Zn×mq with ‘short’

trapdoor basis TA for Λ⊥q (A), a target image u ∈ Znq and a Gaussian parameter

σ ≥ ‖T̃A‖ · ω(
√

logm), outputs a sample e ∈ Zm from a distribution that is
within negligible statistical distance of DΛu

q (A),σ.

3.5 Sampling from an “Encryption” matrix

We will also need the following algorithm defined in [17, 1]:

Algorithm SampleLeft(A,M1,TA,u, σ):

Inputs:
a rank n matrix A in Zn×mq and a matrix M1 in Zn×m1

q ,

a “short” basis TA of Λ⊥q (A) and a vector u ∈ Znq ,

a gaussian parameter σ > ‖T̃A‖ · ω(
√

log(m+m1)).

(2)

Output: Let F1 := (A | M1). The algorithm outputs a vector e ∈ Zm+m1

sampled from a distribution statistically close to DΛu
q (F1),σ. In particular, e ∈

Λu
q (F1).

3.6 Hardness Assumption

The LWE (learning with errors) problem was first defined by [36], and has since
been extensively studied and used. We use the decisional version of the LWE
problem.

Definition 4. Consider a prime q, a positive integer n, and a distribution χ
over Zq, all public. An (Zq, n, χ)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Os
carrying some constant random secret key s ∈ Znq , or, a truly random sampler
O$, whose behaviors are respectively as follows:



Os: outputs noisy pseudo-random samples of the form (wi, vi) =
(
wi, wT

i s +

xi
)
∈ Znq × Zq, where, s ∈ Znq is a uniformly distributed persistent secret

key that is invariant across invocations, xi ∈ Zq is a freshly generated
ephemeral additive noise component with distribution χ, and wi ∈ Znq is
a fresh uniformly distributed vector revealed as part of the output.

O$: outputs truly random samples
(
wi, vi

)
∈ Znq × Zq, drawn independently

uniformly at random in the entire domain Znq × Zq.

The (Zq, n, χ)-LWE problem statement, or LWE for short, allows an unspecified
number of queries to be made to the challenge oracle O, with no stated prior
bound. We say that an algorithm A decides the (Zq, n, χ)-LWE problem if∣∣Pr[AOs = 1]− Pr[AO$ = 1]

∣∣ is non-negligible for a random s ∈ Znq .

It has been shown in [36] that there is a poly(n, q)-time reduction from Search
LWE(Zq, n, χ) to Decision LWE(Zq, n, χ).

The confidence in the hardness of the LWE problem stems in part from a
result of Regev [36] which shows that the for certain noise distributions χ, the
LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum
reduction (see also [33]). A classical reduction with related parameters was later
obtained by Peikert [34].

Proposition 2 ([36]).

Consider a real parameter α = α(n) ∈ (0, 1) and a prime q = q(n) > 2
√
n/α.

Denote by T = R/Z the group of reals [0, 1) with addition modulo 1. Denote by Ψα
the distribution over T of a normal variable with mean 0 and standard deviation
α/
√

2π then reduced modulo 1. Denote by bxe = bx + 1
2c the nearest integer to

the real x ∈ R. Denote by Ψ̄α the discrete distribution over Zq of the random
variable bq Xe mod q where the random variable X ∈ T has distribution Ψα.

Then, if there exists an efficient, possibly quantum, algorithm for deciding
the (Zq, n, Ψ̄α)-LWE problem, there exists a quantum q · poly(n)-time algorithm

for approximating the SIVP and GapSVP problems, to within Õ(n/α) factors in
the `2 norm, in the worst case.

Since the best known algorithms for 2k-approximations of gapSVP and SIVP

run in time 2Õ(n/k)) [21, 38, 31], it follows from the above that the LWE problem
with the noise ratio α = 2−n

ε

is likely hard for some constant ε < 1.

Two Lemmas to Bound Norms. The following lemma about the distribution Ψα
will be needed to show that decryption works correctly. The proof is implicit in
[24, Lemma 8.2].

Lemma 1. Let e be some vector in Zm and let y
R← Ψ

m

α , where Ψα is as defined
in Proposition 2. Then the quantity |e>y| treated as an integer in [0, q − 1]
satisfies

|e>y| ≤ ‖e‖ qαω(
√

logm ) + ‖e‖
√
m/2

with all but negligible probability in m.



Micciancio and Regev showed that the norm of vectors sampled from discrete
Gaussians is small with high probability.

Lemma 2 ([30]). For any lattice Λ of integer dimension m, any lattice point
c, and any two reals ε ∈ (0, 1) and σ ≥ ω(

√
logm),

Pr
{

x ∼ DΛ,σ,c : ‖x− c‖ >
√
mσ

}
≤ 1 + ε

1− ε
2−m

4 The Fuzzy IBE Scheme

We refer the reader to Section 1.1 for an overview of our construction, and
proceed directly to the details. Let λ ∈ Z+ be a security parameter. Let q = q(λ)
be a prime, n = n(λ) and m = m(λ) two positive integers, and σ = σ(λ) and
α = α(λ) two positive Gaussian parameters. We assume that id ∈ {0, 1}` for
some ` ∈ N.

4.1 Construction

Fuzzy.Setup(1λ, 1`): On input a security parameter λ, and identity size `, do:
1. Use algorithm TrapGen(1λ) (from Proposition 1) to select 2` uniformly

random n×m-matrices Ai,b ∈ Zn×mq (for all i ∈ [`], b ∈ {0, 1}) together

with a full-rank set of vectors Ti,b ⊆ Λ⊥q (Ai,b) such that ‖T̃i,b‖ ≤ m ·
ω(
√

logm).
2. Select a uniformly random vector u ∈ Znq .
3. Output the public parameters and master key,

PP =
(
{Ai,b}i∈[`],b∈{0,1},u

)
; MK =

(
{Ti,b}i∈[`],b∈{0,1}

)
Fuzzy.Extract(PP,MK, id, k): On input public parameters PP, a master key MK,

an identity id ∈ {0, 1}` and threshold k ≤ `, do:
1. Construct ` shares of u = (u1, ..., un) ∈ Znq using a Shamir secret-sharing

scheme applied to each co-ordinate of u independently. Namely, for each
j ∈ [n], choose a uniformly random polynomial pj ∈ Zq[x] of degree k−1
such that pj(0) = uj .
Construct the jth share vector

ûj = (ûj,1, . . . , ûj,n)
def
= (p1(j), p2(j), . . . , pn(j)) ∈ Znq

Looking ahead (to decryption), note that for all J ⊂ [`] such that |J | ≥ k,
we can compute fractional Lagrangian coefficients Lj such that u =∑
j∈J Lj · ûj (mod q). That is, we interpret Lj as a fraction of integers,

which we can also evaluate (mod q).
2. Using trapdoor MK and the algorithm SamplePre from Section 3.3, find

ej ∈ Zm such that Aj,idj · ej = ûj , for j ∈ [`].



3. Output the secret key for id as (id, {e1, . . . , e`}).
Fuzzy.Enc(PP, id, b): On input public parameters PP, an identity id, and a

message b ∈ {0, 1}, do:
1. Let D

def
= (`!)2.

2. Choose a uniformly random s
R← Znq .

3. Choose a noise term x← χ{α,q} and xi ← χ{α,q}
m,

4. Set c0 ← u> s +Dx+ bb q2c ∈ Zq.
5. Set ci ← Ai,idi

> s +Dxi ∈ Zmq for all i ∈ [`].
6. Output the ciphertext CTid := (c0, {ci}i∈[`], id).

Fuzzy.Dec(PP,SKid,CTid′): On input parameters PP, a private key SKid, and a
ciphertext CTid′ :
1. Let J ⊂ [`] denote the set of matching bits in id and id′. If |J | < k,

output ⊥. Otherwise, we can compute fractional Lagrangian coefficients
Lj so that ∑

j∈J
LjAjej = u (mod q)

2. Compute r ← c0 −
∑
j∈J Lj · e>j cj (mod q). View it as the integer r ∈

[−b q2c, b
q
2c) ⊂ Z.

3. If |r| < q
4 , output 0, else output 1.

Correctness To establish correctness for decryption, we only need to consider
the case |J | ≥ k. Let Lj be the fractional Lagrangian coefficients as described
above. Then,

r = c0 −
∑
j∈J

Lj e>j cj (mod q) (3)

= u> s +Dx+ b
⌊q

2

⌋
−
∑
j∈J

Lj e>j (Aj
> s +D · xj) (mod q)

= b
⌊q

2

⌋
+
(
u> s−

∑
j∈J

(Lj Ajej)
> s
)

︸ ︷︷ ︸
= 0 (mod q)

+
(
Dx−

∑
j∈J

DLje
>
j xj

)
︸ ︷︷ ︸

≈ 0

(mod q) ≈ b
⌊q

2

⌋

It suffices to set the parameters so that with overwhelming probability,

|Dx−
∑
j∈J

DLje
>
j xj | ≤ D|x|+

∑
j∈J

D2|e>j xj | < q/4 (4)

For the first inequality, we use the following lemma on Lagrangian coefficients
which states that the numbers DLj are integers bounded above by D2 ≤ (`!)4.

Lemma 3. Let D = (`!)2. Given k ≤ ` numbers I1, . . . , Ik ∈ [1 . . . `], define the
Lagrangian coefficients

Lj =
∏
i 6=j

−Ii
(Ij − Ii)

Then, for every 1 ≤ j ≤ k, DLj is an integer, and |DLj | ≤ D2 ≤ (`!)4.



Proof. To see this, note that the denominator of the jth Lagrange coefficient Lj
is of the form

dj =
∏
i6=j

(Ij − Ii)

The numbers |Ij − Ii| lie in the interval [−(` − 1), . . . , (` − 1)], and they can
repeat at most twice (namely, for every number n ∈ [`], there are at most two
i, i′ such that |Ij − Ii| = |Ij − Ii′ |).

Since each of the factors Ij − Ii can appear at most twice in absolute value,
(`!)2 divides dj . Thus, DLj is an integer. Also,

|DLj | ≤ D ·
∣∣∏
j 6=i

(−Ii)
∣∣ ≤ (`!)3

4.2 Proof of Security

We show that the Fuzzy IBE construction provides ciphertext privacy under
a selective identity attack as in Definition 2.2. Recall that ciphertext privacy
means that the challenge ciphertext is indistinguishable from a random element
in the ciphertext space. More precisely, we have the following theorem:

Theorem 1. If there exists a PPT adversary A with advantage ε > 0 against the
selective security game for the Fuzzy IBE scheme of Section 4.1, then there exists
a PPT algorithm B that decides the LWE problem with advantage ε/(`+ 1).

Proof. Recall from Definition 4 that an LWE problem instance is provided as
a sampling oracle O which can be either truly random O$ or noisy pseudo-
random Os for some secret key s ∈ Znq . The simulator B uses the adversary A
to distinguish between the two, and proceeds as follows:

Instance. B requests from O and receives (`m+1) LWE samples that we denote
as:

(w1, v1) ∈ Znq × Zq
{(w1

1, v
1
1), (w2

1, v
2
1), . . . , (wm

1 , v
m
1 )} ∈

(
Znq × Zq

)m
. . . . . .

{(w1
` , v

1
` ), (w2

` , v
2
` ), . . . , (wm

` , v
m
` )} ∈

(
Znq × Zq

)m
Targeting. A announces to B the identity it intends to attack, namely id∗.
Setup. B constructs the system’s public parameters PP as follows:

1. The ` matrices Ai,id∗i
, i ∈ [`] are chosen from the LWE challenge

{(w1
i ), (w

2
i ), . . . , (w

m
i )}i∈[`]. The ` matrices Ai,id∗i

, i ∈ [`] are chosen

using TrapGen with a trapdoor Ti,id∗i
.

2. The vector u is constructed from the LWE challenge, u = w1.

The public parameters are returned to the adversary.
Queries. B answers each private-key extraction query for identity id as follows:



1. Let id∩id∗ := I ⊂ [`] and let |I| = t < k. Then, note that B has trapdoors
for the matrices corresponding to the set Ī, where |Ī| = ` − t. W.l.o.g.,
we assume that the first t bits of id are equal to id∗.

2. Represent the shares of u symbolically as ûi = u + a1i + a2i
2 + . . . +

ak−1i
k−1 where a1, . . . ,ak−1 are vector variables of length n each.

3. For i s.t. id∗i = idi, pick ei randomly using algorithm SampleGaussian.
Set ûi := Ai,idiei; i ∈ [t].

4. Since t ≤ k − 1, and there are k − 1 variables a1........ak−1, by choosing
k− 1− t shares ût+1, . . . , ûk−1 randomly, the values for a1........ak−1 are
determined. This determines all ` shares û1, . . . , û`.

5. To find ej s.t. Aj,idjej = ûj for j = t+ 1, . . . `, invoke

SamplePre(Aj,idj ,Tj,idj , ûj , σ)

6. Return (e1, . . . , e`).
Note that the distribution of the public parameters and keys in the real
scheme is statistically indistinguishable from that in the simulation.

Challenge. A outputs a message bit b∗ ∈ {0, 1}. B responds with a challenge
ciphertext for id∗:
1. Let c0 = Dv1 + bbq/2c.
2. Let ci = (Dv1i , Dv

2
i .....Dv

m
i ) for i ∈ [`].

Guess. The adversary A outputs a guess b′. The simulator B uses that guess to
determine an answer on the LWE oracle: Output “genuine” if b′ = b∗, else
output “random”.

4.3 Parameters

We set the parameters to ensure that the decoding works with high probability,
and that the security reductions are meaningful. Our security parameter is λ, and
given (an upper bound on) `, the size of the universe, the rest of the parameters
are set under the following constraints:

1. For the lattice trapdoor generation algorithm of Alwen and Peikert [8], we
need m ≥ 5n log q.
Given this constraint on m, the TrapGen algorithm outputs a basis of (Gram-
Schmidt) length at most m ·

√
logm. Using the SamplePre algorithm, the

secret key vectors ej are drawn from a discrete Gaussian with standard
deviation σ ≥ m · logm (using the SamplePre algorithm), and thus, by
Proposition 2, have length at most σ

√
m ≤ m1.5 · logm with all but

exponentially small probability.
2. We set the noise distribution χ = Ψ

m

α , where α ≥ 2
√
m/q in order to apply

Regev’s reduction (see Lemma 2). A vector x sampled from this distribution
has length O(αq

√
m) ≤ 2m with all but exponentially small probability.

3. For the correctness to hold, we need to satisfy equation 4. Since D = (`!)2,
and letting α = 1

√
m/q, we have

D|x|+
∑
j∈J

D2|e>j xj | ≤ D · αq
√
m+ ` ·D2 · (αq

√
m ·m1.5 logm ·

√
m)

≤ 4 ·m3 logm · `(`!)4 ≤ m3 logm · 25`



where we used the fact that (`!)4 ≤ (`)4` ≤ 25`. Setting q ≥ m3 logm · 25`
ensures correctness.

As for concrete parameters settings under these constraints, we set:

– The lattice dimension n = λ and ` = nε for some constant ε ∈ (0, 1).
– The modulus q to be a prime in the interval [n625`, 2 · n625`].
– m = n1.5 ≥ 5n log q, satisfying (1) above.

Putting together the last two bullets, we see that q ≥ m3 logm · 25`, satisfying
(3) above.

– The noise parameter α = 2
√
m/q = 1/(25n

ε · poly(n)).

Combining this with the worst-case to average-case connection (Proposition 2),
we get security under the hardness of 2O(nε)-approximating gapSVP or SIVP
on n-dimensional lattices using algorithms that run in time q · poly(n) = 2O(nε).
With our state of knowledge on lattice algorithms and algorithms for LWE,
security holds for ε < 1/2.

We describe a construction for identities that live in a large universe in
Appendix A and connections to attribute based encryption in Appendix B.

5 Conclusion

We constructed a Fuzzy Identity-Based Encryption scheme, selectively secure in
the standard model, from the hardness of the Learning With Errors problem.
Ours is among the first realization of attribute-based encryption from lattices,
and among the first and only “post-quantum, beyond-IBE” cryptosystems known
to date. Extending the system by showing full security, improving the parameters
of the underlying LWE assumption, or transforming it to support more expressive
attributes, are important open problems.
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The third author gratefully acknowledges support from an NSERC Discovery Grant

and from DARPA under Agreement number FA8750-11-2-0225. The last author’s work

was partly done while at Queens College CUNY. He was supported by NSF CAREER

Award CNS-0953626, and the US Army Research laboratory and the UK Ministry

of Defense under agreement number W911NF-06-3-0001. The authors would like to

warmly thank Microsoft Research Redmond for its hospitality during various stages of

this research. The U.S. Government is authorized to reproduce and distribute reprints

for Governmental purposes notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the author and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed or

implied, of DARPA, the US Army Research Laboratory, the U.S. Government, the UK

Ministry of Defense, or the UK Government.



References

1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In Advances in Cryptology—EUROCRYPT 2010, volume 6110 of
LNCS, pages 553–572. Springer, 2010.

2. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In Advances in Cryptology—
CRYPTO 2010, volume 6223 of LNCS, pages 98–115. Springer, 2010.

3. Shweta Agrawal and Xavier Boyen. Identity-based encryption from lattices in
the standard model. Manuscript, July 2009. http://www.cs.stanford.edu/~xb/

ab09/.
4. Shweta Agrawal, David Freeman, and Vinod Vaikuntanathan. Functional

encryption for inner product predicates from learning with errors. To Appear
in Asiacrypt 2011, 2011.

5. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 99–108, New York, NY, USA, 1996. ACM.

6. Miklos Ajtai. Generating hard instances of the short basis problem. In Jir
Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, ICALP, volume
1644 of Lecture Notes in Computer Science, pages 1–9. Springer, 1999.

7. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In STOC, pages 284–293, 1997.
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A Extensions

CCA security. Both our small-universe and the large-universe schemes can be
lifted from CPA to CCA security using standard methods [12]. Here we describe
the extension for our small universe construction; details for the large universe
construction follow directly.

Specifically, we make use of a one-time strongly unforgeable signature
scheme S0 to augment the underlying FuzzyIBE scheme. The Fuzzy.Setup and
Fuzzy.Extract algorithms remain unchanged.

During Fuzzy.Enc, the encryptor runs S0.KeyGen to obtain a public-secret
key pair, which we denote by (VK,SK). We assume that VK is represented as
a binary string. Then, the encryptor picks the identity id he wants to encrypt
to, and sets id′ = (id|VK). Let CTid′ ← Fuzzy.Enc(PP, b, id′). Next, the encryptor
sets σ ← S0.Sign(CTid′ ,SK) and returns the tuple (σ,VK,CTid′).

During Fuzzy.Dec, the decryptor first checks that S0.Verify(CTid′ , σ,VK) = >,
and rejects if not. Next, she uses her secret key SKid1 to derive a secret key SKid′′

for the “delegated” identity id′′ ← (id1|VK). Such delegation can be done using
the standard technique from [17]. Note that if the Hamming weight |id− id1| ≤ k,
then |id′ − id′′| ≤ k, and conversely. Hence, if the decryptor is authorized to
decrypt in the underlying scheme, she can use her extended key SKid′′ to decrypt
in the augmented scheme, and only then. The details are deferred to the full
paper.

Construction for Identities in a Large Universe. The construction outlined above
can only support identities that are binary vectors of length `. We desire to
have the identities live in a larger space so that they capture more expressive
attributes.

At a high level, we shall combine our small-universe Fuzzy IBE with a
compatible standard-model IBE, such as [3, 17, 1], to construct a Fuzzy IBE
that can support large-universe identities. In the scheme outlined here, we use
the efficient IBE from Agrawal, Boneh, and Boyen [1] to provide large-universe



entities. Our identities are now `-vectors of attributes in Znq , while our parameters
are linear in ` (` depends on n however; see Section 4.3). We defer the detailed
construction to the full version.

B Connections to Attribute Based Encryption

A natural question that arises from this work is whether the construction can
be generalized to Attribute-Based Encryption (ABE) for more expressive access
structures. Specifically, we could ask that the secret key for a user be associated
with a set of her attributes (e.g., “PhD Student at University X”, “Ran in Boston
marathon”) represented by some vector x, and the ciphertext be created with
respect to an access policy, represented by a (polynomial-size) Boolean circuit C,
so that decryption works if and only if C(x) = 1. (Conversely, we could instead
bind the policy C to a user and the attributes x to a ciphertext.) In the world
of bilinear maps, many constructions are known [25, 32, 10, 18, 27, 28], the most
general being for access policies that can be described using Boolean formulas.

The difficulty of generalizing our construction to handle arbitrary Boolean
formulas is quite subtle. To see this, recall that Fuzzy IBE is a particular type
of ABE where the policy is restricted to a single k-out-of-n threshold gate. Since
any monotone Boolean formula has an associated linear secret sharing scheme
(LSSS), we might imagine generalizing the Fuzzy IBE construction as follows:

1. During ABE.Setup, sample ` matrices A1, . . . ,A` with trapdoors.
2. During ABE.Extract, given a formula f , represent it as a LSSS matrix M,

share u according to M to obtain û1, . . . , û` (instead of using Shamir secret
sharing). Compute ei, i ∈ [`] such that Aiei = ûi mod q and release e1, . . . e`.

3. During ABE.Enc: Say γ is a binary vector representing attributes. Then let
ci = A>i s + x for i s.t. γi = 1. Let c0 = u>s + y + bd q2e as before (x, y is
Gaussian noise and b is the bit being encrypted).

4. During ABE.Dec, if attributes γ satisfy f , we can find low norm coefficients
ρi so that ρiûi = u and decrypt by computing c0 −

∑
i ρie

>
i ci as before.

The problem with this scheme is that the shares ûi, ûj may be correlated;
for, e.g. it is possible to get u1 = u2 for queries such as (x1 ∨ x2) ∧ x3 and
(x1 ∨ x2) ∧ x5, etc. Then, their preimages e1 and e2 can be combined to form a
short vector in the null-space of [A1|A2]. Over several such queries, the attacker
can then construct a full basis for Λ⊥([A1|A2]), that can be used to break the
challenge ciphertext for a target attribute vector such as 1100 . . . 00.

This problem does not arise in our Fuzzy IBE approach since we enforce the
policy using secret sharing based on Reed Solomon (RS) codes. RS codes have
the property that given k shares, either the shares are sufficient to reconstruct
the vector u, or they look jointly uniformly random. This property is crucial in
the Fuzzy IBE simulation, and is not satisfied by the ABE generalization outlined
above. Thus, we suspect that new techniques will be required to construct
Attribute-Based Encryption from lattices.


