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Abstract. In this paper, we focus on verifiability of predicate encryp-
tion. A verifiable predicate encryption scheme guarantees that all le-
gitimate receivers of a ciphertext will obtain the same message upon
decryption. While verifiability of predicate encryption might be a desir-
able property by itself, we furthermore show that this property enables
interesting applications.
Specifically, we provide two applications of verifiable predicate encryp-
tion. Firstly, we show that for a large class of verifiable predicate encryp-
tion schemes, it is always possible to convert a chosen-plaintext secure
scheme into a chosen-ciphertext secure one. Secondly, we show that a
verifiable predicate encryption scheme allows the construction of a de-
niable predicate authentication scheme. This primitive enables a user to
authenticate a message to a verifier using a private key satisfying a spec-
ified relation while at the same time allowing the user to deny ever hav-
ing interacted with the verifier. This scheme furthermore guarantees the
anonymity of the user in the sense that the verifier will learn nothing
about the user’s private key except that it satisfies the specified relation.
Lastly, we show that many currently known predicate encryption schemes
already provide verifiability, and furthermore demonstrate that many
predicate encryption schemes which do not provide verifiability, can be
easily converted into schemes providing verifiability.
Our results not only highlight that verifiability is a very useful property of
predicate encryption, but also show that efficient and practical schemes
with this property can be obtained relatively easily.

1 Introduction

In many practical data transmission systems, we often encounter situations in
which a sender would like to securely transmit data to a set of users satisfying
certain criteria. To address this, several frameworks and concrete instantiations
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providing encryption with multiple receivers have been proposed in the litera-
ture. Examples of such frameworks include broadcast encryption (BE) [8, 35],
spatial encryption [9, 2], and ciphertext-policy/key-policy attribute-based en-
cryption (CP/KP-ABE) [17, 7, 36, 22, 21, 28]. All of the above mentioned schemes
can be seen as special cases of predicate encryption (PE) which is a new emerg-
ing paradigm for public key encryption that allows a fine-grained access control
mechanism to be specified for encrypted data. More specifically, in an PE scheme
for relation R, a ciphertext will be associated with a ciphertext attribute Y while
a private key corresponds to key attribute X, and the decryption can be done
only if the relation R(X,Y ) is satisfied. In this paper, we consider a wide class
of relations which covers the above mentioned special cases.

Previous works on PE have mainly focused on security properties regard-
ing privacy, namely message privacy (also referred to as payload hiding) and
ciphertext attribute hiding (also referred to as anonymity). The former captures
the property that a ciphertext with attribute X reveals no information about
the encrypted messages if one does not possess a key with attribute Y such that
R(X,Y ) is satisfied. The latter captures the property that for anyone in the pos-
session of a private key with attribute X ′, a ciphertext reveals no information
about the ciphertext attribute Y other than what is implied by R(X ′, Y ).

In this paper, we focus on verifiability of PE and the applications of PE
schemes providing this property. If an PE scheme provides verifiability, it is
guaranteed that all legitimate receivers of a ciphertext will obtain the same
message upon decryption i.e. for a ciphertext with attribute Y , the decryption
using two different private keys corresponding to attributes X and X ′ where
both R(X,Y ) and R(X ′, Y ) are satisfied, will always yield the same message.
Verifiability in itself is arguably a useful property and might even be required
for some applications. For example, in pay-per-view systems, receivers might
demand to be able to confirm that decryption results among all paying receivers
are identical, especially in the case the decryption result is different from the
expected. This property is guaranteed if an PE scheme with verifiability is used
to broadcast data to the receivers.

However, besides guaranteeing consistency of the decryption results among
all legitimate receivers, verifiability will furthermore enable interesting applica-
tions of PE schemes providing this property. In this paper, we show two specific
applications of verifiable predicate encryption (VPE). More specifically, firstly
we show that it is always possible to convert an arbitrary chosen-plaintext se-
cure (CPA-secure) VPE with an arbitrary flavor into chosen-ciphertext secure
(CCA-secure) one with the same flavor. For example, if it is possible to show
that a CPA-secure spatial encryption scheme provides verifiability (this is, for
example, the case for the spatial encryption scheme presented in [9]), we imme-
diately obtain a CCA-secure spatial encryption scheme. One might think that
this can easily be achieved by applying the Canetti-Halevi-Katz [12, 10] tech-
nique. However, it is unclear whether this technique can be adapted to PE in
general, and specifically, for concrete special cases of PE such as inner product
encryption and broadcast encryption, the Canetti-Halevi-Katz technique cannot
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be applied in a straight forward manner. The method applied in our conversion
is closer related to the Naor-Yung technique [26]. We also remark that the tech-
niques presented in this paper can be seen as a non-trivial generalization of the
technique presented in [37].

Secondly, we show that a VPE scheme allows the construction of an anony-
mous deniable predicate authentication (ADPA) scheme. This primitive enables
a user to prove to a verifier that he is the owner of a private key corresponding
to a specific set of attributes while at the same time being able to deny ever hav-
ing interacted with the verifier. More specifically, for a ciphertext attribute Y ,
possibly chosen at the time of authentication, a user can authenticate a message
to a verifier using a private key with attribute X such that R(X,Y ) is satisfied.
The deniability property furthermore guarantees that the verifier’s view of the
communication can be produced a posteriori without the knowledge of the pri-
vate key corresponding to X. Hence, the transcript of the interaction cannot be
used as evidence of the user authenticating the message to the verifier, and the
user will be able to deny ever having done so. ADPA will furthermore guarantee
anonymity of the user in the sense that the verifier will not be able to determine
the attribute X of the private key of the user, but will only be able to verify
that R(X,Y ) is satisfied. In other words, the verifier will be able to confirm
that the user belongs to the set of users to which the key authority issued a
key with property X such that R(X,Y ) is satisfied. This anonymity property is
guaranteed to hold even if verifier collude with the authority issuing the private
keys of the users. While not being directly comparable, this is reminiscent of the
properties provided by anonymous credentials which allows a user to demon-
strate knowledge of a credential issued by an authority, but without revealing
his identity.

Lastly, we show that many concrete PE schemes already provide verifiabil-
ity, and furthermore demonstrate that many PE schemes which do not provide
verifiability, can be easily converted into schemes providing verifiability. Our con-
version techniques are applicable to a wide range of (non-verifiable) PE schemes.
As examples, we briefly discuss how Waters BE scheme [35], Attrapadung-Libert
inner product encryption (IPE) scheme and spatial encryption scheme [1], and
Okamoto-Takashima KP-ABE schemes [28] can be transformed into schemes
providing verifiability by introducing only simple modifications. This shows that
efficient and practical VPE scheme can be constructed, which, due to the results
presented in this paper, implies that efficient and CCA-secure variants of these
schemes can be obtained as well.

Related Works on PE. In its simplest form, PE corresponds to id-based
encryption [5, 4, 34]. Sahai and Waters [33] proposed the first ABE system with
much more expressive relations called Fuzzy IBE. It was subsequently general-
ized to support general access policies by [17, 7, 29, 22]. These results are proved
secure in a weak model called selective security. The first fully-secure ABE sys-
tems were given by Lewko et al. [21] and Okamoto and Takashima [28], following
the general dual-system encryption methodology introduced in [35, 24]. When
efficiency is the main consideration, the first system with constant-size cipher-
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texts and with reasonably expressive policies was proposed by Boneh and Ham-
burg [9], where a system called spatial encryption was presented. A fully-secure
scheme for spatial relations was then proposed by Attrapadung and Libert [2],
where its extension to support inner-product, of which many applications such
as CNF/DNF formulae policy expressions as described in [20], was also given.
All the aforementioned systems so far do not concern the security property re-
garding the privacy of ciphertext attributes. The first attribute-hiding predicate
encryption, or equivalently known as functional encryption was suggested by
Boneh and Waters [11] and generalized by Katz, Sahai, and Waters [20] to sup-
port inner product relations. These attribute-hiding systems were recently made
fully secure in [21, 28].

Related Works on Deniable Authentication. The formal treatment of
deniability for public key authentication was initiated by Dwork, Naor and Sa-
hai in their paper on concurrent zero-knowledge[13], followed by a series of pa-
pers [25, 30, 31]. In [13], Dwork et al. propose a deniable authentication protocol
based on a CCA-secure encryption scheme. Naor [25] later extended the work
by Dwork et al., and introduced the concept of deniable ring authentication by
combining the approach of Dwork et al. and the paradigm of ring signatures pro-
posed by Rivest et al. [32]. In a deniable ring authentication, a member of a ring
can authenticate a message in a deniable way to a receiver. Another approach
not relying on CCA-secure encryption scheme was proposed by Raimondo and
Gennaro [31]. They successfully eliminate the need for CCA-secure encryption
by using another primitive, i.e., multi-trapdoor commitments [14]. It should be
noted that all these works are in the plain model. Meanwhile, Pass in [30] inves-
tigates the possibility of constructing deniable zero-knowledge protocols in the
non-plain models, i.e., the common reference string model and random oracle
model. Pass shows an impossibility result regarding the construction of non-
trivial deniable zero-knowledge protocols in the common reference string model,
and a positive result, in the random oracle model, regarding the construction of
efficient deniable zero-knowledge arguments of knowledge which preserve both
the zero-knowledge property and the proof of knowledge property under concur-
rent executions.

Notations. a
$← A denotes the action of picking a from uniform random distri-

bution over A. negl(λ) denotes negligible function in λ. A
c
≈ B denotes A and B

are computationally indistinguishable. [A(x)] for randomized algorithm A and
its input x denotes a set {y|Pr[A(x) = y] 6= 0}.

2 Definition of Verifiable Predicate Encryption

In this section we introduce the definition and security notion for PE, and fur-
thermore introduce verifiability. Note that our definition of verifiability is similar
but slightly different from the definitions given in [37]. More specifically, the defi-
nition given in [37] explicitly requires a Verify algorithm, whereas our definition
defines verifiability as a property of the decryption algorithm. Thus, our defi-
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nition of the verifiability is more similar to that of [18]. We also note that our
definition of verifiability is orthogonal to the notion defined in [6].

2.1 Definition of Predicate Encryption

Here, we define the notion of predicate encryption.
Syntax. Let R = {Rn : An×Bn → {0, 1} | n ∈ N} be a relation family where An
and Bn denote “key attribute” and “ciphertext attribute” spaces. A predicate
encryption (PE) scheme for R consists of the following algorithms:
Setup(λ, n)→ (PK,MSK): The setup algorithm takes as input a security pa-

rameter λ and a dimension n of the relation R and outputs a public key PK
and a master secret key MSK.

KeyGen(MSK,PK,X)→ SKX : The key generation algorithm takes as input
the master secret key MSK, the public key PK, and a key attribute X ∈ An.
It outputs a private key SKX . We assume X is included in SKX implicitly.

Encrypt(PK,M, Y )→ CT : The encryption algorithm takes as input a public
key PK, the message M, and a ciphertext attribute Y ∈ Bn. It will output
a ciphertext CT .

Decrypt(PK,CT, Y, SKX)→ M or ⊥: We assume that the decryption algo-
rithm is deterministic. The decryption algorithm takes as input the public
parameters PK, a ciphertext CT , ciphertext attribute Y ∈ Bn and a pri-
vate key SKX . It outputs the message M or ⊥ which represents that the
ciphertext is not in a valid form. We require that the decryption algorithm
outputs ⊥ if R(X,Y ) = 0.
We require correctness of decryption: that is, for all λ, all n, all (PK,MSK) ∈

[Setup(λ,n)], all X ∈ An, Y ∈ Bn such that R(X,Y ) = 1, all CT ∈ [Encrypt
(PK,M, Y )] and all SKX ∈ [KeyGen(MSK,PK,X)], Decrypt(PK,CT, Y,
SKX) = M holds.

Security. We now define the security notion indistinguishability under chosen
ciphertext attack (CCA-security) for an PE scheme Π. This security notion is
defined by the following game between a challenger and attacker A.

At first, the challenger runs the setup algorithm and gives PK to A. Then A
may adaptively make key-extraction queries and decryption queries. We denote
this phase Phase1. In this phase, ifA submitsX to the challenger, the challenger
returns SKX ← KeyGen(MSK,PK,X) if X has not been submitted before.
Otherwise, the challenger returns the previously extracted SKX . If A submits
(CT, Y,X) to the challenger in a decryption query, the challenger extracts the
private key for X by SKX ← KeyGen(MSK,PK,X) if this has not been
previously extracted and returns the output of Decrypt(PK,CT, Y, SKX) to
A. At some point,A outputs two equal length messages M0 and M1 and challenge
ciphertext attribute Y ? ∈ Bn. Y ? cannot satisfy R(X,Y ?) = 1 for any attribute
sets X such that A already queried private key for X. Then the challenger flips a
random coin β ∈ {0, 1}, runs Encrypt(PK,Mβ , Y

?)→ CT ? and gives challenge
ciphertext CT ? to A. In Phase2, A may adaptively make the same queries as
in Phase1 with following added restriction: A cannot make a key-extraction
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query for X such that R(X,Y ?) = 1, and A cannot submit (CT, Y,X) such that
R(X,Y ?) = 1 and (CT, Y ) = (CT ?, Y ?). At last, A outputs a guess β′ for β.
We say that A succeeds if β′ = β and denote the probability of this event by
PrPEA,Π . The advantage of an attacker A is defined as AdvPEA,Π = PrPEA,Π − 1

2 .

Definition 1. We say that an PE scheme Π is CCA-secure (payload hiding)†

if for all PPT A, AdvPEA,Π is negligible. We also say that an PE scheme Π is

CPA-secure if for all PPT A who does not make any decryption queries, AdvPEA,Π
is negligible.

We say that the PE scheme is selectively CCA/CPA-secure if we add an Ini-
tial stage Init before the setup where the adversary submits the target ciphertext
attribute Y ? ∈ Bn.

Typical Relations. An PE scheme captures the functionality of a large num-
ber of existing types of encryption schemes. In the following, we briefly illustrate
how the most popular schemes can be obtained from an PE scheme by choosing
the relation appropriately.

Broadcast Encryption. Broadcast encryption allows a sender to encrypt a
message for any subset S of n users. To achieve this functionality, we set
n to be the number of user, An = {1, 2, . . . n}, Bn = 2{1,2,...n}. We define
Rn(j, S) = 1 if and only if j ∈ S for j ∈ An, S ∈ Bn.

Inner Product Encryption (for Non-Zero Relation). Inner product en-
cryption (resp. for non-zero relation) allows a sender to encrypt a message
for a vector Y so that a user with a secret key for a vector X, can decrypt
it if and only if X · Y = 0 (resp. X · Y 6= 0). To achieve this functionality,
we set n to be dimension of the vectors, An = ZnN , and Bn = ZnN where N
is some integer determined by the scheme. We define Rn(X,Y ) = 1 if and
only X · Y = 0 (resp. X · Y 6= 0) for X ∈ An, Y ∈ Bn.

Spatial Encryption. Spatial encryption allows a sender to encrypt a message
for some vector V so that a user with secret key for a space V such that
Y ∈ V can decrypt it. To achieve this functionality, we set n to be the
dimension of the vector, An = {Aff(M,a)|M ∈ Zn×lN , 0 ≤ l ≤ n,a ∈ ZnN},
Bn = ZnN where Aff(M,a) = {Mx>+a>|x ∈ ZlN} which is subspace of ZnN .
We define Rn(V,Y ) = 1 if and only if Y > ∈ V for V ∈ An, Y ∈ Bn.

Key (Ciphertext) Policy Attribute based Encryption. Key (resp. ci-
phertext) policy attribute based encryption allows a sender to encrypt a
message for some set of attribute S (resp. access structure A) so that a user
with secret key for an access structure A (resp. set of attribute S) such that
S ∈ A can decrypt it. To achieve this functionality, we set n to be the size of
attribute universe U . An is the collection of access structures over U (resp.
An = 2U ). Bn is set as Bn = 2U (resp. access structure over U). Here, access
structure over U can be described by linear secret sharing (LSSS) matrix
whose size is bounded by some polynomial. We define Rn(A, S) = 1 if and
only if A ∈ An accepts S ∈ Bn.

† In this paper, we work only on payload-hiding security and not attribute-hiding
which is considered for many other predicate encryption schemes such as [20].
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2.2 Definition of Verifiability

In this subsection, we define verifiability of an PE scheme. Intuitively, verifiability
guarantees that the decryption of any ciphertext is the same regardless of which
user decrypt it, as long as this user is authorized to decrypt.

Definition 2. (Verifiablity) An PE scheme Π is said to have verifiability if
for all λ, n, (PK,MSK) ∈ [Setup(λ, n)], X,X ′ ∈ An, Y ∈ Bn the following
holds.
If SKX ∈ [KeyGen(MSK,PK,X)], SKX′ ∈ [KeyGen(MSK,PK,X ′)], and
R(X,Y ) = R(X ′, Y ), then for all CT ∈ {0, 1}∗, Decrypt(PK,CT, Y, SKX) =
Decrypt(PK,CT, Y, SKX′) holds.

We remark that verifiability is not implied by correctness, since the definition of
correctness is only concerned about correctly generated ciphertext whereas the
definition of verifiability needs is about any ciphertext (including invalid one).

We also define public verifiability which is stronger notion than verifiability.
That is, we can convert any PE scheme with public verifiability into PE scheme
with verifiability very easily as we explain later. The reason why we introduce
the notion of public verifiability is that in many case, we can check whether an
PE scheme have public verifiability or not very easily.

Definition 3. (Public Verifiablity) An PE scheme Π is said to have pub-
lic verifiability if there exists a polynomial-time algorithm Verify which takes
as input the public key PK, a possible ciphertext CT ∈ {0, 1}∗, a ciphertext at-
tribute Y ∈ Bn and outputs 0 or 1. We require that for all λ, n, (PK,MSK) ∈
[Setup(λ, n)], Y ∈ Bn, CT ∈ {0, 1}∗,

Verify(PK,CT, Y ) = 1⇔ ∃M such that CT ∈ [Encrypt(PK,M, Y )].

An PE scheme with public verifiability can be modified to be verifiable by
changing decryption algorithm slightly. That is, modified decryption algorithm
Decrypt′(PK,CT, Y, SKX) first checks whether Verify(PK,CT, Y ) = 1 holds
and outputs Decrypt(PK,CT, Y, SKX) if it holds. Otherwise it outputs ⊥.

3 CCA-secure VPE from CPA-secure VPE

In this section, we show that VPE for a large class of relations can be trans-
formed to be CCA-secure VPE with the same relation. Our requirement for
this transformation is very weak, and many important relations defined for PE
schemes satisfy this requirement. Our conversion works for wide class of PE such
as spatial encryption, IPE, BE, KP/CP-ABE and can be seen as a nontrivial
generalization of the conversion proposed by [37] which only works for ABE. We
also remark that our conversion works for BE and IPE for which the Canetti-
Halevi-Katz [12] transform cannot be applied in a straightforward manner.
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3.1 Definitions

We define the notions of “OR-compatibility” and “equality test” for a relation.
Intuitively, a relation is said to have OR-compatibility if for two attributes, the
relation is able to capture the presence of one or the other, whereas a relation
is said to support equality test over a domain D if it can be used to emulate an
equality test for elements in D. The formal definitions are as follows:

Definition 4. (OR-compatibility) Consider a relation family R = {Rn :
An ×Bn → {0, 1} | n ∈ N}. We say that R is OR-compatible if for all n,m ∈ N
there are maps OR : Bn×Bm → Bn+m and s : An → An+m and t : Am → An+m

such that for all X1 ∈ An, X2 ∈ Am and Y1 ∈ Bn, Y2 ∈ Bm it holds that

Rn+m(s(X1),OR(Y1, Y2)) = Rn(X1, Y1), Rn+m(t(X2),OR(Y1, Y2)) = Rm(X2, Y2).

Definition 5. (Equality test) Consider a relation family R = {Rn : An ×
Bn → {0, 1} | n ∈ N}. Consider a set D. We say that R can perform equality
test over D by using dimension d if there are maps u : D → Ad and v : D → Bd
such that for all z, z′ ∈ D we have Rd(u(z), v(z)) = 1 and Rd(u(z), v(z′)) = 0 if
z 6= z′.

3.2 Generic Conversion

Let Π = (Setup,KeyGen,Encrypt,Decrypt) be a CPA-secure PE for re-
lation R and let Σ = (G,S,V) be a strongly unforgeable one-time signature
scheme. Here, G, S, and V are the key generation, sign, and verify algorithms
of the scheme, respectively. Assume that Π has verifiability, OR-compatibility
(as per definition 4), and can perform equality test (as per definition 5) over
the verification key space of Σ. We can construct a CCA-secure VPE scheme
Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′) also for relation R as follows.

Setup′(λ, n). Output Setup(λ, n+ d)→ (PK,MSK).
KeyGen′(MSK,PK,X). Output KeyGen(MSK,PK, s(X))→ SKs(X).

Hence SK ′X = SKs(X).
Encrypt′(PK,M, Y ) First create a one-time signature key pair by running
G(λ) → (vk, sk). Then run Encrypt(PK,M,OR(Y, v(vk))) → CT and
S(sk, (CT, Y ))→ σ. Lastly, output CT ′ = (vk, CT, σ).

Decrypt′(PK,CT ′, Y, SK ′X) Parses the ciphertext CT ′ as (vk, CT, σ). If V(vk,
(CT, Y ), σ) = 0, output ⊥. Output Decrypt(PK,CT,OR(Y, v(vk)), SK ′X)
otherwise.

Correctness. Decryption can be done using SKs(X) if Rn(X,Y ) = 1 since
Rn+d(s(X),OR(Y, v(vk))) = Rn(X,Y ) = 1. Thus, correctness of Π ′ follows
from correctness of Π.

Verifiability. The verifiability of Π ′ follows directly from the verifiability of
Π.

Selective security. Our conversion can be also applied to selectively (CPA-
)secure PE schemes, and in such cases, resulting CCA-secure schemes are only
selectively (CCA-)secure as well.
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Theorem 1. If Π is CPA-secure PE for relation R, then Π ′ is CCA-secure PE
for relation R.

Proof. Assume we are given PPT adversary A which breaks CCA-security of
the scheme Π ′ for relation Rn with advantage ε. Then we construct another
adversary B which breaks CPA-security of the scheme Π for relation Rn+d with
advantage negligibly close to ε using A. Define adversary B as follows:

Setup. The challenger runs Setup(λ, n + d) → (PK,MSK). Then B is given
PK and gives it to A. B also runs G(λ)→ (vk?, sk?).

Phase1. A may adaptively make queries of the following types:

− Key-extraction query. When A submits X, then B submits s(X) to chal-
lenger. B is given private key SKs(X) and gives it to A.

−Decryption query. WhenA submits (CT ′, Y,X) such that CT ′ = (vk, CT, σ),
B respond to A as follows. First, B checks whether R(X,Y ) = 0 or not. If so, B
outputs ⊥. Otherwise B checks whether V(vk, (CT, Y ), σ) = 1 holds. If it does
not hold, then B returns ⊥. If it holds and vk? = vk, then B aborts. Otherwise
B submits t(u(vk)) to the challenger and is given SKt(u(vk)). Then B returns
output of Decrypt(PK,CT,OR(Y, v(vk)), SKt(u(vk))) to A.

Challenge. A declares two equal length messages M0 and M1 and an challenge
attribute Y ?. Then B declares the same messages M0, M1 and OR(Y ?, v(vk?)) for
the challenger. The challenger flips a random coin β ∈ {0, 1}, runs Encrypt(PK,
Mβ ,OR(Y ?, v(vk?)))→ CT ? and gives CT ? to B. Then B runs S(sk?, (Y ?, CT ?))
→ σ?, and gives CT ?′ = (vk?, CT ?, σ?) to A.

Phase2. B responds to A’s queries as the same as in Phase1.

Guess. Finally, A outputs a guess β′ for β. Then B outputs β′ as its guess.

First we check that the key extraction query of A is legal. B can submit s(X)
to the challenger, since Rn+d(s(X),OR(Y ?, v(vk?))) = Rn(X,Y ?) = 0. B can
also submits t(u(vk)) to the challenger since Rn+d(t(u(vk)),OR(Y ?, v(vk?))) =
Rd(u(vk), v(vk?)) = 0 if vk 6= vk?. Next, we see that in the simulation of decryp-
tion oracle, Decrypt(PK,CT,OR(Y, v(vk)), SKt(u(vk))) = Decrypt(PK,CT,
OR(Y, v(vk)), SKs(X)) by the verifiability since Rn+d(t(u(vk)),OR(Y, v(vk))) =
Rn+d(s(X),OR(Y, v(vk)) = 1 if R(X,Y ) = 1. Thus the simulation is perfect if
B does not abort.

Let Win denote the event that A correctly guess β, Abort denote the
event that B aborts. If Abort does not occur, B’s simulation is perfect. So,
B’s advantage for guessing β is estimated as Pr[B correctly guesses β] − 1

2 =

Pr[Win|Abort] Pr[Abort]− 1
2 ≥ Pr[Win]− Pr[Abort]− 1

2 ≥ ε− Pr[Abort].
Since Pr[Abort] = negl(λ) due to the unforgeability of the one-time-signature,
the proof is completed.

3.3 Qualifying Relations

In this subsection, we show that important relations defined for PE schemes in
the literature satisfy OR-compatibility and can perform equality test by describ-
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ing their corresponding maps OR : Bn×Bm → Bn+m, s : An → An+m, t : Am →
An+m, u : D → Ad, v : D → Bd.

Inner Product Relation. Equality test can be performed with d = 2.

OR(Y 1,Y 2) = Y 1||Y 2, s(X) = X||0, t(X) = 0||X,

u(z) = (z, 1), v(z) = (−1, z)

Spatial Relation. Equality test can be performed with d = 1.

OR(Y 1,Y 2) = Y 1||Y 2, s(Aff(M,a)) = Aff(

[
M 0
0 Im

]
,a||0),

t(Aff(M,a)) = Aff(

[
In 0
0 M

]
,0||a), u(z) = Aff(0, (z)), v(z) = (z)

Here, Im and In are unit matrices of size m and n respectively.
We can also capture the case of CP/KP-ABE by a technique in [37]. We need

to generalize the definition of equality test to instantiate BE and non-zero IPE
in our framework. See the full version for the details.

4 Anonymous Deniable Predicate Authentication

In this section, we introduce the notion of ADPA. Intuitively, ADPA is a gen-
eralization of deniable authentication in which the prover holds a private key
corresponding to an attribute, and the verifier will learn nothing about this at-
tribute, except that it satisfies a relation with the verifier attribute. Firstly, we
define functionality and security, and then show how a ADPA scheme can be
constructed from a CCA-secure VPE scheme.

4.1 Definition of Anonymous Deniable Predicate Authentication

Syntax. Let relation R = {Rn : An ×Bn → {0, 1} | n ∈ N} be a collection of
boolean functions, where n ∈ N denotes a “scheme description”, An and Bn
denote the “prover attribute” and “verifier attribute” spaces. An anonymous
deniable predicate authentication (ADPA) for a relation R is defined by a tuple
of four algorithms ΛDPA

R = (Setup,KeyGen,P,V). The setup algorithm Setup takes
as inputs a security parameter λ, a scheme description n ∈ N, and outputs a
public key PK and a master secret key MSK. And the key generation algorithm
KeyGen takes as inputs the master secret key MSK, the public key PK, a prover
attribute X ∈ An, and outputs a private key SKX . The interactive Turing
machines prover P and verifier V perform the interactive protocol (P,V) with
common inputs PK, Y ∈ Bn, message M, where P also takes input the private
key for X, SKX . At the end of protocol (P,V) , V outputs a bit to indicate
whether V accepts P as a valid prover or not. With 〈P(xP),V(xV)〉(y), we denote
the output of verifier V at the end of execution of interactive protocol (P,V),
where P and V take xP and xV as private inputs respectively and y denotes the
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common input. For the basic requirement completeness, ΛDPA

R needs to satisfy
that for all λ, n ∈ N, X ∈ An, Y ∈ Bn such that Rn(X,Y ) = 1, M, the following
holds.

(PK,MSK)← Setup(λ, n), SKX ← KeyGen(MSK,PK,X) :

〈P(SKX),V〉(PK, Y,M) = 1.

For security, ΛDPA

R is also required to satisfy the following notions.

Concurrent Soundness. First, we define the adversary A as a man-in-the-
middle attacker such that A is interacting with provers P1, . . . ,PmL

in mL “left
sessions” as verifier, and at the same time interacting with an honest verifier
V in a “right session” as prover, in any arbitrary interleaving, where mL is
polynomial in security parameter λ. The adversary A is given access to two
additional oracles: (1) prover instantiator oracle P, and (2) key generator oracle
K.

When A submits to prover instantiator oracle P a message M, a verifier
attribute Y , and a prover attribute X, P will initiate a new prover P′ with
inputs (PK, Y,M, SKX), where SKX is a valid secret key corresponding to the
key attribute X. The adversary A is allowed to send a prover attribute X and
then retrieve the corresponding secret key SKX from the key generator oracle K
with the restriction that R(X,Y ?) 6= 1 holds, where Y ? is the verifier attribute
used as common input in the right session. The following notion guarantees that
such adversary A will not be able to make the honest verifier V to accept it as
a valid prover in right session.

Definition 6 (Concurrent Soundness). Let ΛDPA

R = (Setup,KeyGen,P,V) be
an ADPA for relation R = {Rn : An ×Bn → {0, 1} | n ∈ N}. We say that ΛDPA

R

satisfies concurrent soundness if for all sufficiently large λ, for any n ∈ N, for
any efficient algorithm A, the following holds.

Pr
[
Setup(λ, n)→ (PK,MSK) : AP,K(PK)→(M?,Y ?,state)

〈AP,K(state),V〉(PK,Y ?,M?)=1

]
= negl(λ),

where

– the key generator oracle K, on input a prover attribute Xi ∈ An such that
Rn(Xi, Y

?) 6= 1 holds, returns SKXi
← KeyGen(PK,MSK,Xi),

– the prover instantiator oracle P, on input a tuple (Mi, Yi ∈ Bn, Xi ∈ An)
such that (Mi, Yi) 6= (M?, Y ?) holds, allows A access to a prover Pi ∈
{P1, . . . ,PmL

} which has been initiated with inputs (PK, Yi,Mi, SKXi), where
SKXi

← KeyGen(PK,MSK,Xi),
– A interacts as a verifier with provers P1, . . . ,PmL

generated by P concur-
rently, and for each instantiated prover P1, . . . ,PmL

, and A interacts in the
protocol (Pi,A) with common inputs PK, Yi ∈ Bn, M, where Pi also takes
input SKXi .

We remark that we can consider a weaker version of the above security notion in
which the adversary is required to output Y ? at the beginning of the game. We
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denote this security selective concurrent soundness. Next, we define the special
security notions we require an ADPA to satisfy.

Anonymity (Source Hiding). Here we describe the security notion which
guarantees that no one is able to know which key attribute is associated to the
prover P in the interactive protocol (P,V), even when one is allowed to act as
a cheating verifier in the interactive protocol and is given access to the master
secret key generated by the setup algorithm.

Let R = {Rn : An ×Bn → {0, 1} | n ∈ N} be a relation and ΛDPA

R = (Setup,
KeyGen,P,V) be an ADPA for R. Let us consider an adversary A which engages
in the following game.

Gameanom
A (λ, n):

Setup→ (PK,MSK) , A(PK,MSK)→ (X?
0 , X

?
1 )

KeyGen(MSK,PK,X?
0 )→ SKX?

0
, KeyGen(MSK,PK,X?

1 )→ SKX?
1

A(PK,MSK)→ (Y ?,M?, state) s.t. Rn(X?
0 , Y

?) = Rn(X?
1 , Y

?)

b
$← {0, 1} , AP(SKX?

b
)
(state, SKX?

0
, SKX?

1
,MSK,PK, Y ?,M?)→ b̂

If b = b̂ return 1, otherwise return 0.

The notationAP(SKX?
b

)
(state, SKX?

0
, SKX?

1
,MSK,PK, Y ?,M?) in Gameanom

A (λ, n)
denotes that A interacts as verifier with P in the interactive protocol (P,A) with
common inputs (PK, Y ?,M?) where P also takes input secret key SKX?

b
and A

also takes inputs (state, SKX?
0
, SKX?

1
,MSK). The following notion guarantees

that there no such adversary A will be able to correctly guess whether P uses
SKX?

0
or SKX?

1
as its secret key.

Definition 7 (Anonymity (Source Hiding)). Let ΛDPA

R = (Setup,KeyGen,P,V)
be an ADPA for relation R = {Rn : An ×Bn → {0, 1} | n ∈ N}. We say that
ΛDPA

R satisfies anonymity (source hiding) if for all sufficiently large λ, for any n ∈
N, for any machine A with unbounded power,

∣∣Pr [Gameanom
A (λ, n) = 1]− 1

2

∣∣ =
negl(λ) holds.

Deniability. Here we describe the security notion which guarantees that the
communication transcript which is produced from an interaction between prover
and verifier in an ADPA cannot be used as a proof that an interaction between
prover and verifier has taken place. More precisely, the security notion says that
for any verifier (including dishonest verifiers), there exists a simulator which
can poses as a valid prover even without knowledge about the secret key. Also,
with View(〈P, V 〉), we denote the view which is obtained at the end of interaction
between P and V , where the view is the communication transcripts concatenated
by random coins used by V .

Definition 8 (Deniability). Let R = {Rn : An ×Bn → {0, 1} | n ∈ N} be a
relation and ΛDPA

R = (Setup,KeyGen,P,V) be an ADPA for relation R. Let us
also define the following two probability distributions for a fixed λ, n ∈ N, M,
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and X ∈ An, Y ∈ Bn such that Rn(X,Y ) = 1.

Real(λ, n,X, Y,M) =

 Setup(λ, n)→ (PK,MSK),
KeyGen(PK,MSK,X)→ SKX ,

View (〈P(SKX),A(MSK,X)〉(PK, Y,M))

 ,
Sim(λ, n,X, Y,M) =

 Setup(λ, n)→ (PK,MSK),
KeyGen(PK,MSK,X)→ SKX ,

View (〈Sim,A(MSK,X)〉(PK, Y,M))

 ,
where A and Sim are both efficient algorithms. ΛDPA

R is said to be deniable if for
all sufficiently large λ, for any n ∈ N, M, and for all X ∈ An, Y ∈ Bn such that
Rn(X,Y ) = 1, the following holds.

∀A ∃Sim : Real(λ, n,X, Y,M)
c
≈ Sim(λ, n,X, Y,M).

4.2 Construction from CCA-secure VPE

We can construct an ADPA ΛDPA

R = (Setup,KeyGen,P,V) from a CCA secure
VPE Π = (Setup,KeyGen,Encrypt,Decrypt) and a perfectly binding and
computationally hiding commitment scheme COM = (com, open). Here, com
and open are commit and open algorithms of the scheme, respectively. Setup
and KeyGen are exactly the same as Setup and KeyGen. We describe the
interactive protocol (P,V) as follows. Note that P and V perform (P,V) with
common input the public key PK, a verifier attribute Y ∈ Bn, and a message
M, while P also takes as input the secret key SKX corresponding to a key
attribute X ∈ An such that Rn(X,Y ) = 1 holds.

Step1 (P⇐ V): V chooses randomly r ← {0, 1}λ and then computes CT ←
Encrypt(PK,M||r, Y ). Then V sends CT to P.

Step2 (P⇒ V): P computes y ← Decrypt(PK,CT, Y, SKX). If y = ⊥ or y =
M′||r′ such that M′ 6= M, P chooses random pairs (ri0, ri1) ∈ {0, 1}λ×{0, 1}λ
for i = 1, . . . , λ. Otherwise, P chooses (ri0, ri1) ∈ {0, 1}λ × {0, 1}λ such
that ri0 ⊕ ri1 = r′ holds for all i = 1, . . . λ. Then P sends {(Ci0, Ci1) =
(com(σi0, ri0), com(σi1, ri1))}i=1,...,λ to V, where σi0 and σi1 are random-
nesses used to calculate the commitments Ci0 and Ci1 respectively.

Step3 (P⇐ V): V sends λ random bits b1, b2, . . . bλ to P.

Step4 (P⇒ V): P sends {ribi = open(σibi , Cibi), σibi}i=1,2,...,λ to V.

Step5 (P⇐ V): V opens CT by revealing r and ρ to P, where ρ is randomness
used to create CT .

Step6 (P⇒ V): P sends {rib̄i = open(σib̄i , Cib̄i), σib̄i}i=1,2,...,λ to V.
V outputs 1 if for all 1 ≤ i ≤ λ, ri0 ⊕ ri1 = r, and outputs 0 otherwise.

We remark that our conversion can also be applied to selectively CCA-secure PE
schemes, and in this case, the resulting ADPA schemes satisfies only selective
concurrent soundness.
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4.3 Security Analysis

Theorem 2. If Π is CCA-secure VPE and COM is perfectly binding and com-
putationally hiding commitment, then ADPA ΛDPA

R constructed as above satisfies
concurrent soundness, deniability, and anonymity. Especially, source hiding is
satisfied for any adversary (even unbounded).

The theorem can be proved following a very similar strategy to that of [15, 25],
and we will therefore only sketch how the proof is obtained in the following.

Lemma 1. (Concurrent Soundness.) If Π is CCA-secure PE and COM is per-
fectly secure binding commitment, then ΛDPA

R satisfies concurrent soundness.

Similar to the case of [25], it is easy to see that the above construction satis-
fies concurrent soundness. We can construct an IND-CCA adversary B of the
underlying predicate encryption using adversary A who violates soundness of
above scheme. Note that B can easily simulate the prover instantiator oracle
P perfectly using the given decryption oracle and also simulate the key gener-
ator oracle K perfectly via key extraction queries. The key point of the proof
is that B is allowed to rewind A and to let A answer two different sequences
of {bi}i=1,...,λ in Step3, so that B is able to compute r = ri0 ⊕ ri1 for some
i ∈ [1, λ]. In the challenge phase, B can select two messages M0, M1 such that
M0 = M||r̂, M1 = M||r̃. and then forward the received challenge ciphertext CT ?

to A in Step1. Since B can obtain r from A through the rewinding described
above, where M||r is the result of the decryption of CT ?, B can check whether
r̂ = r or r̃ = r, and thereby easily determine whether CT ? is the encryption of
M0 or M1.

Lemma 2. (Deniability.) If Π satisfies correctness and COM is computation-
ally hiding commitment, then ΛDPA

R satisfies deniability.

One can prove that the above instantiation is deniable using the same techniques
as shown in [15, 25]. Intuitively, the procedure to construct the simulator Sim
is to firstly run the interaction with the verifier until Step5 where the verifier
has to reveal the randomness r it used in Step1 to create the CT , and then
rewind the verifier until the end of Step1. In the second run after the rewind,
we can easily simulate a prover until the last step Step6, since the randomness
r should have been obtained in the first run. (Here, we resort to correctness of
Π.) The most crucial point here is how to safely perform Step2 in the first run
(before the rewind). The trick is that although we do not know the randomness
r yet, we can send commitments of random messages to A in Step2, as the
computationally hiding property of the underlying commitment COM prevents
A from detecting that the commitments sent by Sim are actually commitments
to random messages.

Lemma 3. (Anonimity) If Π is VPE, then ΛDPA

R satisfies anonymity.
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Anonymity of the scheme follows immediately from verifiability. Notice that the
difference between an interaction with a prover which uses SKX?

0
and an inter-

action with a prover which uses SKX?
1

will only possibly occur at Step2, when
the prover decrypts the ciphertext CT sent by the verifier at Step1. Thanks to
the verifiable property of the underlying verifiable predicate encryption scheme,
the result of the decryption is always the same, both in the case of SKX?

0
and

SKX?
1
, as long as Rn(X?

0 , Y ) = Rn(X?
1 , Y ). Note that security level of anonymity

achieved by our scheme is stronger than that of [25]. We achieve anonymity even
against an adversary with unbounded computational power, whereas [25] only
achieves anonymity against a computational bounded adversary.

5 Instantiations

To be able to apply our framework for constructing CCA-secure PE schemes or
ADPA schemes, we require that the underlying PE schemes are verifiable. We
note that many selectively-secure PE schemes [8, 9, 17, 29, 22, 3, 7, 16, 36] have
public verifiability. That is, we can construct an Verify algorithm (as per def-
inition 3). Hence, these can be used directly in our framework. On the other
hand, this is not the case for the PE schemes with full security [35, 1, 2, 21, 28].
This is because all existing fully secure PE schemes make use of the dual system
encryption methodology [35]. The security of these schemes rely on the indistin-
guishability between normal ciphertexts and semi-functional ciphertexts where
a semi-functional ciphertext is special kind of incorrectly generated ciphertext.
To achieve public verifiability, we should be able to distinguish between a semi-
functional (i.e. incorrectly generated) ciphertext and a normal (i.e. correctly gen-
erated) ciphertext efficiently, but this conflicts with the security of the scheme.
However, even though we cannot achieve public verifiability for these schemes, it
is possible to achieve our definition of (non-public) verifiability. Recall that our
definition of verifiability does not require that we can check whether ciphertext
is correctly generated or not, but only requires that we can check whether the
decryption of a ciphertext under a different secret key will be the same or not.

In the following, we first discuss how we add verifiability to the schemes
in [35, 1, 2, 21, 28], then focus on the schemes which we obtain by applying our
framework to the above mentioned verifiable PE schemes.

Modifying Existing Schemes to be Verifiable. Here, we explain how
we modify the schemes in AL10 spatial encryption scheme [2], OT10 KP-ABE
scheme [28], Waters09 BE scheme [35], AL10 IPE scheme [1] to be verifiable. Our
first approach is to modify the original scheme so that its decryption algorithm
first checks the validity of a ciphertext to a certain extent. We cannot check the
validity of the ciphertext perfectly because of the above reason, but for the AL10
spatial encryption scheme and the OT10 KP-ABE scheme, this partial validity
check is enough to prove verifiability. (We remark that in the modification, we
also make some parts of master secret key public. The anonymity of OT10 scheme
is lost by this modification.) For the Waters09 BE and AL10 IPE schemes,
the above strategy does not seem to be enough. We then further modify these
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Table 1. Overview of existing PE schemes. In the table. “PubVer” rep-
resents that the scheme has public verifiability. “Veri” represents that the
schemet can be modified to be verifiable.

Schemes Type Verif. Security Assumption

Boneh et al. [8, Sec. 3] BE PubVer selective D-l-BDHE
Boneh et al. [8, Sec. 5] BE PubVer selective D-l-BDHE
Waters [35, Sec. 5] BE Veri full DLIN and DBDH
Boneh et al. [9] Spatial PubVer selective BDDHE
Attrapadung et al.[2, Sec. B] Spatial Veri full 3assumptions
Attrapadung et al.[1] IPE Veri full DLIN and DBDH

schemes so that a user has some additional keys for the same attributes, but
which uses different randomness. Then, in the decryption algorithm, the user
checks whether the decryption of a ciphertext using different keys are the same
or not. If it is different, then it indicates that the ciphertext is invalid. With this
modification, we can prove verifiability of these schemes. For the description of
the schemes and proofs of security and verifiability, see the full version of this
paper.

CCA secure PE schemes. Since our conversion works for PE schemes which
are not captured by the CPA-ABE to CCA-ABE conversion proposed by [37],
we obtain a number of new CCA-secure PE schemes. Especially, our conversion
works for BE, IPE, and spatial encryption scheme. In Tabel. 1, we list some
candidate scheme in this category which we can use as underlying schemes in our
framework. Hence, we can obtain an adaptively secure CCA-secure BE scheme by
applying our conversion to the Waters09 BE scheme [35]. Furthermore, we also
obtain a new selectively and adaptively secure CCA spatial encryption scheme
by applying our conversion to the Boneh-Hamburg [9] and AL10 [2] spatial
encryption schemes, respectively. Finally, we also obtain a new adaptively secure
CCA IPE scheme by applying our conversion to [1]. We also note that it is
easy to modify the Katz-Sahai-Waters [20] scheme to have verifiability. But the
anonymity of the scheme is lost by this modification. Furthermore, it seems
possible to transform the schemes [27] and [21] into verifiable variants. We note
that our conversion also works for the ABE schemes [35, 1, 2, 21, 28], since our
conversion capture the case of ABE as well. We also note that a special case of
our conversion is considered in [18] in a context of BE. But they do not consider
how to apply the conversion to the Waters09 BE scheme.

ADPA schemes. Our CCA-secure VPE scheme to ADPA scheme conversion
works for all the schemes we obtained above. Hence, we can obtain a deniable ring
authentication system with (adaptive) concurrent soundness and constant size
ciphertexts by applying our conversion to the CCA-secure BE obtained above.
As far as we know, this is the first time a scheme with these properties have
been proposed. Furthermore, we can obtain an ADPA for a spatial relation and
with selective and adaptive concurrent soundness by applying our conversion to
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the CCA-secure spatial encryption scheme obtained above. We can also obtain
an ADPA for an inner product relation with (adaptive) concurrent soundness by
applying our conversion to adaptively secure CCA IPE scheme obtained above.
All of these schemes are new types of deniable authentication schemes. We can
also see that if we use a CCA-secure ABE as the underlyingscheme (obtained
by applying the transformation in [37] to [17, 29, 22, 3, 7, 16, 36]), then we obtain
an ADPA for an attribute based relation.
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