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Abstract. Solving systems of m Multivariate Quadratic (MQ) equa-
tions in n variables is one of the main challenges of algebraic cryptanaly-
sis. Although the associatedMQ-problem is proven to be NP-complete,
we know that it is solvable in polynomial time over �elds of even char-
acteristic if either m ≥ n(n − 1)/2 (overdetermined) or n ≥ m(m + 1)
(underdetermined). It is widely believed that m = n has worst case com-
plexity. Actually in the overdetermined case Gröbner Bases algorithms
show a gradual decrease in complexity from m = n to m ≥ n(n − 1)/2
as more and more equations are available. For the underdetermined case
no similar behavior was known. Up to now the best way to deal with the
case m < n < m(m + 1) was to randomly guess variables until m = n.
This article shows how to smartly use additional variables and thus ob-
tain a gradual change of complexity over even characteristics also for the
underdetermined case. Namely, we show how a linear change of variables
can be used to reduce the overall complexity of solving a MQ-system
with m equations and n = ωm variables for some ω ∈ Q>1 to the com-
plexity of solving aMQ-system with only (m− bωc+ 1) equations and
variables, respectively. Our algorithm can be seen as an extension of the
previously known algorithm from Kipnis-Patarin-Goubin (extended ver-
sion of Eurocrypt '99) and improves an algorithm of Courtois et al. which
eliminates blog2ωc variables. For small ω we also adapt our algorithm to
�elds of odd characteristic. We ably our result to break current instances
of the Unbalanced Oil and Vinegar public key signature scheme that uses
n = 3m and hence ω = 3.

Key words: Underdetermined Multivariate Equations, UOV Signature
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1 Introduction

It is well known that algebraic equations can be an Achilles' heel for crypto-
graphic systems. Whether stream ciphers [5, 13], hash functions [19] or block
ciphers [16], they all can be expressed through a system of equations over a �-
nite �eld F with a solution that yields the private key. For asymmetric schemes
the importance is even more obvious. For example variants of McEliece [12] or



Multivariate Quadratic (MQ) schemes such as Hidden Field Equations [11]
were broken using algebraic techniques. So it is fair to say that solving sys-
tems ofMQ equations is one of the main challenges of algebraic cryptanalysis.
However, as the underlyingMQ-problem is proven to be NP-complete [14], we
cannot hope to �nd an e�cient algorithm for all instances. In particular, if the
number of equations m equals the number of unknowns n, all known empirical
algorithms are exponential on random instances of theMQ-problem. Neverthe-
less we know that the problem becomes easy for �elds of characteristic 2 if either
m ≥ n(n−1)/2 or n ≥ m(m+1). In the �rst case, we replace each monomial by
a new variable and solve a linear system in n(n− 1)/2 equations and variables.
The second case is covered by an algorithm of Kipnis-Patarin-Goubin [15, Sec. 7]
and will be further explored in this article.
Until now, research mainly covered the overdetermined case m ≥ n. There are
many algorithms like F4, F5 and XL that bene�t of additional equations [8, 9, 10].
So form = n even guessing one or two variables can help to reduce the complexity
dramatically [2]�and thus make a big di�erence in practice. In contrast none
of the algorithms bene�ts in the same way of the underdetermined case n > m
(cf. Section 1.1). In particular, their complexity is exponentially linked to the
number of variables. Hence, having more variables will dramatically increase
their running time (and also space requirements). As �nding one solution often
su�ces for cryptographic purpose, the best way of �using� more variables today,
is to �x them to random values and thus receive a hard instance with n = m and
one solution on average. This is not very sophisticated and in a sense similar to
throw away additional equations in the overdetermined case and only work with
the remaining ones. This article shows how to us additional variables and hence
closes the complexity gap between n = m and n ≥ m(m + 1). Our main result
apply for �elds of even characteristic. In section 6 we discuss a generalization to
arbitrary characteristics.

1.1 Related Work

The best treatment of the overdetermined case m ≥ n is covered by XL or
Gröbner bases algorithms like F4 or its successor F5. The overall complexity is
well understood [1] and becomes gradually easier if more and more equations are
available. In particular for m ≥ n(n − 1)/2 over F2k and m ≥ n(n + 1)/2 over
Fpk for p an odd prime, the overall problem can be solved in polynomial time
by Linearization. For the underdetermined case not much is known. Basically,
all research so far has centered around two cases: n = m and n ≥ m(m + 1).
The �rst has exponential, the latter polynomial time complexity. In particular,
an algorithm from Kipnis-Patarin-Goubin [15, Sec. 7] can e�ciently solve the
latter case in F2k . Courtois et al. [6] extended this result to arbitrary �elds Fpk
and showed that the problem becomes polynomial as soon as n ≥ 2

m
7 (m + 1).

Furthermore they showed how to eliminate blog2ωc variables and thus receive a
system of m − blog2ωc variables and equations (cf. Prop. 1 in [6]). We extend
this result, using a tight analysis of the technique of Kipnis-Patarin-Goubin, to
receive a system of m− bωc+ 1 variables and equations.



1.2 Achievement and Organization

We close an important gap in understanding the underdetermined case especially
for F2k . In particular we show that there is a gradual change from exponential
running time to polynomial running time if n gets larger than m. This improves
the cryptanalysis of the Unbalanced Oil and Vinegar Signature scheme (UOV)
[17] and therefore forces a change of parameter sets (cf. section 5).
The organization of the paper is as follows. Section 2 gives some notation. Sec-
tion 3 shows how to describe the transformation of variables we are using, shortly
repeats the algorithm of Kipnis-Patarin-Goubin and introduce our new algo-
rithm. Section 4 is the most important, as it gives a theoretical analysis of the
correctness of our algorithm and also the one of Kipnis-Patarin-Goubin. Sec-
tion 5 gives a complexity analysis and shows that parameters of UOV have to be
increased. In section 6 we adapt our algorithm to the general case Fpk for small
ω and motivate future research on this question.

2 Notation

AMQ-system of equations over a �nite �eld Fq with q elements is given by m
equations p(k) = 0 for polynomial functions p(k) : Fnq → Fq for 1 ≤ k ≤ m and

γ
(k)
ij , β

(k)
i , α(k) ∈ Fq according to

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑
1≤i≤n

β
(k)
i xi + α(k) . (1)

If we speak of solving such anMQ-system, we always mean �nding one solution.
For cryptanalytic purposes, this is actually su�cient in most cases. We call p(k)

as de�ned by (1) inhomogeneous. The homogeneous case consists only of terms
in xixj for 1 ≤ i ≤ j ≤ n and is thus de�ned by

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj .

The correspondingMQ-map P : Fnq → Fmq is de�ned by P :=
(
p(1), . . . , p(m)

)ᵀ
.

To ease notation, we restrict to homogeneous systems in the sequel. Note that
our algorithm also works for inhomogeneous systems without introducing a ho-
mogenization variable.

Let π(k) be the coe�cient vector of p(k)(x1, . . . , xn) in lexicographic order, i.e.

π(k) = (γ
(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ

(k)
nn ).

Note that our algorithm also works with other monomial orderings. However, for
the ease of explanation, we have �xed lexicographic ordering throughout this pa-
per. The corresponding coe�cient matrixΠ is de�ned byΠ :=

(
π(1), . . . , π(m)

)ᵀ
.



3 Transformation of Variables

Let P : Fnq → Fmq be an MQ-map with m equations and n = ωm variables
x1, . . . , xn for some ω ∈ Q>1. To make parts of the arguments easier, we will
sometimes change to the notation n = m + v with v = (ω − 1)m. The current
way to �nd a solution of this system is to �x v variables at random [2, 3, 7] and
solve the remaining system of m equations and m variables using aMQ-solver
such as F5 or XL. Kipnis-Patarin-Goubin [15, Sec. 7] were the �rst who took
bene�t of the additional v variables and showed that the system is solvable in
polynomial time for n ≥ m(m+ 1). In a nutshell they applied a linear transfor-
mation S ∈ GLn(Fq) of variables to obtain a newMQ-system F := P ◦ S with
coe�cient matrix Φ. The transformation matrix S is calculated in polynomial
time such that �xing v variables in F provides a linear system in the remaining
m variables for �elds of characteristic 2. We will investigate this approach in
more detail in section 3.2.

To understand how S operates on the coe�cients of P and F , we introduce
the transformation Σ such that ΣΠᵀ = Φᵀ. This transformation was previously
used to determine short key variants of UOV [18].

3.1 How to Determine Σ

We can write every equation p(i) of P as a quadratic form p(i) = xᵀP(i)x for
x = (x1, . . . , xn) and a matrix P(i) ∈ Fn×nq consisting of the coe�cients of p(i).
Note that this matrix is not symmetric if F is of characteristic 2. Applying the
change of variables, i.e. y = S−1x, we obtain a newMQ-system F with f (i) =
yᵀSᵀP(i)Sy for y = (y1, . . . , yn). The coe�cients of this new map are determined

by SᵀP(i)S =: F(i). Or in other words f (k)(y1, . . . , yn) :=
∑

1≤i≤j≤n
γ̃
(k)
ij yiyj and

xi =
n∑
p=1

sipyp. Comparison of coe�cients in the following equation reveals an

explicit formula for Σ.∑
1≤i≤j≤n

γ̃
(k)
ij yiyj =

∑
1≤i≤j≤n

γ
(k)
ij xixj

=
∑

1≤i≤j≤n

γ
(k)
ij (

n∑
p=1

sipyp)(

n∑
p=1

sjpyp)

Let si· ∈ Fnq be the i-th row of S and Dij := sᵀi·sj· the dyadic product of the
i-th and j-th row of S. Now we can express xixj by

xixj = (

n∑
p=1

sipyp)(

n∑
p=1

sjpyp) =
∑

1≤l≤n

Dij
ll y

2
l +

∑
1≤l<p≤n

(Dij
lp +Dij

p l)ylyp.

Let I := ((ai, bi) | 1 ≤ ai ≤ bi ≤ n) be the ordered index set of all quadratic
monomials. We have chosen lexicographic order of the monomials, i.e.

I = ((1, 1), (1, 2), . . . , (1, n), (2, 2), (2, 3), . . . , (n, n)).



For (ai, bi), (aj , bj) ∈ I we obtain Σ := (σij) with

σij :=

{
sajai · sbjbi for ai = bi,

sajai · sbjbi + sajbi · sbjai for ai 6= bi,
(2)

by collecting the appropriate entries of all the dyadic products. The matrix Σ,
obtained by comparing coe�cients, maps the coe�cients of p(k) to the coe�cients

of f (k). Denoting τ := |I| = n(n+1)
2 (for q > 2) and τ := |I| = n(n−1)

2 (for q = 2)
the number of monomials, this leads to

Σ ·


γ
(k)
a1,b1
...

γ
(k)
aτ ,bτ

 =


γ̃
(k)
a1,b1
...

γ̃
(k)
ar,br

 . (3)

3.2 Algorithm of Kipnis-Patarin-Goubin

We brie�y explain the algorithm of Kipnis-Patarin-Goubin for n ≥ m(m + 1),
cf. [15, Sec. 7] for details. In section 3.3 we will generalize this technique to n ≤
m(m+1) and show that we can force enough elements of Φ, i.e. coe�cients of F ,
to be zero, such that we obtain (bωc−1) linear equations. The �rst idea is to split
the variables y1, . . . , yn into two sets V := {ym+1, . . . , yn} andO := {y1, . . . , ym}.
Here V denotes the set of variables we want to �x and O the set of variables
we want to determine. Due to the strong connection to the Oil and Vinegar
Signature Scheme, we call V the vinegar variables and O the oil variables. The
aim of Kipnis-Patarin-Goubin was to �nd S such that most coe�cients of F are
zero and thus the newMQ-system is easily solvable e.g. by Linearization. The
overall idea to �nd such a linear transformation S e�ciently is the following.
First all equations of (3) are quadratic in sij . But if we �x certain elements of
S at random, some of the equations become linear. Solving this linear equations
enable us to �x some coe�cients of F to zero. More precisely Kipnis-Patarin-
Goubin aimed at solving the quadratic equations in sij of (3) we obtain by
setting

γ̃
(k)
i,j = 0 for 1 ≤ i, j, k ≤ m, i 6= j . (4)

To ease notation we label (4) by (i, j, k) or just (i, j) if we want to denote
all equations (i, j, 1) to (i, j,m). As all these equations are quadratic, Kipnis-
Patarin-Goubin �xed the �rst column of S to random values. Note that regarding
to (2) all monomials in equation (i, j) consists of one variable of the i-th and

one variable of the j-th column of S. This means γ̃
(k)
1,1 is �xed to a random value

and equations (1, 2) to (1, n) become linear. (1, 2) gives us m linear equations
in the si2 and after randomly �xing the super�uous variables, we can determine

them such that γ̃
(k)
1,2 = 0 for 1 ≤ k ≤ m. Now that the second column of S is

determined, we obtain additional linear equations (2, 3) to (2, n). Using the 2m
linear equations of (1, 3) and (2, 3), we can determine si3. If the �rst k columns
of S are determined, we solve the km linear equations (1, k + 1) to (k, k + 1) to



determine the (k + 1)-th column of S. The algorithm continues until columns 1
to m of S are determined. At each level, more and more of the equations become
linear. For the last step we have to solve the linear equations (1,m) to (m−1,m)
in the unknowns s1m to snm and thus n ≥ m(m− 1) must hold.
After this transformation we obtain m equations 1 ≤ j ≤ m of the form

m∑
i=1

βi,jy
2
i + y1L1,j(ym+1, . . . , ym+v) + . . .

+ ymLm,j(ym+1, . . . , ym+v) +Qj(ym+1, . . . , ym+v) . (5)

The terms Li,j denote some linear functions in the V variables we want to �x
and Qj denotes some quadratic function in these variables. Now Kipnis-Patarin-
Goubin determined ym+1, . . . , ym+v by Gaussian Elimination such that Li,j = 0
for all 1 ≤ i, j ≤ m. This is possible for v ≥ m2 and thus we obtain the condition
n ≥ m(m+1). For �elds of characteristic 2 the remaining system in (5) is linear
in the O variables and can thus be easily solved. This is due to the Frobenius
Homomorphism x 7→ x2 which e�ectively allows us to treat monomials of the
form y2i as linear variables.
In the next section we provide a tight analysis for n ≤ m(m+ 1) and show that
solving a MQ-system P with m equations and n = ωm variables is roughly
as hard as solving a MQ-system of (m − bωc + 1) equations in (m − bωc + 1)
variables.

3.3 Tight Analysis for n = ωm and Improvement

To obtain linear equations we also �x the �rst column of S at random. This step
is similar to Kipnis-Patarin-Goubin. As we are in the case m < n < m(m + 1)
we cannot ful�ll all equations (4) and have to adjust our strategy accordingly. In
particular, we have to reduce the number of equations during the intermediate
steps, i.e. due to a lack of variables in S we can only solve equations (i, j, k) for
some �xed bound bj and 1 ≤ i < j, 1 ≤ k ≤ bj .

The overall process is depicted in �gure 1. Remember, lines of Φᵀ denote coe�-
cients and columns denote polynomials f (1) to f (m). The dotted areas are of no
interest for us, as all the corresponding monomials in F vanish after �xing the
variables in V . Hence, setting them to a speci�c value is no use. The gray part
are arbitrary values. To make the interesting part of Φᵀ clearer, we reordered
the rows in the right block of �gure 1, what is indicated by the ordered pairs
labeling the rows.
Let Bj := {(i, j, k) | 1 ≤ k ≤ bj , 1 ≤ i < j} be the j-th block of coe�cients for

which we want to gain γ̃
(k)
i,j = 0 in Φ where bj is some bound to be determined

later (cf. section 4) and V(Bj) := (j − 1)bj the volume of such a block or in
other words the number of zero coe�cients. As depicted in �gure 1 we are able
to eliminate all O×O coe�cients with i 6= j in the �rst bm columns of Φ. Solving

the linear system in the γ̃
(k)
i,i y

2
i for i ∈ {1, . . . ,m} allows us to replace a total of



· =
Σ Πᵀ Φᵀ

(1, 1)

(1, 2)
.
.
.

(1, n)

(2, 2)
.
.
.

(m,n)

(m + 1,m + 1)
.
.
.

(n, n)

0

0

0

0

0

0

(i, i) for

1 ≤ i ≤ m

(1, 2)

(1, 3)

(2, 3)

(1, 4)

(2, 4)

(3, 4)
.
.
.

(m − 1,m)

(1,m + 1)

.

.

.

(1, n)
.
.
.

(m,n)

Fig. 1. Overview of coe�cients in Φᵀ we want to �x to zero.

bm variables in the remaining equations (see Section 4.2). This leads e�ectively
to a new system of (m − bm) equations and variables. The crucial point is to
determine the correct value of bm. One might be inclined to choose bj ≤ m
maximal such that V(Bj) is less than the number of variables n in the j-th
column of S in order to produce as much zeros in Φ as possible. However note
that V(Bj) cannot be equal to n as we need one more variable than equations in
each block, as the system is homogeneous. Hence, by having as many variables
as linear equations, we only would obtain the all-zero vector. In section 4 we will
show that the naive approach will not work in general, as if bj is to large the
obtained solution S will not be regular. This question did not come up in the
Kipnis-Patarin-Goubin approach, as they �xed enough variables at random to
trivially assure regularity of S.

Algorithm 1 High-level description of our algorithm.

1: Fix columns m+ 1 to n of S at random.
2: for all i = 1→ m do

3: for all j = 1→ i− 1 do

4: Collect all linear equations (i, j, 1) to (i, j, ω).
5: end for

6: Solve them and include their solution to S.
7: end for

8: Apply linear transformation S.
9: for all i = 1→ ω do

10: Collect all linear equations L1,i to Lm,i.
11: end for

12: Solve them and derive vinegar variables.
13: Substitute ω linear equations in remainingMQ-polynomials.



4 Equivalent Solutions S and their Impact on bj

Up to this point our approach is a straightforward enhancement of Kipnis-
Patarin-Goubin idea. This section covers the main idea of our approach and
gives new insights to the theory of solving underdetermined systems of equa-
tions. Kipnis-Patarin-Goubin claimed that all the linear equations provide at
least one solution in general and that S is regular with high probability. Due to
the large n this is actually true for their approach. But as we want to use as
many sij as possible to �x elements in Φ to zero, it is not clear at all, how many

equations γ̃
(k)
i,j = 0 we are able to solve in order to obtain a regular solution S.

We use the theory of equivalent keys [20, 21] for the Unbalanced Oil and Vine-
gar Scheme as a toolkit to show that for every solution S there is an equivalent
solution S′ with a special structure. The number of variables in S′ will upper

bound the number of equations γ̃
(k)
i,j = 0 that yield a regular solution.

4.1 Equivalent Solutions

First let us determine bm and thus the number of zeros in Φ for n ≥ m(m+ 1),
i.e. for the original algorithm of Kipnis-Patarin-Goubin.

0

(i, i) for i ∈ {1, . . . ,m}

(i, j) for i 6= j, i, j ∈ {1, . . . ,m}

(i, j) for i ∈ {1, . . . ,m}

and j ∈ {m + 1, . . . , n}

Fig. 2. Upper part of Φᵀ for n ≥ m(m+ 1).

Denote S the subset of equations of ΣΠᵀ = Φᵀ labeled by (i, j) for i, j ∈
{1, . . . ,m} and i 6= j, i.e. the zero part in �gure 2. Let S be a solution to
S. We call S′ an equivalent solution, if it preserves the structure of Φ, i.e. if S′

also ful�lls all equations of S. Every element of the equivalence class of such
solutions solves our problem. To determine an upper bound on bj we search for

a small (linear) family of matrices S̃ such that every equivalence class has a
representative in this family. We call this a minimal representative. Or loosely
speaking these are solutions with large �xed parts for arbitrary Π or a matrix
S̃ with minimal number of variables.
Obviously all equations in S remain zero if we map every variable {y1, . . . , ym}
to itself or some permutation and any variable within {ym+1, . . . , yn} to sums



of these variables. The only two things we are not allowed to do is mapping
variables of V to variables of O as this would lead to quadratic terms in the O
variables and mapping O variables to a sum of O variables, as this would also

lead to quadratic terms in the O variables due to γ̃
(k)
i,i 6= 0 for i ∈ {1, . . . ,m}. So

if S is a solution to S then SΩ−1 with

Ω :=

(
Ω

(1)
(m×m) Ω

(2)
(m×v)

0 Ω
(3)
(v×v)

)

for Ω
(1)
(m×m) some regular diagonal matrix and Ω

(3)
(v×v) some regular matrix is also

a solution as x = SΩ−1Ωy holds and Ωy preserves γ̃
(k)
i,j = 0 for i 6= j, 1 ≤ i, j ≤

m. Note that Ω−1 has the same form as Ω, i.e.

Ω−1 =

Ω(1)−1

(m×m) Ω̃
(2)
(m×v)

0 Ω
(3)−1

(v×v)

 with Ω̃(2) := −Ω(1)−1

Ω(2)Ω(3)−1

.

Thus we are able to choose Ω−1 such that

SΩ−1 =

(
S
(1)
(m×m) S

(2)
(m×v)

S
(3)
(v×m) S

(4)
(m×m)

)
Ω−1 =

(
S̃
(1)
(m×m) 0

S̃
(3)
(v×m) I

)
(6)

under the condition that S(1)Ω̃(2)+S(2)Ω(3)−1

= I and S(3)Ω̃(2)+S(4)Ω(3)−1

= 0.
Note that this is always the case because S is regular and thus S(1)||S(2) has full

rank. As Ω(1)−1

is just a diagonal matrix, we are only able to �x the �rst row in
S̃(1) and thus the remaining number of free variables per column is di = n − 1
for 1 ≤ i ≤ m and di = 0 for m+ 1 ≤ i ≤ n.

Corollary 1. For n ≥ m(m+ 1) the Kipnis-Patarin-Goubin approach is upper
bounded by V(Bi) = n− 1 for 1 ≤ i ≤ m and V(Bi) = 0 for m+1 ≤ i ≤ n. This
leads to bi ≤ (n− 2)/(i− 1) for 1 ≤ i ≤ m and bi = 0 for m+ 1 ≤ i ≤ n.

As V(B1) ≤ . . . ≤ V(Bm) = m(m − 1) < m(m + 1) − 1 ≤ n − 1 hold, Kipnis-
Patarin-Goubin were right in assuming that their system of linear equations is
solvable. But as V(Bi) = 0 for m + 1 ≤ i ≤ n they indeed have to use (5) to
eliminate the O × V coe�cients.

Let us now come back to our case of �gure 1. Our approach eliminates as many

O × O coe�cients γ̃
(k)
i,j with i 6= j as possible using a linear transformation S

of variables. After applying (5) we obtain equations that are linear in �elds of
characteristic two and thus can be used to substitute variables in the remaining
equations. This introduces new O × O coe�cients in the remaining equations
and thus we skip eliminating them beforehand (see �gure 3).
In order to preserve the structure of Φ, the only transformation of variables Ω
applicable is mapping O variables to itself or some permutation and V variables



0

0

0

0

0

0

(i, i) for i ∈ {1, . . . ,m}

(1, 2)

(1, 3)

(2, 3)

(1, 4)

(2, 4)

(3, 4)
.
.
.

(m − 1,m)

(1,m + 1)

.

.

.

(1, n)
.
.
.

(m,n)

Fig. 3. Upper part of Φᵀ �xing only signi�cant coe�cients.

to sums of V variables. In contrast to corollary 1 we are not allowed to map O
variables to V variables as this would introduce new O × V monomials due to
γ̃
(k)
i,i 6= 0. Thus Ω−1 is of form

Ω−1 =

Ω(1)−1

(m×m) 0

0 Ω
(3)−1

(v×v)

 ,

with Ω
(1)−1

(m×m) a diagonal matrix. This leads to a minimal representative of every

equivalence class of the form

SΩ−1 =

(
S̃
(1)
(m×m) S̃

(2)
(m×v)

S̃
(3)
(v×m) I

)
, (7)

where the �rst row of S̃
(1)
(m×m) is �xed.

Corollary 2. For n = ωm our approach pictured in �gure 3 is upper bounded
by V(Bi) = n − 1 for 1 ≤ i ≤ m and V(Bi) = m for m + 1 ≤ i ≤ n. This leads
to bi = (n− 1)/(i− 1) for 1 ≤ i ≤ m and bi = 1 for m+ 1 ≤ i ≤ n.

Claim. We claim that corollary 1 as well as corollary 2 also yields a lower bound
and thus are sharp. The crucial question is, if the SΩ−1 given by (6) or (7)
is minimal for all columns i with V(Bi) = di, i.e. we cannot �nd a represen-

tative S̃ with less free variables in those columns we are actually using all the
free variables. This is the case, if these columns are uniquely de�ned for some
generic Π. For �xed columns 1 to (i − 1) this is obviously the case. Although
intuitively clear, a rigorous mathematical proof seems to require stronger tools.
Nevertheless, experiments prove that there are no systematic dependencies and
thus corollary 1 as well as corollary 2 are tight (cf. appendix 5).



The volume of the zero blocks Bm+1, . . . , Bn in �gure 3 is

mbm = m
n− 1

m− 1
> n− 1 > m

i.e. larger than the number of independent variables for m+1 ≤ i ≤ n. Thus the
solution S would be singular. In order to eliminate the O×V coe�cients, we also
have to calculate ym+1, . . . , ym+v by Gaussian Elimination such that Li,j = 0 for
all 1 ≤ i, j ≤ m (see equation 5). Corollary 2 leads to bm = (n−1)/(m−1) > bωc
for ω ≥ 2, i.e. we are able to reduce theMQ-system to (m−bωc) equations and
variables in this case.
But in order for the bmm equations Li,j = 0 in (ω−1)m variables to be solvable,
we have to choose bm = bωc − 1 and thus we are only able to reduce theMQ-
system to (m − bωc + 1) equations and variables, respectively. For bωc |m our
algorithm in the next section will merge both strategies, i.e. �rst eliminating
some O × V coe�cients and then use equation (5). This allows us to reduce to
anMQ-system with (m− bωc) equations and variables.

4.2 Our Algorithm in the most General Form

For a very tight analysis, which give a further improvement if bωc |m, we �rst

use algorithm 1 to eliminate the O × O coe�cients γ̃
(k)
i,j with i 6= j in the �rst

bωc equations. Corollary 2 ensures that this is possible. Next we eliminate the

O × V coe�cients γ̃
(k)
i,j for m + 1 ≤ j ≤ n, 1 ≤ k ≤ bωc and 1 ≤ i ≤ (m/ bωc).

See �gure 4 for illustration. This is possible as the number of coe�cients γ̃
(k)
i,j

0

0

(1,m + 1)

· · ·
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Fig. 4. Upper part of Φᵀ for tight analysis.

for 1 ≤ i ≤ (m/ bωc) equals the number of independent variables in the j-th
column of S due to m = dj (cf. corollary 2). To eliminate the linear terms Li,j
(cf. equation (5)) we have to solve ω (m− (m/ω)) = (ω − 1)m equations, which
equals the number of variables and thus yields a solution. We obtain ω equations



of the form (8). Using the Frobenius Homomorphism several times x 7→ x2
p−1

over F2p leads to equation (8).

m∑
i=1

βi,jy
2
i + cj = 0 for j ∈ {1, . . . , ω}

⇔
m∑
i=1

β2p−1

i,j yi + c2
p−1

j = 0 (8)

After using equation (8) to eliminate bωc variables in the remaining (m − bωc)
equations we obtain a MQ-system of (m − bωc) variables and equations. Note
that if m

bωc /∈ N this very tight analysis fails and we are only able to eliminate

(bωc − 1) instead of bωc variables.

5 Complexity Analysis

The complexity of our approach is on the one hand the complexity of the pre-
processing step, i.e. applying the transformation of variables and on the other
hand the complexity of solving the obtainedMQ-system by some algorithm like
F5. In the case of m

bωc /∈ N we would have to solve (m − 1) systems of linear

equations of di�erent dimensions to eliminate the O × O coe�cients. Deleting
the O× V coe�cients requires solving another linear system of size (bωc − 1)m.
The overall complexity is

O

(
m∑
i=1

((bωc − 1) i)
3

)
= O

(
m(bωcm)3

)
.

In the tight case of m
bωc ∈ N we have to solve (m− 1) systems of linear equations

of di�erent dimension to eliminate the O×O coe�cients and another (bωc−1)m
systems of dimension m to delete some of the O × V coe�cients. Deleting the
remaining coe�cients using (5) requires solving another linear system of size
(bωc − 1)m. The overall complexity is

O

(
m(bωc − 1)m3 + ((bωc − 1)m)

3
+

m−1∑
i=1

(bωc i)3
)

= O
(
m(bωcm)3

)
.

To determine the complexity of solving a MQ-system using F5 we refer to [1].
In a nutshell, we �rst have to calculate the degree of regularity. For semi-regular
sequences, which generic systems are assumed to be, the degree of regularity is
the index of the �rst non-positive coe�cient in the Hilbert series Sm,n with

Sm,n =

∏m
i=1(1− zdi)
(1− z)n

,

where di is the degree of the i-th equation. Then the complexity of solving a
zero-dimensional (semi-regular) system using F5 [2, Prop. 2.2] is

O
((

m

(
n+ dreg − 1

dreg

))α)
,



with 2 ≤ α ≤ 3 the linear algebra constant. We use α = 2 as the equations are
sparse and to be comparable to the results of [2], who gave the currently best
attack against UOV.

Table 1. Attack complexity against UOV, comparing the improved attack with the
previously known best attack using the hybrid approach of [2], i.e. guessing g variables
beforehand. The previously secure value for m = 26 is marked in bold. Rows where m
is divisible by ω = 3 are marked with �←�.

direct attack [2] our approach improvement

m g dreg log2 complexity log2 Gauss g dreg log2 complexity overall log2
24 1 13 78.0 19.8 1 11 68.2 68.2 9.8 ←
25 1 13 79.5 18.1 1 12 73.6 73.6 5.9
26 1 14 83.7 18.3 1 13 78.1 78.1 5.6
27 1 14 85.7 20.4 1 13 78.1 78.1 7.6 ←
28 1 15 89.4 18.7 1 14 83.7 83.7 5.7
29 1 15 90.6 18.9 1 14 85.1 85.1 5.5
30 1 16 95.0 21.0 1 14 85.1 85.1 9.9 ←

Table 1 give some examples of the complexity of our algorithm applied to attack
UOV. The underlying �eld is F28 and nowadays parameters are n = 78 variables
and m = 26 equations, i.e. ω = 3 [2]. We use the HybridF5 algorithm and thus
g denote the optimal number of variables to guess. Referring to table 1, we see
that today's parameter of UOV are insecure (row with bold values). Based on
our analysis, we suggest UOV with m = 28 for n = 3m.

Table 2. Experimental complexities of our approach (TW) in seconds [s].

F26 F28

ω m n standard TW standard TW

1 3 6 0 0 0 0
1 4 8 0.01 0 0 0
1 5 10 0.03 0.02 0.03 0.02
1 6 12 0.25 0.06 0.25 0.06
1 7 14 2.94 0.33 3.10 0.34
1 8 16 33 3.51 36 3.60
1 9 18 460 43 479 45

2 3 9 0 0 0 0
2 4 12 0.01 0 0 0.03
2 5 15 0.05 0.07 0.05 0.08
2 6 18 0.35 0.29 0.36 0.28
2 7 21 3.40 0.80 3.45 0.80
2 8 24 38 2.19 41 2.25
2 9 27 520 8.34 546 8.10



We have implemented our algorithm using the software system Magma V2.16-1
[4] and found it to be in line with the theoretical predictions. All experiments
were performed on a Intel Xeon X33502.66GHz (Quadcore) with 8 GB of RAM
using only one core. Table 2 compares the time complexities of the standard
approach of guessing v variables and solve the remaining MQ-system in m
variables and our algorithm for various parameter sets. The source code of our
implementation can be found on the homepage of the �rst author.

6 Odd Cases

In this section we outline some ideas to extend our results to �elds of odd charac-
teristic. Hence we are now working over Fpk for some prime p 6= 2 and k ∈ N>0.
Unfortunately there is no straightforward extension of our ideas. The main prob-
lem is that equations (8) are not longer linear and thus we are not able to elimi-
nate variables in the remaining equations. Nevertheless, Gröbner algorithms are
empirically faster on systems containing equations (8), but it is hard to quantify
the gain from a theoretical perspective. An argument that this task is inherently
di�cult is also the odd-characteristic algorithm of Courtois et al. [6]. It extended
the algorithm for even characteristics by Kipnis-Patarin-Goubin [15] to the odd
case. However, it requires now n ≥ 2

m
7 (m+ 1)�which is infeasible in practice.

However, for small values of ω, we can actually adapt our algorithm from even
to odd characteristics. This coincides with the cryptanalytically interesting case
of UOV, where we have ω ≈ 3 for e�ciency reasons. Our main concern is to
obtain some equations yi = g(yω+1, . . . , ym) for 1 ≤ i ≤ ω and some polynomial
function g of low degree from the ω equations given by (8). They will be used to
eliminate the variables y1, . . . , yω. Therefore, we need to determine coe�cients
(βω+1,i, . . . , βm,i) such that they are linearly dependent on (βω+1,1, . . . , βm,1)
for every i ∈ {2, . . . , ω}. This way we could eliminate these parts in equations
2 to ω by Gaussian Elimination. Producing an upper triangular form on these
equations leads to y2i = ci for 2 ≤ i ≤ ω, which is e�ciently solvable for �nite
�elds of size pk. Still, the question remains how to determine the coe�cients

βij . Fixing γ̃
(j)
i,i = βij to some value for 2 ≤ j ≤ ω leads to a quadratic system

of (ω − 1) equations and variables sij (cf. �gure 1)�so we seem to be back on
square one. However, if ω is su�ciently small, i.e. smaller than 20, we can use
anyMQ-solver, such as Gröbner algorithms for this task.

7 Conclusions and Open Questions

In this article we showed a more �gradual� change between exponential run-
ning time in the determined case (n = m) and the polynomial running time in
massively underdetermined case (n ≥ m(m + 1)). Previously, this change was
abrupt (Kipnis-Goubin-Patarin), i.e. there was a polynomial time algorithm in
one case, and a fully exponential algorithm in the other. The situation is depicted
in �gure 5.
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Fig. 5. Achievement of this paper (solid), compared with Kipnis-Goubin-Patarin (thin)
for �xed m.

Our algorithm can be used as a general preprocessing step for further appli-
cations. Applied to UOV we would have to raise parameters from m = 26 to
m = 28 in order to make the scheme secure.
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