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Abstract. Ambiguous Optimistic Fair Exchange (AOFE), introduced
by Huang et al. in ASIACRYPT 2008, is an extension of OFE that en-
hances the fairness of the two communicating parties in the exchange of
signatures. The first scheme was proven secure without random oracles
while its partial signature contains dozens of group elements. Recently,
interactive AOFE was introduced and the construction is more practi-
cal, where one partial signature only contains three group elements. It is
based on the existence of Designated Confirmer Signature (DCS) with a
special property where one is able to sample a confirmer signature effi-
ciently from a signer’s signature space. Nevertheless, we note that there
are only a few DCS schemes that have this special property. Security of
the interactive AOFE construction relies on the q-Computational and
Decisional Hidden Strong Diffie-Hellman assumptions. In this paper, we
propose a new construction of interactive AOFE from DCS, where the
underlying DCS is standard and does not require any special property.
We also propose a new DCS construction. By applying our transfor-
mation from DCS to interactive AOFE, we build a concrete interactive
AOFE which is secure under more standard number-theoretic assump-
tions, namely Strong Diffie-Hellman and Decision Linear assumptions,
without random oracles. A partial signature of the interactive AOFE
contains six group elements, while a full signature contains two only.
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1 Introduction

How to exchange items between parties so that either both the parties get their
counterpart’s item or none of them does, is an important problem in e-commerce.
Optimistic Fair Exchange (OFE), introduced by Asokan, Schunter and Waidner
[1], is a kind of protocols for exchanging items between two parties say, Alice
and Bob, in a fair manner. There is an arbitrator, which is semi-trusted by Alice
and Bob and gets involved only when a party attempts to cheat the other or
simply crashes. Asokan, Shoup and Waidner later proposed an OFE protocol for
exchanging digital signatures [2]. In a typical run of OFE, Alice sends a partial
signature to Bob, who in turn sends back his full signature, which triggers Alice
to complete the protocol by releasing her full signature to Bob. If everything
goes well, Alice and Bob should get each other’s full signatures. However, if Alice
refuses or fails to respond in the third move, Bob then resorts to the arbitrator
for resolving Alice’s partial signature into a full one. Since the introduction, OFE
has attracted the attention of many researchers, i.e. [3, 13,14,23,30].

In OFE, Alice’s partial signature is generally self-authenticating and indicates
her commitment to some message already. This may allow Bob to convince others
that Alice has already committed herself to the message; while Alice obtains
nothing. This could be unfair to Alice. Huang et al. [22] addressed this problem
and proposed the notion of ambiguous optimistic fair exchange (AOFE), which
is similar to the notion of abuse-free optimistic contract signing introduced by
Garay et al. [15]. Different from the traditional OFE, AOFE enjoys the property
of signer ambiguity. That is, Bob is able to produce partial signatures which are
indistinguishable to those produced by Alice. Because of this property, given a
valid partial signature from Alice, Bob cannot transfer its conviction to others
any more.

1.1 Our Contributions

In this paper, we propose a new efficient and yet generic construction of AOFE
from a primitive called designated confirmer signature (DCS) [10]. Compared
with previous work on the construction of AOFE from DCS, e.g. [20, 21], our
construction makes use of standard security properties of the underlying prim-
itive, rather than any special property, e.g. samplability [20, 21]. Our AOFE
protocol is interactive in the sense that the partial signature generation needs
an interaction between the signer and the verifier. Below we give an intuition.

To partially sign a message, the signer produces a confirmer signature on it
and then carries out a zero-knowledge proof with the verifier to show that the
confirmer signature belongs to either the signer or the verifier. Thanks to the
anonymity of the DCS scheme and the zero-knowledge property of the proof,
a third party (except the arbitrator) cannot tell who is the real signer of the
signature. We show that the resulting interactive AOFE protocol is secure in
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the registered-key model4 [4] without random oracles if the underlying DCS
scheme is secure and the proof is sound and zero-knowledge.

To instantiate our construction of AOFE, we present a concrete and efficient
DCS scheme, which is secure based on Strong Diffie-Hellman assumption [6]
and Decision Linear assumption [7] without random oracles. It has short signa-
tures and keys, and the confirmation/disavowal protocol is practically efficient.
Compared with [20, 21], our scheme has much shorter signer public key and its
security relies on relatively more standard assumptions. Compared with [33],
the signature of our scheme is shorter, and the confirmation/disavowal proto-
col is more efficient. In Table 1 we give a comparison of our scheme with some
existing DCS schemes in terms of sizes of confirmer public key cpk, confirmer
secret key csk, signer public key spk, signer secret key ssk, confirmer signature
σ and standard signature ζ, the underlying assumptions and the need of random
oracles for security.

[8] [31] [33] [20,21] Ours

cpk 5Zp 1G 2|N | + 1|n| + 4|Zn2 | 1G 4G
csk 5Zq 1Zp 3(κ + κr) 1Zp 2Zp

spk 1ZN + k 1G |N0| + |N1| + 1SQN0 + 1SQN1 163G 2G
ssk 1ZN 1Zp 2κ 1Zp 2Zp

σ 4Zp ≈ 4K 2G + 4Zp ≈ 0.95K 9Zn2 + 1ZN0
+ 1ZN1

≈ 22K 3G ≈ 0.47K 5G + 1Zp ≈ 0.96K
ζ 1ZN ≈ 1K 2G + 6Zp ≈ 1.2K 3SQn2 + 1Z∗

N0
+ 1Z∗

N1
≈ 10K 3G ≈ 0.47K 1G + 1Zp ≈ 0.32K

Asmp RSA+DDH DDH+EUF-CMA SRSA+DCRA+DDH HSDH+DHSDH SDH+DLIN
ROM no yes no no no

Legends:

DLIN : Decision Linear Assumption
DDH : Decision Diffie-Hellman
SRSA : Strong RSA Assumption
DCRA : Decision Composite Residuosity Assumption
HSDH : Hidden Strong Diffie-Hellman Assumption
DHSDH : Decision Hidden Strong Diffie-Hellman Assumption
EUF-CMA : Existential unforgeability (under chosen message attacks) of the

underlying signature scheme

Security Parameters:
κ = |n| = |N | = 1024, |N0| = |N1| = 2048, κr = 50, |G| ≈ 163, |Zp| ≈ 163 (for [8], we
choose |Zp| ≈ 1024).

Table 1. Comparison with some existing DCS schemes

1.2 Paper Organization

In the next section we review the related works on designated confirmer signature
and optimistic fair exchange. The definition and security models of ambiguous
optimistic fair exchange are given in Section 3. Our construction of interactive
AOFE is then proposed in Section 4, followed by a section which gives the
security analysis. In Section 6 we propose an efficient construction of designated

4 In this model the adversary has to prove its knowledge of the secret key before using
a public key.
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confirmer signature, the security of which does not rely on the random oracle
model. In Section 7 we compare our AOFE scheme with some existing schemes.
The paper is concluded in Section 8.

2 Related Work

Designated Confirmer Signature. The notion of designated confirmer sig-
nature was proposed by Chaum [10] to alleviate the burden of the signer in
undeniable signature [9]. In DCS, the signer designates a confirmer to confirm
or disavow signatures for him, and the verifier cannot verify signatures alone. If
a DCS scheme is convertible, the confirmer has the ability to extract the signer’s
standard signature from a valid confirmer signature. There have been a lot works
on DCS since its introduction, e.g. [8,11,16,17,20,21,27,28,31–34]. Readers can
refer to [20,21] for a brief review of the previous works.

The de facto security properties of a DCS scheme include unforgeability and
anonymity. The former requires that no one but the signer is able to produce
valid signatures; while the latter says that given a confirmer signature, no verifier
is able to distinguish the identity of the signer. A popular approach in the design
of DCS is known as the ‘sign-then-encrypt ’ paradigm. Intuitively, the confirmer
holds a key pair (PkE , SkE) for an encryption scheme E and the signer holds a
key pair (PkS , SkS) for a signature scheme Σ. To sign a message M w.r.t. the
confirmer, the signer computes a standard signature ζ on M using SkE , and
encrypts ζ under the confirmer’s public key PkS to obtain the ciphertext C.
Its confirmer signature is set to be C. To convert a confirmer signature C, the
confirmer decrypts it to ζ using SkE , and outputs ζ if it is valid under PkS . In
the confirmation (resp. disavowal) protocol, the confirmer proves to the verifier
(interactively) that the confirmer signature C can (resp. cannot) be decrypted
to a valid signature of the signer on message M . The unforgeability of the DCS
scheme simply follows that of Σ. On the other hand, the (chosen ciphertext)
security of E guarantees that given a ciphertext C, anyone who does not known
SkE , including the signer, is not able to tell C contains which signer’s signature.
Thus we have the anonymity.

Many DCS schemes follow this paradigm, e.g. [8,16,17]. The difficulty of im-
plementing the paradigm is in the design of confirmation and disavowal protocols
so that the scheme is efficient enough for practical use. It is known that the proto-
cols can be constructed in general, using complex NP reduction. However, the ef-
ficiency is a big issue. As far as we know, there are only a few DCS schemes which
have efficient confirmation and disavowal protocols, e.g. [16,20,21,31,33,34].

Wikström [33] revisited the aforementioned paradigm of constructing DCS,
and proposed a similar generic construction, which makes use of a weak vari-
ant of CCA-secure cryptosystem, a signature scheme, and a weak form of zero-
knowledge proofs. A concrete instantiation was also presented in [33], which is
built from Cramer-Shoup version of Paillier encryption [29] and a twin-moduli
signature. The confirmation and disavowal protocols, although do not involve
any NP-reduction, are not efficient enough. The prover and the verifier have to
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carry out a bunch of proofs of knowledge, and both of them need perform more
than 150 exponentiation evaluations.

Huang et al. [20, 21] proposed a new variant of DCS, in which both the
signer and the confirmer are able to not only confirm but also disavow signatures
efficiently. They also presented a concrete construction, the security of which is
based on new number-theoretic assumptions (e.g. Hidden Strong Diffie-Hellman
assumption and Decision Hidden Strong Diffie-Hellman assumption) without
random oracles. The new variant is useful in applications in which the signer
prefers to retain the ability to disavow signatures, whereas there are still some
cases in which the signer only wants to keep the ability of confirmation.

Ambiguous Optimistic Fair Exchange. Garay et al. [15] for the first time
addressed the problem with the non-repudiation of a partial signature, and pro-
posed an efficient abuse-free contract signing protocol, in which no one but the
arbitrator can distinguish who produced which signature. The protocol makes
use of a type of signatures called ‘private contract signatures’, which is similar
to but different from DCS. Their private contract signature scheme is built from
designated-verifier signature [24], and is secure based on DDH assumption in the
random oracle model [5] and the registered-key model [4], in which the adversary
has to show its knowledge of the secret key before using a public key.

Huang et al. [22] proposed an efficient construction of AOFE based on the
group signature scheme in [18]. Their scheme uses (the weakly secure) Boneh-
Boyen signature [6] and Groth-Sahai non-interactive proof techniques [19]. The
scheme is secure based on Strong Diffie-Hellman assumption [6] and Decision
Linear assumption [7] in the chosen-key model [23,26] without random oracles, in
which the adversary is allowed to use public keys arbitrarily. However, the scheme
suffers from long signatures, which consist of more than 40 group elements.

Very recently, Huang et al. [20,21] proposed a new approach to constructing
interactive AOFE, in which the signer interacts with the verifier to produce the
partial signature. Their construction applies to a specific class of DCS schemes,
in which anyone is able to sample confirmer signatures from the signer’s signature
space efficiently, e.g. in polynomial time. However, not many DCS schemes enjoy
this property, and thus limiting the application of Huang et al.’s construction.
They also instantiated the construction using the DCS scheme proposed in the
same paper. The resulting interactive protocol is secure without random oracles
in the registered-key model.

3 Ambiguous Optimistic Fair Exchange

3.1 Definition

Essentially, AOFE is a variant of the traditional OFE, in which both of the
exchanging parties can produce indistinguishable signatures on the same mes-
sage. An AOFE scheme consists of the following probabilistic polynomial time
algorithms/protocols:
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PMGen. It takes 1k as input where k is the security parameter and outputs
the system parameter PM.

SetupTTP. It takes as input the system parameter PM and outputs a key pair
for the arbitrator. We denote it by (Apk, Ask)← SetupTTP(1k).

SetupUser. It takes the system parameter PM (and optionally Apk) as input and
outputs a key pair for the user. We denote it by (Pk, Sk)← SetupUser(1k, Apk).

PSig. This is the partial signature generation algorithm. It takes as input a mes-
sage M , the signer’s secret key Ski, the signer’s public key Pki, the verifier’s
public key Pkj and the arbitrator’s public key Apk, and outputs a partial
signature σ. We denote it by σ ← PSig(M, Ski, Pki, Pkj , Apk).

PVer. This is for the verification of a partial signature. It can be either an
algorithm or a protocol, depending on whether the verification requires the
interaction between the signer and the verifier or not. The (common) input
consists of (M,σ, Pki, Pkj , Apk). If the verification is interactive, the signer
has private input Ski. We denote it by b← PVer(M,σ, Pki, Pkj , Apk), where
b is the output of the verifier, which is 1 for acceptance and 0 for rejection.

Sig. This is the full signature generation algorithm. It takes as input (M, Ski, Pki,
Pkj , Apk) and outputs a full signature ζ. We denote it by ζ ← Sig(M, Ski, Pki,
Pkj , Apk).

Ver. This is for the verification of a full signature. It takes as input (M, ζ, Pki, Pkj ,
Apk) and outputs a bit b which is 1 if ζ is a valid full signature of Pki and 0
otherwise. We denote it by b← Ver(M, ζ, Pki, Pkj , Apk).

Res. This is for resolving a partial signature. It takes as input (M, Ask, σ, Pki, Pkj)
and outputs ζ if ζ is a valid full signature of Pki, and ⊥ otherwise.

The AOFE introduced in [22] is non-interactive in the sense that all the
signature generation and verification algorithms are non-interactive. However,
in this work we consider interactive AOFE (iAOFE in short), in which the
partial signature verification is an interactive protocol between the signer and the
verifier. For simplicity we treat PVer as a protocol universally for both interactive
and non-interactive AOFE. If the scheme is non-interactive, then in the PVer
protocol (which should be an algorithm) the signer does nothing and the verifier
makes the decision alone.

3.2 Security Models

The security of AOFE was originally defined in the chosen-key model [22], in
which the adversary is allowed to use any public key arbitrarily without showing
its knowledge of the corresponding secret key. While in this work we consider
AOFE in the registered-key model [4], which is weaker than the chosen-key model
yet still practical.

Registered-Key Model. In this model the adversary has to prove its knowl-
edge of the corresponding secret key before using a public key. Although this
model puts limits to the adversary on using public keys, it is still a practical
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model, and has been considered in many works, such as [13, 25]. Usually, an
adversary in this model conducts a proof of knowledge of the secret key to the
game challenger or simply submits the key pair or even the randomness used in
key generation. In the rest of the paper we assume that the adversary has access
to a key registration oracle OKR, which takes as input a key pair (Pk, Sk), and
returns Pk if the pair is a valid output of the key generation algorithm and ⊥
otherwise.

Let Q(O) be the set of queries that the adversary submits to oracle O, where
O could be any of the oracles below.

– OKR is the key registration oracle.

– OPSig takes as input (M, Pki) and returns a partial signature σ of the signer
with public key PkA, which is valid on M under PkA, Pki. The oracle then
starts an execution of PVer with the adversary to show the validity of σ.

– OFakePSig takes as input (M, Pki) and returns a partial signature σ generated
using SkB and valid under Pki, PkB . The oracle then starts an execution of
the PVer protocol with the adversary to show the validity of σ.

– ORes takes as input (M,σ, Pki, Pkj) and outputs ζ if it is a valid (standard)
signature on M under Pki, and ⊥ otherwise.

If the public key submitted to any of OPSig, OFakePSig and ORes was not ever
submitted to OKR, these oracles would simply return nothing to the adversary.

Signer Ambiguity. The signer ambiguity says that after obtaining the valid
partial signature from the signer S, the verifier V cannot transfer the conviction
to any third party. We require that V is able to produce signatures indistinguish-
able from those by S. Formally, we consider the game Gsa depicted in Figure 1
(page 9), where Υ is D’s state information. Note that after sending σ∗ to D
in the game, the challenger also starts an execution of the PVer protocol with
D to show the validity of σ∗ under PkA, PkB . The advantage of D, denoted by
AdvsaD (k), is defined to be the gap between its success probability in the game
and one half, i.e. AdvsaD (k) = |Pr[D Succ]− 1/2|.

Definition 1 (Signer Ambiguity). An AOFE scheme is signer ambiguous if
there is no PPT distinguisher D such that AdvsaD (k) is non-negligible in k.

Security Against Signers. It requires that (malicious) signer A cannot pro-
duce a partial signature, which looks good to V but cannot be resolved to a full
signature by the honest arbitrator, ensuring the fairness for verifiers. V should
always be able to obtain the full commitment of the signer if the signer has com-
mitted to a message. Formally, we consider the game Gsas depicted in Figure 1.
The advantage of A in the game, denoted by AdvsasA (k), is defined as its success
probability.

Definition 2 (Security Against Signers). An AOFE scheme is secure against
signers if there is no PPT adversary A such that AdvsasA (k) is non-negligible in
k.
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Security Against Verifiers. It requires that any efficient verifier B should
not be able to convert a partial signature into a full one with non-negligible
probability if it obtains no help from the signer or the arbitrator. This ensures
the fairness for the arbitrator and the signer. Formally, we consider the game
Gsav depicted in Figure 1. The advantage of B = (B1,B2) in the game, denoted
by AdvsavB (k), is defined as its success probability.

Definition 3 (Security Against Verifiers). An AOFE scheme is secure against
verifiers if there is no probabilistic polynomial-time adversary B such that AdvsavB (k)
is non-negligible in k.

Security Against the Arbitrator. This is for ensuring the unforgeability of
the signer’s signatures. It says that no efficient adversary C, even the arbitrator,
is able to generate with non-negligible probability a valid full signature without
explicitly asking the signer for generating one. Formally, we consider the game
Gsaa depicted in Figure 1. The advantage of C in this game, denoted by AdvsaaC (k),
is defined as its success probability.

Definition 4 (Security Against the Arbitrator). An AOFE scheme is se-
cure against the arbitrator if there is no PPT adversary C such that AdvsaaC (k)
is non-negligible in k.

Remark 1. Our definitions of signer ambiguity and security against verifiers are
slightly weaker than those considered in [20–22]. In our definition of signer ambi-
guity, the two challenge public keys (PkA, PkB) (along with their corresponding
secret keys) are given to the adversary, rather than the adversary chooses one
of them as [20, 21] does. Similarly, in our definition of security against verifiers,
the two public keys are also chosen by the challenger and given to the adver-
sary. Nevertheless, it is this slight weakening in the security which enables us to
construct AOFE protocols from DCS schemes with standard security properties
instead of any special property like samplability [20,21], in a general way, as we
shall see in Section 4.

Similar to [22], it is straightforward to establish the relation between security
against verifiers and signer ambiguity. We have the following lemma and there-
fore, we need not consider security against verifiers in proving the security of an
AOFE scheme.

Lemma 1. If an AOFE scheme is both signer ambiguous (Definition 1) and se-
cure against the arbitrator (Definition 4), it is secure against verifiers (Definition
3) as well.

Definition 5 (Secure AOFE). An AOFE scheme is said to be secure in the
multi-user setting and registered-key model (or simply, secure), if it satisfies
signer ambiguity (Definition 1), security against signers (Definition 2), and se-
curity against the arbitrator (Definition 4).
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Game Gsa :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM),

(PkA, SkA)← SetupUser(PM, Apk), (PkB , SkB)← SetupUser(PM, Apk),

(M∗, Υ )← DOKR,ORes(Apk, (PkA, SkA), (PkB , SkB)), b← {0, 1},

σ∗ ←
{
PSig(M∗, SkA, PkA, PkB , Apk) if b = 0
FakePSig(M∗, SkB , PkA, PkB , Apk) otherwise

,

b′ ← DOKR,ORes(Υ, σ∗),

Succ. of D := [b′ = b ∧ (M∗, σ, {PkA, PkB}) 6∈ Q(ORes)].

Game Gsaa :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM),

(PkA, SkA)← SetupUser(PM, Apk), (M∗, PkB , ζ
∗)← COKR,OPSig(Ask, Apk, PkA),

Succ. of C := [Ver(M∗, ζ, PkA, PkB , Apk) = 1 ∧ (M∗, PkB) 6∈ Q(OPSig)].

Game Gsas :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM), (PkB , SkB)← SetupUser(PM, Apk),

(M∗, PkA, σ
∗)← AOKR,OFakePSig,ORes(Apk, PkB), ζ∗ ← Res(M∗, σ∗, Ask, PkA, PkB),

Succ. of A := [PVer(M∗, σ∗, {PkA, PkB}, Apk) = 1

∧ Ver(M∗, ζ∗, PkA, PkB , Apk) = 0 ∧ (M∗, PkA) 6∈ Q(OFakePSig)].

Game Gsav :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM),

(PkA, SkA)← SetupUser(PM, Apk), (PkB , SkB)← SetupUser(PM, Apk),

(M∗, Υ )← BOKR,OPSig,ORes

1 (Apk, PkA, PkB , SkB),

σ∗ ← PSig(M∗, SkA, PkA, PkB , Apk), ζ∗ ← BOKR,OPSig,ORes

2 (Υ, σ∗),

Succ. of B := [Ver(M∗, ζ∗, PkA, PkB , Apk) = 1 ∧ (M∗, ·, {PkA, PkB}) 6∈ Q(ORes)].

Fig. 1. Security models of AOFE
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4 Our Construction of iAOFE

In this part we present a construction of interactive AOFE based on a designated
confirmer signature (DCS) scheme. Before describing our construction, let us give
a brief introduction of DCS first.

In DCS, there are a signer S, a verifier V and a confirmer C. S and C run
algorithms SKg and CKg to produce their public/secret key pairs, respectively.
The signer can run Sig algorithm to produce its standard signatures, which can
be verified by V by calling the Ver algorithm. S can also run DCSig to produce
confirmer signatures by designating C as the confirmer, which could not be
verified by the verifier alone. To prove the validity/invalidity of a confirmer
signature, C runs Confirm/Disavow protocol with V . There are two confirmation
protocols, ConfirmS and ConfirmC, run by S and C to prove the validity of a
confirmer signature, respectively. Besides, C is able to convert (valid) confirmer
signatures to standard ones.

The Construction. Below we present our construction of interactive AOFE.
Compared with previous work on the construction of AOFE from DCS, e.g.
[20, 21], our construction makes use of the standard security properties of the
underlying DCS, rather than any special property, e.g. samplability [20, 21]. In-
tuitively, in our construction of interactive AOFE, Ui’s partial signature σ on a
message M is simply its confirmer signature. Since the DCS scheme is anony-
mous, no one but the confirmer is able to tell σ was produced by Ui or Uj . Let
Σ be a DCS scheme. Our AOFE scheme works as below, where Ui is the signer
and Uj is the verifier.

PMGen. It generates all the necessary system parameters for Σ.

SetupTTP. The arbitrator computes (Cpk, Csk)← Σ.CKg(1k), and sets its key
pair as (Apk, Ask) := (Cpk, Csk).

SetupUser. Each user computes (Spk, Ssk) ← Σ.SKg(1k), and sets its key pair
as (Pk, Sk) := (Spk, Ssk).

PSsig. To partially sign a messageM for Uj , Ui computes σ ← Σ.DCSig(Ski, M̂),

where M̂ = M‖Pkj , and sends σ to Uj .

PVer. Given a partial signature σ, Ui and Uj carry out an execution of a zero-
knowledge proof Π which is the OR combination of two independent copies
of Σ.ConfirmS, to show that σ is a valid confirmer signature on M̂ of either
Ui or Uj . Ui plays the role of the prover in the proof. Uj outputs 1 if it
accepts at the end of the proof, and 0 otherwise.

Sig. To fully sign a message M , Ui computes ζ ← Σ.Sig(Ski, M̂ , Apk), and sends
it to Uj .

Ver. Given a full signature ζ, Uj outputs Σ.Ver(M̂, ζ, Pki, Apk).

Res. Given (M,σ, Pki, Pkj), the arbitrator computes and returns ζ ← Σ.Ext(Ask,

M̂, σ, Pki) to Uj if 1← Σ.Ver(M̂, ζ, Pki, Apk) and ⊥ otherwise.
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Remark 2. As we can see from the construction above, the resulting interac-
tive AOFE protocol is solely based on the underlying DCS scheme. The proof
run between the signer and the verifier is an OR composition of two copies of
the confirmation protocol of the DCS scheme. There are standard technique of
composing (the Σ-protocol [12] version of) the confirmation protocol.

The correctness of the construction above is obvious, and we skip the details
here. In the next section we analyze the security of the construction under the
models given in Fig. 1.

5 Security Analysis

Since our AOFE protocol is built from a DCS scheme, before proving the security
of our AOFE scheme (under the models given in Sec. 3.2), let us briefly describe
the security models of DCS.

A secure DCS scheme satisfies two security properties. One is unforgeability,
which requires that no one but the signer be able to generate valid (standard)
signatures. Even the confirmer could not forge either. The other property is
anonymity, which requires no one but the confirmer be able to tell a given con-
firmer signature was generated by which signer. If the signer does not store the
signatures it ever produced, it cannot distinguish either. Due to the page limit
we defer the detailed security definitions of DCS into the full version.

Now we begin to analyze the security of our construction of interactive AOFE.
We have the following theorem.

Theorem 1. The interactive AOFE scheme above is secure (Definition 5) pro-
vided that Σ is secure and the proof Π is sound and zero-knowledge.

It follows the following lemmas immediately.

Lemma 2. The interactive AOFE scheme is signer-ambiguous if Σ is anony-
mous and the proof Π is zero-knowledge.

Proof. To simulate Ui’s partial signature on a message M , Uj computes σ′ ←
Σ.DCSig(Skj , M̂) where M̂ = M‖Pkj , and outputs σ′ as the simulated partial
signature. Guaranteed by the anonymity of Σ, we know that σ′ looks indistin-
guishable from Ui’s partial signature on M . Below we prove that the simulated
signature is indistinguishable from the output of a real signer.

Let D be a distinguisher which can tell Uj ’s simulated signatures apart from
Ui’s real signatures with probability 1/2 + ε, where ε is non-negligible. We use
it to build another algorithm D′ for breaking the anonymity of Σ.

Given the system parameters, two key pairs (Spk0, Ssk0), (Spk1, Ssk1) and a
confirmer public key Cpk, D′ sets Apk := Cpk, (PkA, SkA) := (Spk0, Ssk0) and
(PkB , SkB) := (Spk1, Ssk1), and invokesD on input (Apk, (PkA, SkA), (PkB, SkB)).
The oracles are simulated by D′ as follows:

OKR. Given a key pair (Pk, Sk), if it is not well-formed, D′ returns ⊥; otherwise,
it stores the pair and returns Pk.
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ORes. Given (M,σ, Pki, Pkj), D′ sets M̂ := M‖Pkj and forwards (M̂, σ, Pki) to
its extraction oracle, which returns ζ. It returns ⊥ to the distinguisher if
ζ = ⊥ or 0← Σ.Ver(M̂, ζ, Pki, Apk), and ζ otherwise.

When D submits a challenge message M∗, D′ forwards M̂∗ := M∗‖PkB to
its own challenger, which tosses a coin b and returns a confirmer signature σ∗ on
M̂∗ valid under Spkb. It then sends σ∗ to D, and runs the simulator of protocol
Π to prove that σ∗ is a valid confirmer signature under either PkA or PkB. The
disgintuisher continues to issuing queries, which are handled by D′ as above.
Finally, D′ outputs the bit b′ that D outputs.

Assume that D wins its game, and thus it did not send a query on input
(M∗, σ∗, {PkA, PkB}) to the resolution oracle. Hence, D′ did not make an ex-
traction query on (M̂∗, σ∗, Spk0) nor (M̂

∗, σ∗, Spk1), and wins its own game as
well.

The view of D in this simulated game is the same as that in a real attack,
except that the proof of the validity of σ∗. However, since the protocol Π is zero-
knowledge, the simulated proof causes only a negligible difference to the view of
D, denoted by δ. Therefore, if D breaks the signer ambiguity with non-negligible
advantage ε, D′ breaks the anonymity of Σ with advantage at least ε− δ, which
is non-negligible as well. ut

Lemma 3. The interactive AOFE scheme is secure against signers if Σ is sound
and unforgeable and Π is sound.

Proof. Let A be a malicious signer which can break the security against signers
with non-negligible probability. We make use of it to construct another algorithm
A′ to break the unforgeability of Σ.

Given (Cpk, Csk, Spk∗), algorithmA′ sets (Apk, Ask) := (Cpk, Csk) and PkB :=
Spk∗, and invokes the adversaryA on input (Apk, PkB). It then begins to simulate
the oracles for A as below:

OKR. Same as in the proof of Proposition 2.

OFakePSig. Given (M, Pki), if Pki 6= PkB, A′ computes the simulated signature σ
using its knowledge of Ski, since we are working in the registered-key model.
Otherwise, it forwards M‖PkB to its signing oracle, and obtains a confirmer
signature σ. In either case, A′ returns σ to A.

ORes. Given (M,σ, Pki, Pkj), A′ perfectly computes the answer using its knowl-
edge of Ask.

Finally, A outputs (M∗, PkA, σ
∗), and starts an execution of Π with A′ to

show that σ∗ is a valid confirmer signature on M̂∗ := M∗‖PkB under either PkA
or PkB . A′ then computes

ζ∗A ← Σ.Ext(Ask, M̂∗, σ∗, PkA) and ζ∗B ← Σ.Ext(Ask, M̂∗, σ∗, PkB).

Suppose A wins the game. By the soundness of Π, we have that with overwhelm-
ing probability σ∗ is indeed a valid confirmer signature under either PkA or PkB,
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but ζ∗ is not a valid standard signature under PkA. Therefore, it holds that ζ
∗
B

is a valid standard signature under PkB . A′ then outputs (M̂∗, ζ∗B), and wins the
game. If A succeeds in breaking the security against signers with non-negligible
probability, so does A′ in breaking the unforgeability of Σ. ut

Lemma 4. The interactive AOFE scheme is secure against the arbitrator if Σ
is unforgeable and Π is zero-knowledge.

Proof. Let C be a malicious arbitrator. Below we show how to use it to build an
algorithm C′ to break the unforgeability of Σ.

Given (Spk∗, Cpk, Csk), C′ sets PkA = Spk∗ and (Apk, Ask) := (Cpk, Csk), and
invokes C on input (Ask, Apk, PkA). The oracle queries are answered by C′ as
below:

OKR. Same as in the proof of Proposition 2.

OPSig. Given (M, Pkj), C′ forwards M̂ := M‖Pkj to its signing oracle and obtains
a confirmer signature σ. It sends σ to C and then runs the simulator to prove
to C that σ is a valid confirmer signature under either PkA or Pkj .

Finally, C outputs (M∗, PkB , ζ
∗). Suppose that it wins the game. We have that

1 ← Σ.Ver(M̂∗, ζ∗, Spk, Cpk), where M̂∗ := M∗‖PkB . By the hypothesis, C did
not issue a partial signing query on input (M∗, PkB), and hence C′ did not send
M̂∗ to its signing oracle for a confirmer signature. If C succeeds in breaking the
security against the arbitrator, so does C′ in breaking the unforgeability of Σ
with at least the same advantage. ut

6 A New Construction of Designated Confirmer
Signature

The unforgeability of DCS requires that no one but the signer can produce valid
signatures, while the anonymity requires no one but the designated confirmer
can tell the validity of a given confirmer signatures. Hence it is very natural
to construct a DCS from a standard signature scheme Σ and a public key en-
cryption scheme E, which is also known as the ‘sign-then-encrypt ’ paradigm.
Many constructions of DCS follow this paradigm, such as [16, 17, 33] and etc.
The difficulty of implementing the paradigm is in the design of confirmation and
disavowal protocol. It is known that the protocols can be constructed generally,
using complex NP reduction. However, the efficiency is a big issue. The resulting
protocols may not be useful in practice.

Intuitively, in the paradigm, the confirmer holds a key pair (PkE , SkE) for
E and the signer holds a key pair (PkS , SkS) for Σ. To sign a message M with
respect to the confirmer, the signer first computes a standard signature ζ on M
using SkE , and then encrypts ζ under the confirmer’s public key PkS to obtain
the ciphertext c. Its confirmer signature is set to be c. Given c, the confirmer
uses SkE to decrypt it to obtain ζ, and outputs it if it is valid under PkS . In
the confirmation (resp. disavowal) protocol, the confirmer proves to the verifier
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(interactively) that a confirmer signature c can (resp. cannot) be decrypted to
the signer’s valid signature on M . The unforgeability of the DCS scheme simply
follows that of Σ. On the other hand, the chosen ciphertext security of E guar-
antees that given a ciphertext c, anyone who does not known SkE , including the
signer, is not able to tell the signature hidden in c belongs to which signer. Thus
we have the anonymity.

Below we present a concrete and efficient instantiation of the above paradigm,
which is based on Boneh-Boyen signature [6] and a variant of the linear encryp-
tion [7]. The confirmation and disavowal protocols in the construction are simple
and efficient, and do not use any complex reduction. In the scheme we assume
that the message space is Zp for simplicity. The space can be extended to {0, 1}∗
by applying a collision-resistant hash function to the message before signing.

6.1 The Construction

Let G,GT be two cyclic multiplicative groups of prime order p, and g a random
generator of G. Let ê : G × G → GT be an admissible bilinear pairing and
H : G3 → Zp a collision-resistant hash function. Our first DCS scheme, denoted
by Σ, works as follows:

Ckg. The confirmer chooses at random F,G,K,L ∈ G so that F ξ1 = Gξ2 = g
for some known ξ1, ξ2 ∈ Zp. It then sets Apk = (F,G,K,L) and Ask =
(ξ1, ξ2).

SKg. The signer chooses at random x, y ∈ Zp and computes X = gx, Y = gy.
It sets Spk = (X,Y ) and Ssk = (x, y).

Sig. To sign a message M , the signer selects at random r ∈ Zp and computes
S = g1/(x+M+yr). In case that x +M + yr = 0 mod p, it chooses another r
and repeats the computation. Its signature on M is ζ = (S, r).

Ver. Given (M, ζ) where ζ = (S, r), the verifier checks if ê(S,XgMY r) = ê(g, g).
It accepts if the equation holds, and rejects otherwise.

DCSig. Given a message M , the signer randomly selects r, s, t ∈ Zp and com-
putes

S = g1/(x+M+yr), σ1 = F s, σ2 = Gt, σ3 = S · gs+t,

σ4 = (gαK)s and σ5 = (gαL)t,

where α = H(σ1, σ2, σ3). Again, if x+M + yr = 0 mod p, the signer chooses
another r and repeats the process. Its confirmer signature on M is σ =
(σ1, σ2, σ3, σ4, σ5, r).

Ext. Given (M,σ) where σ = (σ1, σ2, σ3, σ4, σ5, r), the confirmer computes

S = σ3/(σ
ξ1
1 σξ2

2 ) and α = H(σ1, σ2, σ3).

If either of the following equations does not hold, it returns ⊥; otherwise, it
returns ζ = (S, r):

ê(σ4, F ) = ê(σ1, g
αK) (1)
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ê(σ5, G) = ê(σ2, g
αL) (2)

ê(g, g) = ê(S,XgMY r) (3)

ConfirmS. To prove the validity of a confirmer signature σ = (σ1, σ2, σ3, σ4, σ5, r)
on a message M that it ever generated, the signer makes use of the random-
ness (s, t) used in the signature generation to carry out the following proof
of knowledge with the verifier

PoK
{
(s, t) : F s = σ1 ∧Gt = σ2 ∧ ê(σ3g

−s−t, XgMY r) = ê(g, g)
}

(4)

if both equations (1) and (2) hold, and does nothing otherwise.

ConfirmC. Given (M,σ) where σ = (σ1, σ2, σ3, σ4, σ5, r), the confirmer and
the verifier carry out the following (zero-knowledge) proof of knowledge

PoK
{
(ξ1, ξ2) : F

ξ1 = g ∧Gξ2 = g ∧ ê(σ3σ
−ξ1
1 σ−ξ2

2 , XgMY r) = ê(g, g)
}

(5)

if both equations (1) and (2) hold, and do nothing otherwise.

Disavow. Given (M,σ) where σ = (σ1, σ2, σ3, σ4, σ5, r), the confirmer and the
verifier carry out an execution of the following (zero-knowledge) proof of
knowledge

PoK
{
(ξ1, ξ2) : F

ξ1 = g ∧Gξ2 = g ∧ ê(σ3σ
−ξ1
1 σ−ξ2

2 , XgMY r) 6= ê(g, g)
}

(6)

if both equations (1) and (2) hold, and do nothing otherwise.

The correctness and extraction ambiguity of the DCS scheme above can be
verified trivially. The following theorem shows that the DCS scheme above is
secure under the models given in Sec. 5.

Theorem 2. The DCS scheme Σ is secure if Strong Diffie-Hellman assump-
tion and Decision Linear assumption hold, and the hash function H is collision-
resistant.

Due to the page limit we defer the detailed proof of the theorem and the
definitions of the assumptions into the full version.

6.2 Non-interactive AOFE

Huang et al.’s non-interactive AOFE is obtained by applying Fiat-Shamir heuris-
tic to their interactive AOFE protocol, specifically, to the confirmation proof of
the signature’s validity. Via the same technique, we can obtain a non-interactive
AOFE protocol as well.
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7 Comparison

In Table 2 we compare the interactive AOFE protocol instantiated with the DCS
scheme proposed in Section 6, with previous AOFE protocols. The second column
shows if the protocol require interaction between the signer and the verifier in
order to verify a partial signature. The third and fourth columns show the size
of a partial signature and that of a full signature, respectively. The fifth column
indicates whether the protocol works under the registered-key model or chosen-
key model. The sixth column lists the basic number-theoretic assumptions used
for guaranteeing the security. The last column shows whether the security of the
protocols rely on the random oracle model or not.

Both of the interactive AOFE protocol proposed in [20,21] and ours are built
from a DCS scheme, and are secure in the standard model. The protocol in [20,21]
requires a special property of DCS, named samplability, while our protocol only
makes use of standard security properties of the underlying DCS scheme. In
the comparison, we consider that the signer’s partial signature merely consists
of its confirmer signature on the message, while leave the proof of the validity
of it to the verification part. Compared with [20, 21], our protocol has longer
partial signature, but smaller standard signature. In addition, the security of
our protocol relies on relatively more standard assumptions, while the protocol
in [20,21] relies on newly proposed assumptions.

interact? Pk Apk PSig Sig PK Model Asmp ROM

[15] no 1G 1G 2G+ 8Zp 2G+ 12Zp registered DDH yes
[22] no 1G 10G 45G+ 1Zp 46G+ 1Zp chosen SDH+DLIN no

[20,21] no 2G 1G 3G+ 4Zp 3G registered HSDH+DHSDH no
[20,21] yes 163G 1G 3G 3G registered HSDH+DHSDH yes

Ours yes 2G 4G 5G+ 1Zp 1G+ 1Zp registered SDH+DLIN no

Table 2. Comparison with existing AOFE protocols

8 Conclusion

In this paper we showed how to build an interactive ambiguous optimistic fair
exchange protocol using a designated confirmer signature scheme with slight
modifications. The resulting protocol is almost as efficient as the underlying
DCS scheme. It makes use of standard security properties of the underlying
DCS, and is secure without random oracles. We also proposed a concrete and
efficient construction of designated confirmer signature, which is secure based
on Strong Diffie-Hellman assumption and decision linear assumption without
random oracles, and to the best of our knowledge has the shortest standard
signature.
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