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Abstract. Signature schemes from the RSA assumption are very impor-
tant because of their highly reliable security. Despite their importance,
only a few digital signature schemes from the RSA assumption are cur-
rently known. Thus, improvement of efficiency in this area seems to be
very important. In this paper, we propose various signature schemes
from the RSA assumption. First, we propose a scheme that simultane-
ously provides the shortest signatures and public key length among the
known schemes. Compared with the known best schemes, the signature
size is the same as that of the scheme proposed recently by Hofheinz,
Jager, and Kiltz, whereas the public key size is about the half that of the
Hohenberger-Waters scheme. The drawback of the scheme is its heavy
signing and verification algorithms. Second, we also propose a scheme
whose public key is longer than our first scheme, but the signing and
verification cost is more efficient. The scheme can be seen as a general-
ization of our first scheme and the Hofheinz-Jager-Kiltz scheme. Finally,
we propose a scheme whose signing and verification algorithms are more
efficient than our first and second schemes, whereas the signature size
is longer. All these schemes are constructed based on a new observation
about the relation betweenm-time signature schemes and short signature
schemes.
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1 Introduction

1.1 Background

Construction of a digital signature scheme with existential unforgeability under
chosen message attack (EUF-CMA) [9] in the standard model is a main research
topic in cryptography. In particular, the construction of a short signature from a
mild assumption has been extensively studied. Earlier studies proposed various
efficient signature schemes in the standard model from various assumptions,
such as the strong q-DH assumption [2, 11], the q-DH assumption [10, 20], the
strong RSA assumption [8, 3, 7, 11], and the CDH assumption [19]. Many of these
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schemes rely on the q-type assumption or the strong type assumption, except
for Waters’ scheme [19]. Even though these assumptions seem reasonable, it is
desired to construct a signature scheme from a better studied, weaker assumption
(such as the RSA assumption), to obtain high confidentiality in security. A digital
signature scheme from the RSA assumption whose signatures are short enough,
is not known even in the stateful setting until the recent work by Hohenberger
and Waters [12]. Subsequently, they proposed a signature scheme from the RSA
assumption in the stateless setting using a new technique [13]. Very recently,
Hofheinz, Jager, and Kiltz showed that even shorter signature schemes can be
obtained using a programmable hash function [10]. Despite of their importance,
no (stateless) signature schemes from the RSA assumption are known, except
for the schemes proposed in the above two papers. Improvement in efficiency
for RSA based signature schemes seems very important as a step to obtaining a
truly efficient, reliable signature scheme in the future. In this paper, we propose
various novel signature schemes from the RSA assumption. For example, we
propose a scheme that achieves the shortest signature size and public key size
simultaneously.

1.2 Our Approach

As an approach to constructing short signature schemes, we focus on the fact
that a one-time signature scheme and a weakly secure signature scheme yield
a fully-fledged signature scheme. This is a variant of the generic construction
proposed in [18]. As we will discuss in a later section, the idea can be (infor-
mally) generalized to the combination of an m-time signature scheme and a
weakly secure scheme. This is the first time that this idea has been explicitly
discussed. Even though the idea is not formal, the idea is conceptually of inter-
est since it often leads to constructions of short signature schemes. For example,
recent generic constructions of short signature schemes from the programmable
hash function [10] and its variant [20] can be seen as the realizations of the
idea. Based on this idea, we construct various novel signature schemes from the
RSA assumption. Conceptually, we take two steps to construct a scheme. First,
we construct an m-time signature scheme from the RSA assumption. We then
combine it with a weakly secure signature scheme from the RSA assumption pro-
posed by Hohenberger-Waters [13]. According to this strategy, we obtain various
new schemes from the RSA assumption.

More concretely, we obtain three signature schemes based on the approach
described above. In section 4, we propose a signature scheme that provides the
shortest signature size and public key size simultaneously. Compared to currently
known best schemes, the signature size of our scheme is 1074 bits, which is the
same as that of SigRSA[Hcfs] in [10], whereas the public key size is about 2000
bits, which is about half the size of the scheme by Hohenberger and Waters [13].
The drawback of the scheme is its heavy signing and verification algorithms. To
compensate it, in section 5, we also propose another scheme whose signature size
is the same as our first scheme, and the public key is longer than for that scheme,
but the signing and verification cost is more efficient. The scheme is equipped
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with parameters u1, u2 and we can adjust the trade-off between public key length
and signing and verification cost. The scheme can be seen as a generalization of
our first scheme and SigRSA[Hcfs] in [10]. In fact, we can obtain a slight variant of
these schemes as a special case of the scheme. Finally, in section 6, we propose
a scheme whose signing and verification cost is more efficient than the our first
and second schemes whereas the public key and signature sizes are larger than
for our first scheme. The structure of the scheme can be seen as a hybrid of our
first scheme and SigRSA[Hrand] in [10].

Finally, we note that we have also constructed a stateful version of our second
and third schemes. The scheme is more efficient than corresponding stateless
version of the scheme except for the signature size, which is slightly larger.

2 Preliminaries

For λ ∈ N, 1λ denotes the string of λ ones, with λ expressing the security
parameter throughout this paper. [d] denotes the set {1, 2, . . . , d}. Moreover,
|x| and |S| denote, respectively, the length of bitstring x, and the size of set

S. If S is a set, s
$← S denotes the action of uniform randomly selecting an

element of S. Given algorithm A, we write z
$← A(x, y, . . .) to indicate that A

is a (probabilistic) algorithm that outputs z on input (x, y, . . .).

2.1 Digital Signature and its EUF-CMA Security

A digital signature scheme is defined by the three algorithms, Gen,Sign, and
Verify. The key generation algorithm Gen generates a keypair (PK, sk)

$← Gen(1λ)
for a secret key sk and a public key PK. The signing algorithm Sign inputs a
message and the secret key, and returns a signature σ

$← Sign(sk,M) of the mes-
sage. The verification algorithm Verify takes a public key and a message with
a corresponding signature as input, and returns > or ⊥, indicating “accept” or
“reject”, respectively. We require the usual correctness properties.

We recall the EUF-CMA experiment played by a challenger and a forger F .
First, the challenger runs (PK, sk)

$← Gen(1λ) and F is given PK. Proceeding
adaptively, F requests signatures on messages M1, . . . ,Mq ∈ {0, 1}∗ under PK.

The challenger responds to each query with a signature σi
$← Sign(sk,Mi). Even-

tually, F outputs the pair (M∗, σ∗). We say that the adversary wins the game if
Verify(M∗, σ∗, PK) = > and M∗ 6∈ {M1, . . . ,Mq}. We say that F (t, q, ε)-breaks
the EUF-CMA security of the signature if F runs in time t, makes at most q
signing queries, and has success probability ε. We say that the signature scheme
is EUF-CMA secure if ε is negligible for any probabilistic polynomial-time algo-
rithm F .

2.2 Prime Numbers, the RSA-assumption, and Generalized
Birthday Bounds

For x ∈ N let π(x) denote the number of primes between 0 and x. The following
lemma is a direct consequence of Chebyshev’s bounds on π(x).
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Lemma 1. x
log2 x

< π(x) < 2x
log2 x

We say that a prime p is a safe prime, if p = 2p′ + 1 and p′ is also prime. Let p
and q be two randomly chosen r′-bit safe primes, and let N = pq. Let e ∈ Zφ(N)

be a random odd prime with e 6= p′, q′. We say that an algorithm A (t, ε)-breaks

the RSA assumption, if A runs in time t and Pr[y1/e $← A(N, e, y)] ≥ ε. As
discussed in the previous papers [12, 13, 10], the definition above is equivalent to
a more standard version of the RSA assumption where e ∈ Zφ(N) is a random
integer relatively prime to φ(N) with only polynomial loss in reduction cost. We
say that an algorithm A (t, ε)-breaks the RSA assumption, if A runs in time t
and non-negligible ε.

We denote with QRN the group of quadratic residues modulo N . We recall
the following lemmas which is needed for the security proof of our constructions.

Lemma 2. ([17],[3]) There is an efficient algorithm that, on input y, z ∈ ZN
and integer e, f ∈ Z such that gcd(e, f) = 1 and ze ≡ yf mod N , computes
x ∈ ZN satisfying xe ≡ y mod N .

Lemma 3. ([10]) Let A be a set with |A| = a. Let X1, . . . , Xq be q independent
random variables, taking uniformly random values from A. Then the probability
that there exists m + 1 pairwise distinct indices i1, . . . , im+1 such that Xi1 =

· · · = Xim+1 is upper bounded by qm+1

am .

3 Overview of the Idea of Our Constructions

Here, we explain an underlying idea of our constructions. It is known that
the combination of a weakly secure signature scheme and a one-time signature
scheme yields an EUF-CMA secure signature scheme. It can be seen as a vari-
ant of the generic construction of an EUF-CMA secure signature from a weakly
secure signature scheme and a chameleon hash function [14, 18]. It would be in-
teresting to consider what would happen if we used an m-time signature scheme
instead of a one-time signature scheme in the above. Even in this case, we can
obtain an analogous construction of a signature scheme as we explain below.

The public key of the scheme is (pkw, vk
(1)
m , . . . , vk

(2η)
m ) where pkw is the pub-

lic key of the weakly secure signature scheme and all vk
(s)
m (s ∈ [2η]) are verifica-

tion keys of the m-time signature. The secret key of the scheme is (skw, sk
(1)
m , . . . ,

sk
(2η)
m ) where skw is the secret key corresponding to pkw and sk

(s)
m (s ∈ [2η]) are

secret keys corresponding to vk
(s)
m . To sign a message M , a signer first picks a

random bit string s with length η by s
$← [2η]. Then, the signer computes signa-

ture σw on “message” s by the signing algorithm of the weakly secure signature

scheme. The signer also computes signature σm on M for vk
(s)
m using sk

(s)
m . The

final signature is σ = (σw, σm, s). The verification algorithm simply checks the
validity of σw and σm.

In fact, the above idea does not work without change. This is simply be-
cause 2η is exponentially large and the above construction needs an exponential
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number of public keys. Nevertheless, the idea has a potential advantage over
the previous generic constructions. That is, if we take larger m (for example
m = 4), then we can take smaller η. Concretely, we can take η = lg(q) + λ/m
where q is the upper bound of the number of signing queries issued by the ad-
versary and λ is the security parameter [10]. Since the size of the signature is
|s|(= η) + |σw|+ |σm|, this considerably reduces the size of the signature.

The generic construction of short signature schemes from a (m, 1)-programmable
hash function proposed by [11, 10] can be seen as a realization of the above infor-
mal idea. In fact, one can obtain an m-time signature from (m, 1)-programmable
hash function as suggested in [10]. Since m-time signatures form a wider class
than (m, 1)-programmable hash functions, we can obtain various short signature
schemes that cannot be captured by the generic construction by [11, 10].

Based on the above idea, we construct three short signature schemes from
the RSA assumption which are presented in section 4, 5, and 6. Specifically,
signature size of our first scheme in section 4 is the same as that of the best
known scheme [10], and furhtermore its public key size is significantly shorter
than that of [10]. Moreover, our second scheme in section 5 yields the same
signature size and better computational efficiency by admitting larger public
key size, and our third scheme in section 6 yields further better computational
efficiency by only slightly increasing signature size and public key size (compared
with our first scheme).

4 Our First Scheme

4.1 Basic Idea

As we discussed in the precious section, one possible approach to constructing a
(fully-fledged) short signature scheme is to combine an m-time signature scheme
and weakly secure signature scheme. We use the weakly secure signature scheme
proposed by [13] in this paper.

One possible choice of m-time signature would be the RSA-based m-time
signature considered in [4]. In fact, the construction of SigRSA[Hcfs] proposed in
[10] is closely related to the m-time signature in [4]. Since this choice of an m-
time signature leads to a signature scheme with huge public key size, we do not
use the scheme here. Instead, we construct a new m-time signature and propose
a fully-fledged short signature scheme based on it.

Here, we explain our m-time signature. The verification key of our scheme
vkm consists of the odd primes e1, . . . , ed, the product of large two primes N =
pq, and h ∈ Z∗N . Let S be a map S : M → 2[d] where M = {0, 1}l is the
message space. We assume that for all M∗,M1, . . . ,Mm ∈ M, it holds that
S(M∗) 6⊆ ∪mi=1S(Mi) if M∗ 6∈ {M1, . . . ,Mm}. We remark that a map S with
such a property can be constructed from an m-cover free family [6, 15]. The

signature on a message M is σm = h1/
∏
i∈S(M) ei . The verification algorithm

checks whether σ
∏
i∈S(M) ei

m
?
= h.

We now explain how to combine our m-time signature with weakly secure
scheme in [13]. We need an exponentially large number of verification keys
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vk
(1)
m , . . . , vk

(2η)
m where vk

(s)
m = (e

(s)
1 , . . . , e

(s)
d ) if we apply the idea described

in the previous section straightforwardly. We can resolve this problem by a tech-
nique from [12, 13]. That is, we prepare a pseudorandom function F that can be

computed publicly and let e
(s)
j = F(s||j) where s||j is the concatenation of s and

j. Since all {e(s)
1 , . . . , e

(s)
d }s∈[2η ] can be computed from F, we do not need these

elements in the public key. The public key size of our scheme becomes very short
by this idea. Another problem to consider is that the signature σ = (σm, σw, s) is
still longer than that of previous schemes. In the construction below, we reduce
the signature length by using the algebraic structure of σm and σw. As a result,
we obtain a signature scheme that achieves the shortest signature length and
public key length simultaneously among the signature schemes from the RSA
assumption [13, 10].

4.2 Construction

Let S be a map S : M → 2[d] where M = {0, 1}l is the message space. We
assume that for all M∗,M1, . . . ,Mm ∈ M it holds that S(M∗) 6⊆ ∪mi=1S(Mi) if
M∗ 6∈ {M1, . . . ,Mm}. Such S can be constructed using a cover free family [6, 15]
if d ≥ 16m2l. See Appendix A for the details. We define the scheme as follows.

Gen(1λ): It picks two large safe r′-bit primes p and q, and sets N = pq. Then
it chooses a random key K for the pseudorandom function PRF : {0, 1}∗ ×
{0, 1}∗ → {0, 1}r and picks c

$← {0, 1}r, where r = blog2Nc−1. These values
define a function F as F(z) = PRFK(µ, z) ⊕ c where µ, called the resolving
index of z, denotes the smallest positive integer such that PRFK(µ, z)⊕ c is
an odd prime. Here ⊕ denotes the bit-wise XOR operation, and we interpret
r-bit string returned by F as an integer in the obvious way. Finally, it picks
h

$← Z∗N . The public key is PK = (N,h,K, c), the secret key is sk =
(PK, p, q).

In the following, we define P : {0, 1}η → N as P(s) for P(s) =
∏η
i=1 F(s|i) where

s|i is the i-th prefix of s, i.e., the bit string consisting of the first i bits of s. We
also define s|0 = ∅, where ∅ is the empty string, for technical reasons. We define
another function Q : {0, 1}η × 2[d] → N as Q(s, S) =

∏
i∈S F(s||i) where S is a

subset of [d] and s||i denotes concatenation of a bit string s and i ∈ [d]. In this
case, we regard i as a bit string.

Sign(sk,M): It first picks random s
$← {0, 1}η and computes F(t) for t ∈

(∪i∈[η]{s|i}) ∪ (∪i∈S(M){s||i}). If the resolving index of t is more than r2

or F(t) divides φ(N) for some t ∈ (∪i∈[η]{s|i}) ∪ (∪i∈S(M){s||i}), then it
outputs ((p, q), s). 3 Otherwise it computes

σ = h1/P(s)Q(s,S(M)),

where inverse of P(s)Q(s, S(M)) is computed modulo the order φ(N) =
(p− 1)(q − 1) of the multiplicative group Z∗N . The signature is (σ, s).

3 The probability of these events happen is negligible as proven in the security proof
of the scheme. Thus this step can be ignored in practice.
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Verify(M, (σ, s), PK): Given a signature (σ, s), it first checks whether resolving
index of t is more than r2 or 2F(t) + 1 divides N (which is equivalent to
F(t) divides φ(N)) for some t ∈ (∪i∈[η]{s|i})∪ (∪i∈S(M){s||i}). If it holds, it
outputs > if σ = (p, q) and otherwise ⊥. Next, it returns > if

σP(s)Q(s,S(M)) = h.

Otherwise it returns ⊥.

Correctness. The correctness can be verified by the following equation:

σP(s)Q(s,S(M)) = hP(s)Q(s,S(M))/P(s)Q(s,S(M)) = h.

4.3 Security

In this subsection, we prove the following theorem which establishes the security
of the scheme.

Theorem 1. Let PRF be a (t′′, ε′′)-secure pseudo-random function. Suppose there
exists a forger F who (t, q, ε)-breaks the EUF-CMA security of the above scheme.
Then there exists an adversary A that (t′, ε′)-breaks the RSA assumption with

t ≈ t′ and ε ≤ (q + 1)ηd
(
4r2ε′ + 3ε′′ + r(q+1)2(η+d)2

2r−1

)
+ qm+1

2mη .

In the following, let Mk denote the k-th query to the signing oracle, and let
(σk, sk) denote the reply. Let (M∗, σ∗, s∗) be the forgery output of F . We dis-
tinguish between two types of forgers. A type1 forger returns (M∗, σ∗, s∗) such
that s∗ = sk for some k ∈ [q]. A type2 forger returns (M∗, σ∗, s∗) such that
s∗ 6= sk for all k ∈ [q].

The following lemma proves security against Type1 forger.

Lemma 4. Let F be a Type1 forger that (t, q, ε)-breaks the existential unforge-
ability of our scheme. Then there exists an adversary A that (t′, ε′)-breaks the

RSA assumption with t ≈ t′ and ε′ ≥ 1
4r2

(
1
qd (ε− q

m+1

2mη )−3ε′′− q(η+d)(2r+1+rq(η+d))
2r

)
.

Proof. In the following let Xi denote the probability that F is successful in Game
i and the challenger does not abort.

Game 0. We define Game 0 as the EUF-CMA experiment between the challenger
and the forger F . By definition we have Pr[X0] = ε.

Game 1. In this game, the challenger aborts if there exist at least m+ 1 indices
k1, . . . , km+1 ∈ [q] such that sk = sk′ for all k, k

′ ∈ {k1, . . . , km+1}. We

denote this event by AbortmColl. We know Pr[AbortmColl] ≤ qm+1

2mη from Lemma

3. Thus we have Pr[X1] ≥ Pr[X0]− qm+1

2mη .
Game 2. In this game, the challenger chooses randomness s1, . . . , sq and guesses

k∗
$← [q] such that sk∗ = s∗ at the beginning of the game. The challenger

aborts if F outputs a forgery (M∗, σ∗, s∗) with sk∗ 6= s∗. Since s∗ ∈ {si}qi=1,
we have Pr[X2] ≥ Pr[X1]/q.
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Game 3. In this game, the challenger chooses j∗
$← [d] before setting the public

key and aborts if j∗ 6∈ S(M∗) or j∗ ∈ S(Mk) for some k ∈ {k | sk = sk∗}.
Recall that {k | sk = sk∗} ≤ m, so S(M∗) 6⊆ ∪k∈{k|sk=sk∗}S(Mk) from the
property of S. Thus there exists at least one j′ ∈ [d] such that j′ ∈ S(M∗)
and j′ 6∈ S(Mk) for all k ∈ {k | sk = sk∗}. We have Pr[X3] ≥ Pr[X2]/d.

Game 4. Let Eall be Eall = (∪(i,j)∈[q]×[η]{si|j}) ∪ (∪(i,j)∈[q]×[d]{si||j}) in the
following. The challenger in this game proceeds just like the challenger in
the previous game, except that we add an abort condition. The challenger
aborts if for some t ∈ Eall, the resolving index µ is greater than r2. We
denote this event with Abortµ. Let us assume PRFK is replaced with a truly
random function, and let us consider the probability of not finding a prime
by evaluating the random function r2 times and computing the exclusive
or with c. This is equivalent to sampling r2 uniform r-bit strings. Lemma
1 tells us that the probability of finding a prime by sampling r random
bits is at least 1/r, thus the probability of not finding a prime in r2 trials

is at most (1 − 1/r)r
2

. Since the challenger has to compute F at most
q(η + d) times, so we can therefore construct an adversary distinguishing
PRFK from a random function with probability at least εµ ≥ Abortµ− q(η+

d)(1 − 1/r)r
2 ≥ Abortµ − q(η + d)/2r, where the latter inequality uses that

(1 − 1/r)r ≤ 1/2 for all r ∈ N. Since we must have εµ ≤ ε′′, this implies
Pr[X4] ≥ Pr[X3]− ε′′ − q(η + d)/2r.

Game 5. In this game, the challenger aborts if there exists t ∈ Eall such that
F(t) divides φ(N). We denote this event by Abortdiv. Recall that φ(N) =
4p′q′ and that F returns only odd primes. Again replacing PRFK with a
truly random function, the probability that one out of at most q(η + d)
randomly chosen odd r-bit primes equals one of the two odd primes dividing
φ(N) is at most (q(η + d)2r)/2r by Lemma 1. Now consider the case where
the truly random function is instantiated with PRFK , and suppose that
a collision occurs with probability Pr[Abortdiv]. Then this would allow an
attack distinguishing PRFK from a random function with probability at least
εdiv ≥ Pr[Abortdiv] − (q(η + d)2r)/2r. Since we have εdiv ≤ ε′′, this implies
Pr[X5] ≥ Pr[X4]− Pr[Abortdiv] ≥ Pr[X4]− ε′′ − (q(η + d)2r)/2r.

Game 6. In the following, let E = ∪qi=1{si}, E∗ = E\{sk∗}. In this game the

challenger picks y
$← Z∗N and sets h by

h = yP(sk∗ )Q(sk∗ ,[d]\{j∗})·
∏
t∈E∗ P(t)Q(t,[d]).

The distribution of the public key is unchanged from the previous game.
This change is only conceptual, so we have Pr[X6] = Pr[X5].

Game 7. Now the challenger computes a signature σk on some chosen-message
Mk as

σk =

{
yQ(sk∗ ,[d]\{S(Mk)∪{j∗}})·

∏
t∈E∗ P(t)Q(t,[d]) sk = sk∗

y
P(sk∗ )Q(sk∗ ,[d]\{j∗})·Q(sk,[d]\S(Mk))·

∏
t∈E∗

k
P(t)Q(t,[d])

sk 6= sk∗
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where E∗k = E∗\{sk}. It is easy to check that σk = h1/P(sk)Q(sk,S(Mk)). In
the above, we used the fact that j∗ 6∈ S(Mk) if sk = sk∗ . This change is only
conceptual, so we have Pr[X7] = Pr[X6].

Game 8. The challenger in this game aborts if there exists t, t′ ∈ Eall such
that F(t) = F(t′) and t 6= t′. This event is denoted with Abortcol. Recall that
F(z) = PRFK(µ, z)⊕c, where µ is incremented until PRFK(µ, z)⊕c is prime.
Let us again assume PRFK is replaced with a truly random function. Then
evaluating F is equivalent to sampling a uniformly random r-bit prime. There
are at least 2r/r such primes by Lemma 1, and at most q(η + d) primes are
sampled. Applying Lemma 3, we conclude that the collision probability for
a truly random function is at most rq2(η + d)2 · 2−r. Now consider the case
where the truly random function is instantiated with PRFK , and suppose
that a collision occurs with probability Pr[Abortcol]. Then this would allow
an attack distinguishing PRFK from a random function with probability at
least εcol ≥ Pr[Abortcol]−rq2(η+d)2/2r. Since we have εcol ≤ ε′′, this implies
Pr[X8] = Pr[X7]− Pr[Abortcol] ≥ Pr[X7]− ε′′ − rq2(η + d)2/2r.

Game 9. In this game, the challenger chooses µ∗
$← [r2] in advance and aborts

if µ∗ is not resolving index of sk∗ ||j∗. Due to the changes introduced in the
Game 4 we know that the resolving index of sk∗ ||j∗ lies in the interval [1, r2].
Thus we have Pr[X9] ≥ Pr[X8]/r2.

Game 10. Recall that c is uniformly distributed, and we abort if µ∗ is not the
resolving index of sk∗ ||j∗. The latter implies that PRF(µ∗, sk∗ ||j∗) is prime,
thus e has the distribution of uniformly random prime. In this game, the
challenger determines c differently. Instead of sampling c at random, the
challenger sets c = PRF(µ∗, sk∗ ||j∗)⊕e, where e is the random r-bit prime the
challenger chooses. Observe that this defines F(sk∗ ||j∗) = e. The distribution
of µ∗, c, and e is not altered. Thus We have Pr[X10] = Pr[X9].

The RSA adversary. We replace the challenger in Game 10 with RSA ad-
versary A. A receives a RSA challenge (N ′, e′, y′) as input and aborts if e′

is not an odd prime or e′ > 2r. Otherwise A sets N = N ′, e = e′ and pro-
ceeds like the challenger in Game 10. Recall that sk∗ = s∗, F(s∗||j∗) = e and
j∗ ∈ S(M∗). Otherwise A aborts as the challenger does in Game 10. Since we
have set r = blog2Nc − 1, the probability that e ≥ 2r is at most 1/4. Thus, the
success probability of A is at least Pr[X10 ∧ e < 2r] ≥ 1

4 Pr[X10].
Answering the Signing Queries. Due to the changes introduced in the Games
4 to 7, A can answer signing queries without the knowledge of the factorization
of N .
Extracting the Solution to the RSA Challenge. Eventually, F returns a
forgery (M∗, σ∗, s∗), from which A extracts the solution to the RSA challenge
as follows. First observe that

σ∗ = h1/P(s∗)Q(s∗,S(M∗)) = y

(∏
t∈E∗ P(t)Q(t,[d])

)
·Q(s∗,[d]\{j∗})/Q(s∗,S(M∗))

= y

(∏
t∈E∗ P(t)Q(t,[d])

)
·Q(s∗,[d]\S(M∗))/F(s∗||j∗)

= y

(∏
t∈E∗ P(t)Q(t,[d])

)
·Q(s∗,[d]\S(M∗))/e = yf/e
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where f = Q(s∗, [d]\S(M∗)) ·
∏
t∈E∗ P(t)Q(t, [d]). Then we can see that (σ∗)e =

yf holds from the above equation. Furthermore, gcd(e, f) = 1 by Game 8. Thus
we can apply Lemma 2 and extract y1/e which is answer to the RSA challenge
from σ∗.

The following lemma proves security against Type2 forger.

Lemma 5. Let F be a Type2 forger that (t, q, ε)-breaks the existential unforge-
ability of our scheme. Then there exists an adversary A that (t′, ε′)-breaks the

RSA assumption with t ≈ t′ and ε′ ≥ 1
4r2

(
1

(q+1)η

(
ε− 2ε′′− q(η+d)(2r+1)

2r

)
− 2ε′′−

r(q+1)2(η+d)2+1
2r

)
.

Proof. Let Xi denote the probability that F is successful in Game i and the
challenger does not abort.

Game 0. We define Game 0 as the EUF-CMA experiment between the challenger
and the forger F . By definition we have Pr[X0] = ε.

Game 1. Let Eall be Eall = (∪(i,j)∈[q]×[η]{si|j}) ∪ (∪(i,j)∈[q]×[d]{si||j}) in the
following. In this game, the challenger aborts if for some t ∈ Eall, the
resolving index µ is greater than r2. As the proof of Lemma 4, we have
Pr[X1] ≥ Pr[X0]− ε′′ − q(η + d)/2r.

Game 2. In this game, the challenger aborts if there exists t ∈ Eall such that
F(t) divides φ(N). As the proof of Lemma 4, we have Pr[X2] ≥ Pr[X1] −
ε′′ − (q(η + d)2r)/2r.

Game 3. In this game, the challenger chooses the randomness s1, . . . , sq in ad-

vance. Let E = ∪qi=1{si}. The challenger picks y
$← Z∗N and sets public key

h by
h = y

∏
t∈E P(t)Q(t,[d]).

The distribution of the public key is unchanged from the previous game.
This change is only conceptual, so we have Pr[X3] = Pr[X2].

Game 4. Now the challenger computes a signature σk on some chosen-message
Mk as

σk = y
Q(sk,[d]\S(Mk))

∏
t∈Ek

P(t)Q(t,[d])

where Ek = E\{sk}. It is easy to check that σk = h1/P(sk)Q(sk,S(Mk)). This
change is only conceptual, so we have Pr[X4] = Pr[X3].

Game 5. In this game the challenger guesses the shortest prefix of s∗ that differs
from all prefixes of s1, . . . , sq. Note that this prefix must exist, because the
Type2-forger will return a forgery (M∗, σ∗, s∗) with s∗ 6∈ {s1, . . . , sq}. To this

end, the challenger proceeds as follows. If q = 0, it samples a bit ψ
$← {0, 1}

at random, and aborts if the forger returns s∗ with s∗|1 6= ψ. If q ≥ 0, the
challenger picks i ∈ [q] and j ∈ [η] and sets ψ = si|j−1||b, where b is the
complement of the j-th bit of si. (Recall that we defined the 0-th prefix as
the empty string ∅, thus si|0 = ∅.) The challenger aborts if either ψ is a prefix
of some si ∈ {s1, . . . , sq}, that is, there exists (i′, j′) such that ψ = si′ |j′ , or
if the forger returns (M∗, σ∗, s∗) such that ψ is not a prefix of s∗. If q = 0,
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then the challenger aborts with probability 1/2. Otherwise there are at most
qη possible choices of ψ. Thus we have Pr[X5] = Pr[X4]/(q + 1)η.

Game 6. We add an abort condition. If F(ψ)|
∏
t∈E P(t)Q(t, [d]), or (equiva-

lently) F(ψ) = F(t) for some t ∈ Eall, then the challenger aborts. Note
that ψ 6= t for all t ∈ Eall. As the proof of Lemma 4, we have Pr[X6] ≥
Pr[X5]− ε′′ − r(q + 1)2(η + d)2/2r.

Game 7. We introduce a number of changes to the challenger.
– The challenger aborts if the resolving index of ψ is greater than r2.
– The challenger guesses resolving index of ψ as µ∗

$← [r2] and aborts if
µ∗ is not the resolving index of ψ.

– Instead of sampling c at random, we set c = PRF(µ∗, ψ)⊕ e, where e is
the uniformly random r-bit prime that the challenger chooses.

With the same arguments as the proof of Lemma 4 we have Pr[X7] ≥
1/r2(Pr[X6]− ε′′ − 1/2r).

The RSA adversary. We replace the challenger in Game 7 with the RSA
adversary A. A receives an RSA challenge (N ′, e′, y′) as input and aborts if e′

is not an odd prime or e′ > 2r. Otherwise A sets N = N ′, e = e′ and proceeds
like the challenger in Game 7. Recall that we have F(ψ) = e now. As the proof
of Lemma 4, the success probability of A is at least 1

4 Pr[X7].
Answering the Signing Queries. Due to the changes introduced in the Game
1 to 4, A can answer signing queries without the knowledge of the factorization
of N .
Extracting the Solution to the RSA Challenge. Eventually, F returns a
forgery (M∗, σ∗, s∗), from which A extracts the solution to the RSA challenge
as follows. In the case where resolving index of t is more than r2 or F(t)|φ(N)
for some t ∈ (∪i∈[η]{s∗|i})∪ (∪i∈S(M∗){s∗||i}), σ = (p, q) if F is successful. Thus

A can efficiently compute y1/e from the output of F in this case. Otherwise,

σ∗ = h1/P(s∗)Q(s∗,S(M∗)) = y

(∏
t∈E P(t)Q(t,[d])

)
/P(s∗)Q(s∗,S(M∗))

= y

(∏
t∈E P(t)Q(t,[d])

)
/
(
z·F(ψ)

)
= y

(∏
t∈E P(t)Q(t,[d])

)
/ez

where z = Q(s∗, S(M∗)) ·
∏
{i∈[η]|s∗|i 6=ψ} F(s∗|i) holds. Thus we have

(
(σ∗)z

)e
=

y
∏
t∈E P(t)Q(t,[d]). Since gcd(e,

∏
t∈E P(t)Q(t, [d])) = 1 by Game 6, we can apply

Lemma 2 and extract y1/e.

5 Our Second Scheme

Our first scheme suffers from its heavy signing and verification algorithms while
providing very short public key size. This is because the signing and verification
algorithms need the generation of a large number of primes. On the other hand,
SigRSA[Hcfs] in [10] has an opposite property. That is, the signing and verification
algorithms are more efficient than our scheme, but the public key size is huge.
In this section, we propose a generalized version of these schemes. The scheme
has parameters u1 and u2 with condition u1 · u2 = d where d is some constant
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depending on m and λ. If we take u1 smaller, the public key size becomes smaller
and the signing and verification algorithms become heavier. On the other hand,
if we take u1 larger, the public key size becomes larger and the signing and ver-
ification algorithm becomes more efficient. Especially, if we set (u1, u2) = (1, d),
then the scheme can be seen as a slight variant of our first scheme. Similarly, if
we set (u1, u2) = (d, 1), then we can obtain a slight variant of SigRSA[Hcfs] in [10].
Furthermore, we can also construct a stateful version of the scheme. The scheme
is more efficient than the above scheme except for its slightly larger signature
size.

Construction. Let S be a map S : M → 2[u1]×[u2] where M = {0, 1}l is
the message space. We assume that for all M∗,M1, . . . ,Mm ∈ M it holds that
S(M∗) 6⊆ ∪mi=1S(Mi) if M∗ 6∈ {M1, . . . ,Mm}. Such S can be constructed using
cover free family [6, 15] as in [20] if u1u2 ≥ 16m2l. See Appendix A for the
details. We define the scheme as follows.

Gen(1λ): It picks two large safe r′-bit primes p and q, and sets N = pq. Then
it chooses a random key K for the pseudorandom function PRF : {0, 1}∗ ×
{0, 1}∗ → {0, 1}r and picks c

$← {0, 1}r, where r = blog2Nc−1. These values
define functions F : {0, 1}∗ → N, P : {0, 1}η → N, and Q : {0, 1}η×2[u2] → N
as in section 4. Finally, it picks h′, h1, . . . , hu1

$← QRN . The public key is
PK = (N,h′, h1, . . . , hu1

,K, c), the secret key is sk = (PK, p, q).

Sign(sk,M): It first picks random s
$← {0, 1}η and computes F(t) for t ∈

(∪i∈[η]{s|i}) ∪ (∪j∈S′(M){s||j}) where S′(M) = {j|∃i, (i, j) ∈ S(M)}. Let
ej = F(s||j). If the resolving index of t is more than r2 or F(t) divides φ(N)
for some t ∈ (∪i∈[η]{s|i}) ∪ (∪j∈S′(M){s||j}), then it outputs ((p, q), s). If
gcd(P(s),Q(s, S′(M))) 6= 1, then it outputs ((p, q), s). 4 Otherwise it com-
putes

σ = (h′)1/P(s) ·
∏

(i,j)∈S(M)

h
1/ej
i

where inverse of P(s) and ej is computed modulo the order φ(N) = (p −
1)(q − 1) of the multiplicative group Z∗N . The signature is (σ, s).

Verify(M, (σ, s), PK): Given a signature (σ, s), it first checks whether resolving
index of t is more than r2 or 2F(t) + 1 divides N for some t ∈ (∪i∈[η]{s|i})∪
(∪j∈S′(M){s||j}), or gcd(P(s),Q(s, S′(M))) 6= 1. If one of the above holds,
it outputs > if σ = (p, q) and otherwise ⊥. Next, it returns if

σP(s)Q(s,S′(M)) = (h′)Q(s,S′(M)) ·
∏

(i,j)∈S(M)

h
P(s)Q(s,S′(M)\{j})
i .

Otherwise it returns ⊥.

4 Similarly to our first scheme, this step can be ignored in practice.
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Correctness. The correctness can be verified by the following equation:

σP(s)Q(s,S′(M)) =
(

(h′)1/P(s) ·
∏

(i,j)∈S(M)

h
1/F(s||j)
i

)P(s)Q(s,S′(M))

= (h′)Q(s,S′(M)) ·
∏

(i,j)∈S(M)

h
P(s)Q(s,S′(M)\{j})
i

The following theorem establishes the security of the scheme. The theorem can
be proven by a similar argument to the proof of Theorem 1 and [10]. We omit
the proof due to a lack of space.

Theorem 2. Let PRF be a (t′′, ε′′)-secure pseudo-random function. Suppose there
exists a forger F who (t, q, ε)-breaks the EUF-CMA security of the above scheme.
Then there exists an adversary A that (t′, ε′)-breaks the RSA assumption with

t ≈ t′ and ε ≤ (q + 1)ηu1u2

(
4r2ε′ + 3ε′′ + r(q+1)2(η+u2)2

2r−1

)
+ qm+1

2mη .

Stateful Version of The Scheme. We can also construct a stateful version
of the above scheme. The scheme is more efficient than the above scheme except
for the signature size, which is slightly larger than the above scheme. There are
two reasons why we can obtain a more efficient scheme in the stateful setting.
The first reason is that we can remove the computation of P(s) from the above.
Conceptually, it is equivalent to removing the weakly secure signature scheme in
[13] from the above construction. Instead, we use a trick from [12], which leads
to a more efficient scheme. The second reason is that we can use a one-time
signature instead of the m-time signature (m ≥ 2) in the stateful setting. This
reduces the public key and signing and verification cost. See the full version of
this paper for the details.

6 Our Third Scheme

While providing a short signature size, the signing and verification algorithms
of our first and second schemes are heavy if we want the public key size to
be small. In this section, we propose another signature scheme that provides a
shorter public key and a more efficient signing and verification algorithm using
a chameleon hash-like technique [7, 10]. A signature of the scheme is longer than
that of our first and second schemes, but still much shorter than that of the
scheme in [13]. The structure of the scheme can be seen as a hybrid of our first
scheme and SigRSA[Hrand] in [10]. Compared with SigRSA[Hrand] in [10], the scheme
has the same size of the signatures. The public key size of the scheme is smaller
than that of the other scheme, while the signing and verification algorithms are
slightly heavier than the other scheme. We can also construct a stateful version
of the scheme. The scheme is more efficient than the above scheme except for its
slightly larger signature size.

Construction. We define the scheme as follows. In the following, let [X]2l ∈ Z
denote a canonical interpretation of a field element X ∈ F2l as an integer between
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0 and 2l − 1. We assume that X and [X]2l are efficiently computable from one
another. The message space of the scheme is M = {0, 1}l.

Gen(1λ): It picks two large safe r′-bit primes p and q, and sets N = pq. Then
it chooses a random key K for the pseudorandom function PRF : {0, 1}∗ ×
{0, 1}∗ → {0, 1}r and picks c

$← {0, 1}r, where r = blog2Nc−1. These values
define functions F : {0, 1}∗ → N, P : {0, 1}η → N, and Q : {0, 1}η×2[2m] → N
as in section 4. Finally, it picks h′, h1, . . . , hm

$← QRN . The public key is
PK = (N,h′, h1, . . . , hm,K, c), the secret key is sk = (PK, p, q).

Sign(sk,M): It first picks random s
$← {0, 1}η, ρ

$← {0, 1}l and computes F(t) for
t ∈ (∪i∈[η]{s|i})∪(∪j∈[2m]{s||j}). Let ei = F(s||i). If the resolving index of t is
more than r2 or F(t) divides φ(N) for some t ∈ (∪i∈[η]{s|i})∪(∪j∈[2m]{s||j}),
then it outputs ((p, q), s, ρ). If gcd(P(s),Q(s, [2m])) 6= 1, then it outputs
((p, q), s, ρ). 5 Otherwise it computes

σ = (h′)1/P(s) ·
∏

i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)1/ei
where inverse of P(s) and ei is computed modulo the order φ(N) = (p −
1)(q − 1) of the multiplicative group Z∗N . The signature is (σ, s, ρ).

Verify(M, (σ, s), PK): Given a signature (σ, s, ρ), it first checks whether resolv-
ing index of t is more than r2 or 2F(t)+1 dividesN for some t ∈ (∪i∈[η]{s|i})∪
(∪j∈[2m]{s||j}), or gcd(P(s),Q(s, [2m])) 6= 1. If one of the above holds, it re-
turns > if σ = (p, q) and otherwise ⊥. Next, it returns > if

σP(s)Q(s,[2m]) = (h′)Q(s,[2m]) ·
∏

i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)P(s)Q(s,[2m]\{i})
.

Otherwise it returns ⊥.

Correctness. The correctness can be verified by the following equation:

σP(s)Q(s,[2m]) =
(

(h′)1/P(s) ·
∏

i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)1/F(s||i)
)P(s)Q(s,[2m])

= (h′)Q(s,[2m]) ·
∏

i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)P(s)Q(s,[2m]\{i})

The following theorem establishes the security of the scheme. The theorem can
be proven by a similar argument to the proof of Theorem 1 and [10]. We omit
the proof due to a lack of space.

Theorem 3. Let PRF be a (t′′, ε′′)-secure pseudo-random function. Suppose there
exists a forger F who (t, q, ε)-breaks the EUF-CMA security of the above scheme.
Then there exists an adversary A that (t′, ε′)-breaks the RSA assumption with

t ≈ t′ and ε ≤ 4r2(q + 1)η
(
ε′ + 3ε′′ + m

2r/2
+ r(q+1)2(η+u2)2

2r−1

)
+ qm+1

2mη .

5 Similarly to our first scheme, this step can be ignored in practice.
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Stateful Version of The Scheme. As our second scheme, we can consider a
stateful version of the above scheme. The scheme is more efficient than the above
scheme except for slightly longer signature size. The structure of the scheme can
be seen as a combination of (randomized) (1, 1)-programmable hash function
[11] in [7] with RSA based stateful signature scheme in [12]. See the full version
of this paper for the details.

7 Comparison

In the Table 1, we compare our schemes with other RSA based signature schemes
under appropriately chosen parameters. We ignore the penalty imposed on the
modulus size due to the non-tight reduction in the table. The signature size of our
first scheme is the same as that of SigRSA[Hcfs], which is currently the shortest
signature scheme. As for the public key size, our first scheme is about 2000 bits,
which is about 1/20000 of that of SigRSA[Hcfs], and about half compared with
Hohenberger-Waters scheme. However, as we can see, our first scheme requires
generation of about 2600 primes, which is impractical. For our second scheme,
the public key size is about 1/100 of that of SigRSA[Hcfs] while its signing and
verification cost is about 3 times higher than for their scheme. The second scheme
indicates that we can considerably reduce the public key size of SigRSA[Hcfs]
at the cost of relatively small increase in computational efficiency. We remark
that other choices of parameters are also possible for this scheme. For our third
scheme, compared with SigRSA[Hrand], the public key is reduced to less than
1/5 whereas the increase in the computational cost is less than 20 percent. We
remark that the reduction cost of our first and second scheme is essentially the
same as that of SigRSA[Hcfs], and that of our third scheme is also essentially the
same as SigRSA[Hrand]. We also remark that we can obtain more efficient schemes
in the stateful setting. Especially, stateful version of our third scheme is at least
as efficient as Hohenberger-Waters scheme [12] in all aspects. See the full version
for the details.
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no set is covered by the union of two others. J. Comb. Theory, Ser. A, Vol. 33,
No. 2, pp. 158–166, 1982.

7. Marc Fischlin. The cramer-shoup strong-rsasignature scheme revisited. In Public
Key Cryptography, pp. 116–129, 2003.

8. Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures
without the random oracle. In EUROCRYPT, pp. 123–139, 1999.

9. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., Vol. 17, No. 2,
pp. 281–308, 1988.

10. Dennis Hofheinz, Tibor Jager, and Eike Kiltz. Short signatures from weaker as-
sumptions. In ASIACRYPT, pp. 647–666, 2011.

11. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. In CRYPTO, pp. 21–38, 2008.

12. Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under
standard assumptions. In EUROCRYPT, pp. 333–350, 2009.

13. Susan Hohenberger and Brent Waters. Short and stateless signatures from the rsa
assumption. In CRYPTO, pp. 654–670, 2009.

14. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS, 2000.
15. Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for

blacklisting problems without computational assumptions. In CRYPTO, pp. 609–
623, 1999.

16. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pp. 387–394, 1990.

17. Adi Shamir. On the generation of cryptographically strong pseudorandom se-
quences. ACM Trans. Comput. Syst., Vol. 1, No. 1, pp. 38–44, 1983.

18. Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In
CRYPTO, pp. 355–367, 2001.



17

19. Brent Waters. Efficient identity-based encryption without random oracles. In
EUROCRYPT, pp. 114–127, 2005.

20. Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro. Two-dimensional repre-
sentation of cover free families and its applications: Short signatures and more. In
CT-RSA, pp. 260–277, 2012.

A Construction of Map S

In many of our schemes, we use a map S with a special property. We describe
how we realize this map S from cover free family [6, 15]. Although the idea we
describe in this section is not new, we include this section in this paper for
completeness.

We begin by recalling the definition of cover-free families. Let S1, S2 be sets.
We say that S2 does not cover S1 if S1 6⊆ S2. Let d,m, α be integers, and let
F = (Fµ)µ∈[α] be a family of α subsets of [d]. We say that F is m-cover free if
for any set I containing (up to) m indices I = {µ1, . . . , µm} ⊆ [α], it holds that
Fν 6⊆ ∪µ∈IFµ for any ν that is not contained in I. In other words, if |I| ≤ m,
then the union ∪µ∈IFµ does not cover Fν for all ν ∈ [α]\I. We say that F is
w-uniform if |Fµ| = w for all µ ∈ [α]. Throughout this paper, we use a parameter
in the following lemma.

Lemma 6. ([6, 15]) There is a deterministic polynomial-time algorithm that,
on input of integers m,α = 2n, returns d ∈ N and the set family F = (Fµ)µ∈[α],
such that F is m-cover free over [d] and w-uniform, where d ≤ 16m2n and
w = d/4m.

Note that in the case of m = 1, we have a cover-free family with smaller param-
eters. That is, α = 2n, d = 2n, and w = n. Fµ is defined as Fµ = {2i− 1 + bi|i ∈
[n]} where we regard µ as a concatenation of bit strings in a natural way as
µ = b1|| · · · ||bn with bi ∈ {0, 1} for i ∈ [n]. This cover-free family is used in many
cryptographic protocols explicitly or implicitly, for example [16, 5].

For Our First Scheme. In our first scheme, we associate a message M ∈M
with a subset of [d] by a map S : M → 2[d]. S should satisfy the following
property: “For all M∗,M1, . . . ,Mm ∈ M, it holds that S(M∗) 6⊆ ∪mi=1S(Mi) if
M∗ 6∈ {M1, . . . ,Mm}.” We can construct a map S with this property by defining

S as S(M)
def
= FH(M) ⊆ [d] where H :M→ [α] is an injective (or hash) function.

For Our Second Scheme. In our second scheme, we associate a message
M ∈ M with a subset of [u1] × [u2] by a map S : M → 2[u1]×[u2]. S should
satisfy the following property: “For all M∗,M1, . . . ,Mm ∈ M, it holds that
S(M∗) 6⊆ ∪mi=1S(Mi) if M∗ 6∈ {M1, . . . ,Mm}.” To construct such a map, we
first regard [d] as [u1] × [u2], where u1 and u2 are integers satisfying u1 ≥ u2

and u1u2 ≥ d. (The case for u1 ≤ u2 is analogous. ) We regard i ∈ [d] as an
element of [u1] × [u2] by associating it with (i − u1(di/u1e − 1), di/u1e). Then,
all Fµ can be seen as a subset of [u1] × [u2] in a natural way and (Fµ)µ∈α
can be seen as an m-cover free family over [u1] × [u2]. Then we define S as



18

S(M)
def
= FH(M) ⊆ [u1] × [u2] where H : M → [α] is an injective (or hash)

function.

In the constructions, we treat H (and S) as an injective function for simplic-
ity, but it is enough to assume that H is a collision resistant hash for our schemes
to be secure. To avoid a birthday attack, we typically set n = 2λ. Besides, if we
require F to be w-uniform, then |S(M)| = w for all M ∈M.


