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Abstract. Waters signatures (Eurocrypt 2005) can be shown existen-
tially unforgeable under chosen-message attacks under the assumption
that the computational Diffie-Hellman problem in the underlying (pai-
ring-friendly) group is hard. The corresponding security proof has a re-
duction loss of O(¢ - q), where £ is the bitlength of messages, and ¢ is
the number of adversarial signature queries. The original reduction could

meanwhile be improved to O(\/Z -q) (Hofheinz and Kiltz, Crypto 2008);

however, it is currently unknown whether a better reduction exists. We

answer this question as follows:

(a) We give a simple modification of Waters signatures, where messages
are encoded such that each two encoded messages have a suitably
large Hamming distance. Somewhat surprisingly, this simple modi-
fication suffices to prove security under the CDH assumption with a
reduction loss of O(q).

(b) We also show that any black-box security proof for a signature
scheme with re-randomizable signatures must have a reduction loss
of at least £2(q), or the underlying hardness assumption is false. Since
both Waters signatures and our variant from (a) are re-randomizable,
this proves our reduction from (a) optimal up to a constant factor.

Understanding and optimizing the security loss of a cryptosystem is im-

portant to derive concrete parameters, such as the size of the underlying

group. We provide a complete picture for Waters-like signatures: there
is an inherent lower bound for the security loss, and we show how to
achieve it.
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black-box reductions.

1 Introduction

Waters signatures. Waters signatures [22] form a simple and efficient digital
signature scheme in pairing-friendly groups. The existential unforgeability of the
scheme can be proved under the computational Diffie-Hellman (CDH) assump-
tion. Unfortunately, the corresponding security reduction from [22] suffers from



a multiplicative loss of O(¢- q), where £ is the bitlength of signed messages, and
q is the number of adversarial signing queries. In other words, every signature
forger with success probability € can only be mapped to a CDH-solver with
success probability £2(s/(£ - q)).

From the proof of [22], it is not immediately clear whether this comparatively
large security gap is inherent or an artifact of the used proof technique. In fact,
[13I14] used a rather different simulation setup to show the security of Waters
signatures with a reduction loss of O(v/4-q). However, it is not at all clear whether
their reduction is optimal. There is no known lower bound on the reduction loss
of Waters signatures.

Our contributions. Our contributions revolve around the possibility of achiev-
ing a better security reduction for Waters (and similar) signatures. Concretely:

(a) We first give a simple modification of Waters signatures. Essentially, we
simply encode each message before signing. This guarantees that any two
(encoded) messages have a suitably large Hamming distance. Perhaps some-
what surprisingly, this trivial modification can be shown secure under the
CDH assumption with a reduction loss of O(q). The price to pay for this
improved reduction is a constant-factor blowup (caused by the encoding) of
the public key size and signature/verification times.

(b) Building on work of Coron [7], we proceed to show that any security proof for
a signature scheme with re-randomizable signatures must have a reduction
loss of at least £2(gq), or the underlying complexity assumption is false. Coron
showed that statement for deterministic signature schemes. We extend the
statement to schemes in which any signature can be publicly re-randomized.
Since both Waters signatures and our variant from (a) are re-randomizable,
this proves our reduction from (a) optimal up to a constant factor.

Of course, the practical impact of our results is somewhat limited. In fact, it
is a bit disappointing that one can only save a reduction factor of v/¢ (compared
to the proof of [I3I14]), where ¢ itself is typically significantly smaller than the
remaining reduction loss of O(q). However, we stress that from a conceptual
point of view, our results essentially give a complete picture: there is an inherent
lower bound for the security loss of Waters-like signature schemes, and we show
how to achieve this bound.

Other related work. There exist a number of tightly secure signature schemes,
both with (e.g., [IJI8]) and without random oracles (e.g., [BI5/9/T620]). However,
to the best of our knowledge, there is no standard-model signature scheme whose
security could be tightly reduced to the CDH problem. In particular, the only
known results about the reduction tightness of Waters (or similar) signatures
are the discussed works [I3I14122]. We do mention that Guo et al. [II] give a
variant of Waters signatures and claim that this variant suffers from a reduction
loss of only O(¢). However, their security proof is subtly flawed [12], as we sketch
briefly in Section It is not clear if and how their argument can be fixed.



1.1 Technical overview

Partitioning. In order to present our techniques, we briefly recall the “par-
titioning” proof strategy used in the context of signature schemes, e.g., by
Coron [6] and Waters [22]. A “partitioning” proof simulation partitions the mes-
sage space into two sets: those messages that can be signed during the simulation,
and those that cannot. Let us call those messages “signable,” resp. “unsignable.”
Any forged signature for an unsignable message can then be used to solve a
computational problem (e.g., a CDH challenge). The simulation thus succeeds if
(a) all adversarial signature queries correspond to signable messages, and (b) the
forger forges a signature for an unsignable message. For simplicity, assume that
each message is set up as signable with a certain probability p. Assume further
that these probabilities are independent for different messages. Then, it is not
hard to see that the probability that the simulation succeeds is P := p?- (1 — p),
where ¢ is the number of signature queries. This probability is maximized if we
set p suitably in the order of 1 — 1/g, in which case P = O(1/q).

Coron’s results. Specifically, using a partitioning technique, the best we can
hope for is a reduction with a loss of O(q). In fact, Coron [6] shows how to achieve
such a reduction for the RSA-FDH scheme in the (programmable) random oracle
model. Furthermore, he shows that any reduction of a deterministic signature
scheme must essentially be partitioning, and thus the loss of O(g) is inherent.
See also [17].

Waters signatures. Waters [22] conducts a similar partitioning simulation
in the standard model, for a particular CDH-based signature scheme. For this
outline, we will only give a very abstract and idealized breakdown of his strategy.
In his scheme, a message m = (myq,...,my) to be signed selects group elements
h; (for i with m; = 1) that determine an intermediate hash value

H(m)=ho [] hi

m;=1

Depending on H(m), the simulation in the security proof will be able to ei-
ther generate a signature for m, or use any forged signature for m to solve
a given CDH-challenge. Concretely, each h; is associated with an (information-
theoretically hidden) integer a;. A message m in turn leads to an integer a(m) :=
ao + Y, @i- If a(m) # 0, then the simulation can sign m; if a(m) = 0, then
the simulation can use any forged signature for m to solve a CDH-challenge.

The programming of the hash function. Unfortunately, neither the mes-

sages that need to be signed, nor the message on which the adversary forges are

known in advance. Hence, the crux in the security analysis is to set up the values

a; such that with significant probability (say, P) over the a;,

(a) all ¢ adversarial signature queries m, ..., m@ can be answered (that is,
a(m®) # 0 for all i), and

(b) the message m* on which the adversary forges can be used to embed a
challenge (i.e., a(m*) = 0).



The probabilistic argument from [22] chooses the a; uniformly over a suitable
domain that depends on ¢. This results in a simulation success probability of
P =06O(1/(¢-q)). Hotheinz and Kiltz [I314] show that by setting up the a; as
suitably long random walks, the success probability can be improved to P =

e(1/(VI-q)).

The problem. The reason for the somewhat annoying ¢, resp. v/¢ terms in these
analyses is a bit subtle, and we will only try to give a brief idea here. Consider
what happens when the forgery message m™* is “close” to a signed message m
in the sense that m* and m(® differ in only one bit. Then, a(m*) and a(m)
differ by only one a;. Now the analysis requires that the conditioned probability
Prla(m) =0]a(m*) =0] is O(1/q). (Otherwise, it becomes difficult to prove
that the probability is significant that, say, ¢ random messages m can all be
signed, given that m* cannot.) But since a(m*) and a(m) differ by only one (a-
priori unknown) a;, each a; must have a distribution with min-entropy at least
log, . (That is, the probability that a; takes a particular value must always be
O(1/q).) Hence, e.g., for the all-one message m = (1,...,1), we get that a(m) =
ap + Zle a;, and we would expect that a(m) has a much larger min-entropy
than log, ¢. (In particular, if m* is the all-one message, then Pr [a(m*) = 0] will
be much smaller than ©(1/q).)

Our solution. Intuitively, our solution is simply to encode all messages using
a code with large minimum distance prior to signing. This avoids that two mes-
sages m*, m that are “close” even exist. Concretely, we will ensure that any two
different (a(m*), a(m) will always differ by at least a constant fraction of all a;.
This allows to set up the a; with lower min-entropy than in previous analyses,
and allows us to set up a simulation with success probability P = ©(1/q).

For completeness, we note that Guo et al. describe another way to set-up the
a; in the proof of [T, Theorem 2], and claim that this set-up can used to give a
tighter security reduction for Waters signatures. However, it turns out that this
is not true [12]. The reason is that in the proof of [I1, Theorem 2] the simulation
is set up in a way that depends on the messages to be signed. (Specifically, the
variables that correspond to our a; are not statistically hidden in [I1].) Thus,
the view of the adversary is not independent of the event that the simulation
succeeds. Concretely, the setup in [I1] potentially allows adversaries who forge
only signatures for messages m* with a(m*) # 0, in which case no solution to
the CDH problem can be extracted.

Optimality of our solution. Naturally, one may ask whether it is possible
to improve the reduction further. We answer this question in the negative. Con-
cretely, we show that it is impossible to prove any re-randomizable signature
scheme secure, using a black-box reduction to any of a large class of hardness
assumptions, such that the security loss in the reduction is significantly bet-
ter than 1/q. Since both Waters signatures and our new variant are efficiently
re-randomizable, this shows our reduction optimal. We stress that our impossi-
bility result does not cover interactive assumptions (such as the LRSW assump-



tion [19]). In particular, our result does not contradict re-randomizable signature
schemes with tight security proofs based on interactive assumptions (such as [4]).

The proof technique is based on the meta-reduction technique of Coron [7],
which simulates a forger for R such that the simulation fails with probability at
most 1/q. For Coron’s proof it is essential that the considered signature scheme
is deterministic, and that for all public keys it is publicly verifiable that there
exists only a single valid signature per message (as it is the case for instance for
certified trapdoor permutations, cf. [I7]). Since we want to consider probabilistic
schemes, we lose this leverage and Coron’s result does not apply.

Instead, we will show that it suffices that signatures are re-randomizable.
Moreover, since deterministic signature scehemes are re-randomizable, our result
can be seen as a generalization of previous work [7I17].

Let us intuitively sketch the reason why re-randomizability suffices. Basically,
if signatures are efficiently re-randomizable, then the only way left to prove
security is to partition the message space into messages which can be signed by
the reduction, and messages from which a solution to the given problem instance
can be extracted. To see this, suppose that for a random message m™* it holds
with high probability that the reduction can simulate one signature for m*, but
extract a solution to a hard problem from a different signature for m*. Then the
reduction could solve the hard problem even without interacting with the forger,
by generating a simulated signature o* for m*, re-randomizing it to obtain some
random signature o/, and finally extracting the solution to the hard problem
from o’. Since the reduction would solve the problem without any additional
assumption (i.e. the existence of a signature forger), this would contradict the
assumption that the underlying problem is hard.

Further applications. We note that the analysis from can also be
applied to show that a security reduction from any hard problem to breaking
Waters’ identity-based encryption (IBE) scheme from [22] must lose a factor
of £2(q), if the adversary may issue ¢ adaptive chosen-identity key queries are
allowed.

However, this bound is only achievable using our techniques if one wants
to prove that Waters’ IBE scheme is one-way under adaptive chosen-identity
attacks. The commonly accepted security notion for IBE is indistinguishability
under adaptive chosen-identity attacks, and it seems that in this setting our
techniques do not substantially improve on the results of [2I22]. Therefore we do
not elaborate this further.

1.2 Outline

We recall some notation, standard definitions, and Waters’ signature scheme in
[Section 2| In [Section 3| we present our modified signature scheme and prove it
secure with a reduction loss of O(q). Finally, in we show a lower bound
of £2(q) on the reduction loss of schemes with re-randomizable signatures.




2 Preliminaries

For k € N, we write 1% for the string of k ones, and [k] for {1,...,k}. Moreover,
|z| denotes the length of a bitstring x, while |S| denotes the size of a set S.
Further, s & S denotes the sampling a uniformly random element s of S. For
an algorithm A, we write z <& A(z,y, ...) to indicate that A is a (probabilistic)
algorithm that outputs z on input (z,y,...).

2.1 Digital Signatures

A digital signature scheme Sig = (Gen, Sign, Vfy) consists of three algorithms.
Key generation Gen generates a keypair (pk, sk) <~ Gen(1¥) for a secret signing
key sk and a public verification key pk. The signing algorithm Sign inputs a
message and the secret signing key, and returns a signature o & Sign(sk,m)
of the message. The verification algorithm Vfy takes a verification key and a
message with corresponding signature as input, and returns b < Vfy(pk, m, o),
where b € {0,1}. We say that a signature is wvalid, if Vfy(pk,m,o) = 1. We
require the usual correctness properties.

Let us recall the existential unforgeability against chosen message attacks
(EUF-CMA) security experiment [10], played between a challenger and a forger
F.

1. The challenger runs Gen to generate a keypair (pk, sk). The forger receives
pk as input.

2. The forger may ask the challenger to sign a number of messages. To query the
i-th signature, F submits a message m(®) to the challenger. The challenger
returns a signature o; under sk for this message.

3. The forger outputs a message m* and signature o*.

F wins the game, if 1 « Vfy(pk,m*,c*), that is, o* is a valid signature for m*,
and m* # m® for all i.

Definition 1. We say that F (t,q,€)-breaks the EUF-CMA security of Sig, if
F runs in time t, makes at most q signing queries, and has success probability
€. Furthermore, we say that Sig is FUF-CMA secure if there is no PPT forger
F that t,q, e-breaks the EUF-CMA security of Sig for polynomials t,q and a
non-negligible €.

2.2 The Computational Diffie-Hellman Problem

Let G be a group of order p. The computational Diffie-Hellman problem is to
compute the group element g®#, given random group elements (g, g%, ¢°) € G>.

Definition 2. We say that algorithm A (e, t)-solves the computational Diffie-
Hellman problem in G, if

Pr[A(g, 9% ¢°) = g°?] > €,

and A runs in time t.



2.3 Waters Signatures
Recall Waters’ signature scheme Sigy.; = (Genwat, Signwar, Viywae) from [22]:

Genwat(1%): The key generation algorithm selects a group G of prime order p ~
22F with generator ¢ and bilinear map e : GXG — G. Then hq, hq, ..., hy &

G and a, 8 & Z,, are chosen at random. The public key is defined as

pk = (Gmg’gamgﬁah()ahla"'7hl)7

and the secret key is sk := (pk, g*?).
In the sequel we will denote with H : {0,1}¥ — G the function mapping
m — hg Hle R, where for i € [¢], we denote by m; € {0,1} the ith bit of
m.

Signyy,: (sk,m): The signing algorithm takes as input a message m € {0,1}*.
The algorithm samples r & Z,, and computes

o1=g" and o9 = g*PH(m)".

Then it returns the signature o = (o1, 02).
Viywat (Pk, m, 0): The verification algorithm returns 1 if the equation

e(9%,9") - e(or, H(m)) = e(g, 02)
holds. Otherwise 0 is returned.

Waters [22] proved that the above signature scheme is EUF-CMA secure
under the computational Diffie-Hellman assumption in G. The original reduction
from [22] is not very tight. Concretely, it loses a factor of (16(¢ + 1)q), where
¢ is the bit-length of the message and ¢ is (an upper bound on) the number of
signature queries issued by the forger. The original analysis was slightly improved
in [13], which gives the following theorem.

Theorem 1 ([22/13]). Suppose there exists a forger F that (t,q,€)-breaks the
EUF-CMA security of Sigwa:- Then there exists an algorithm A (€ ,t')-solving the
computational Diffie-Hellman problem in G in time t' ~ t with success probability

€ >e- O(ﬁ@),

3 A Variant of Waters’ Signature Scheme

As mentioned in our only modification of Waters’ scheme will be to
encode messages prior to signing. For each security parameter k, we will therefore
assume a code C = C, over Fy of dimension k, length ¢, and minimum distance
d > ~- L for a fixed v > 0. (For instance, one can use a family of expander codes
with suitable parameters [21123].)

We will apply C to k-bit messages, and we assume that each encoded message
has Hamming weight at least d. (For instance, one could simply forbid any
message that leads to an all-zero output.)

Our scheme Sigyigne = (Gentight; SigNyights ViYiight) is almost identical to the one

by Waters (see [Section 2.3)):



Gengght (1¥) outputs pk := (G, g,9%,¢°, h1,..., he) and sk = (pk, g*?) just like
Genwat, but without hg. Now pk defines a hash function H(M) := ho [, hf‘/f
for M = (M, ..., M) € {0,1}%.

Signyigne (sk,m) (for m € {0,1}*) first computes M := Cx(m) € {0,1}* and then
outputs o := (01,09) := (", g H(M)").

ViYiight (Pk, m, ) sets M := Cr(m) and then checks

2

e(9%,9”) - eo1, H(M)) = e(g, 02).
Obviously, this defines a signature scheme. We also claim:

Theorem 2. Suppose there exists a forger F that (t,q,€)-breaks the EUF-CMA
security of Sigygn.. Then there exists an algorithm A (¢',t')-solving the com-
putational Diffie-Hellman problem in G in time t' ~ t with success probability
! 1

€ >e-0(y)

The rest of this section will be devoted to proving Theorem

3.1 A better bound on the success probability of the simulation

We start with our abstract setup and the analysis of the crucial variables a; for
our simulation. In the next subsection, we then proceed to outline how this setup
is embedded in a simulation of the signature scheme.

In the following let ¢,w € N. In the simulation, ¢ will be the bitlength of
(encoded) messages, and w will be an integer that determines how long each
random walk a, will be. For ¢ € [¢],j € [w], let a;; be independently and
uniformly distributed random variables over {—1,0,1}. Let a; := Z;’Zl Qi j.
Furthermore, for S C [{], let a(S) := ), g a;. Note that a(S) is a random walk
(with {—1,0,1}-steps) of length |S| - w. Hence, the following standard result
about random walks applies:

Theorem 3. There exist A, A € R that do not depend on £, w, such that for any
S C (4] of size s :=|S|, we have

\/S%} < Prla(s)=0 < -2

Furthermore, for any £,w, S, the probability Pr [a(S) =i

A

s mazximized fori = 0.

Proof. Although this is a standard fact about random walks (see [8II5] for a
thorough introduction), [I4, Theorems 17 and 18] provide a direct proof of the
theorem adjusted to our setting.

We can now use Theorem [3| to derive the main technical lemma for the
analysis of our variant of Waters’ signature scheme. This result uses and ex-
tends techniques of [13[14] to a setting in which there is a guaranteed “minimum
distance” between two random walks. (Later, this “minimum distance” will cor-
respond to the Hamming distance between two encoded messages to be signed.)



Lemma 1. Let X, Y C [{] such that | X|,|Y|>d, and (X \Y)U (Y \ X)| >d

for d > 1. Then, we have

C- Ve
d-/w

for a fized constant C that does not depend on ¢, w,d, X,Y .

Pria(Y)=0]a(X)=0] < (1)

Proof. We distinguish the two cases | X \ Y| > d/2 and |V \ X| > d/2:
Case Y\ X| > d/2:

Prja(Y)=0]a(X)=0] max Pria(Y)=0|a(Y NX) =1

< max PriaY\X)=—i|a(Y NX) =1

© max Prla(Y \ X) = —i]

K2

= Prla(Y\X)=0]
Vi

9 V2A D sy Y
Vd-w d-w
Here, (a) holds because a(Y") only depends on a(Y NX) but not on a(X \Y);
(b) uses a(Y) = a(Y\X)+a(YNX); (c) uses that a(Y'\ X) and a(Y NX) are
independent; (d) and (e) apply Theorem [3] using that a(Y"\ X) is a random
walk of length at least (d/2) - w; finally, (f) uses d < /.
Case | X\ Y| >d/2:

Prio(Y) = 0] a(X) =0] %

Here, (a) uses Bayes’ theorem; (b) uses what we have proved for the case
|Y'\ X| > d/2 (with swapped X,Y); (¢) apply Theorem [3| using that a(X)
and a(Y) are random walks of length at least d - w and at most £ - w.

Since we have A > ), setting C := /2 - (A2/)) proves .

Next, we can plug Lemma into the existing analysis of Waters’ scheme [22].
First, this means proving the following technical claim, which essentially bounds
the probability that all signing queries can be answered, while the adversary’s
forgery solves a computational challenge. This claim roughly corresponds to [22]
Claim 2].



Lemma 2. Let X,Y7,...,Y, C [{] such that | X|,|Y;| > d and |(X \Y;) U (Y;\
X)| > d for some d > 1 and all i. Then, we have

o) Viw

for fized constants C, D that do not depend on £,w,d, q, X, and the Y;.

Pria(X)=0AVYieq]: a(Y;) #0] > <1—C.q. Ve ) D
Proof. We have

Pria(X)=0AVi:a(Y;) #0]=Pr[Vi:a(Y;) #0| a(X) =0] - Pra(X) = 0]

(a) - ' " - A

).

=(1—=Pr[Fi:a(Y;)=0]a(X)=0]

d -
(b) 1
> [1— Pr[a(ﬁ”i):Ola(X)ZO])'
© (161'0 Vi ) A

j»
> g

A ) Viw

Here, (a) applies Theorem [3] using that a(X) is a random walk of length at
least d-w; (b) uses a union bound; (c) denotes a g-wise application of Lemma [i}
Setting D := X yields .

Note that if we set d = v- £ and w = (2Cq/~)? (for some v > 0) in , a
quick calculation gives

Pria(X)=0AVi€[q: a(Y;) £0] > ]}Cﬁ; 3)

Hence, if v is a constant, then this probability lies in the order of 1/g.

3.2 The full simulation

We now briefly sketch how to use Lemma [2| to prove Theorem [2| We are very
brief because except for Lemma [2] and a few syntactic differences, the proof is
identical to the one from [22].

Our goal is to build a CDH adversary A from an EUF-CMA forger F on
Sigyigne that makes at most ¢ = (k) signature queries. Our CDH adversary A
gets as input a CDH challenge (g, g%, ¢°) for a group G of order p with pairing
e:G x G — Gr, and is supposed to output g*~.

Public key. The first task of A is to prepare a Sigygn, public key for F. In
order to do so, A sets w := (2Cq/v)? for the parameter v of the code C, and
the constant C' from Then, A prepares random variables aq, ..., ay



as random walks (over {—1,0,1}) of length w, just as in Finally, A

chooses uniformly blinding exponents by, ..., by < [p] and sets
hi = ()" g% (fori=1,...,0)
pk = (G,9,9% 9", hn, ..., he).

This results in a public key that is distributed exactly as in Sigygps-

Signing queries. Next, A runs F on pk, and answers F’s signing queries
as follows. Suppose F asks for the signature of a message m € {0,1}* that
induces an encoded message M = C(m) € {0,1}*. Let us view M as a subset
of [n], such that i € M iff the i-th bit of M is set. Write a(M) := > ., a;
and b(M) := Y",.,, bi- Note that we can always write H (M) = (g)*(M)gb(M),
Hence, valid signatures have the form

(gr,gaﬁ H(M)T) — (gT7gaﬂ+r-(a<a(M)+b(M)))
In particular, if we set g" = (g7)* g, then valid signatures are of the form

oty aﬁ+(mﬂ+y)-(a<a(M)+b(M)))

(g g
= ((9)" g7 (g) T (gD (g7) TP groen). (4)

Thus, depending on a(M), we now distinguish two cases:

— if a(M) # 0, then the simulation can generate properly distributed valid
signatures via (4 by setting * = —a(M)~! mod p and choosing y uniformly
(notice that the ¢®? term in then vanishes);

— if a(M) = 0, then the simulation cannot generate a signature for m, and the
simulation fails.

Extraction. Suppose that eventually, F generates a valid forged signature o*
for a fresh message m* with associated encoding M* := C(m*). Again, we can
distinguish two cases:

— if a(M*) = 0, then the simulation can extract g®? by using

ot = (9" ,¢" - HM")") = <9’"*,9a5' <9b(M*)) )

(e ())

for some unknown r* but known b(M*);
— if a(M™*) # 0, then the extraction fails.

Simulation success. Let fail denote the event that the simulation fails (either
because a(M;) = 0 for a signature query, or because a(M*) # 0). Then Lemmal|2]
immediately gives an upper bound of 1 — ©(1/q) on Pr[fail]. Indeed, if we set
X := M* and Y; := M;, then any two different encoded messages differ in at
least d = v - £ bits. In particular, [(X \ Y;) U (Y; \ X)| > d. Substituting d = v - ¢
and w = (2Cq/v)? in (2) yields (3), and thus a lower bound of O(1/q) on ~fail.



Furthermore, the a; are information-theoretically hidden from F, so conditioning
on —fail does not change F’s success in the EUF-CMA experiment. Theorem [2]
follows.

4 Lower Tightness Bounds for Re-Randomizable
Signatures

In this section we show that it is impossible to prove security of a signature
scheme with significantly smaller security loss than 2(g), if the signature scheme
is efficiently re-randomizable. To this end, we first define re-randomizable signa-
tures. Then we give abstract definitions of computational problems, and reduc-
tions that reduce solving a given computational problem to breaking the security
of a given signature scheme. All these results are generic, in the sense that they
apply to any re-randomizable signature scheme. Finally, we show that both Wa-
ters’ signature scheme from [22] and our modified scheme from are
efficiently re-randomizable, which implies that the reduction from is
optimal.

4.1 Re-Randomizable Signatures

The intuition behind re-randomizable signatures is the property that, given only
the public key pk and a valid signature o for some message m, one can efficiently
generate a new signature o’ that is distributed uniformly over the set of all
possible signatures for m.

Let Sig = (Gen, Sign, Vfy) be a signature scheme. For any string pk (which
may either be a honestly generated public key, or a fake public key generated by
a simulator in a security proof) let us denote with

X(pk,m) = {0 : Viy(pk,m, o) = 1}

the set of signatures o for message m that verify correctly under public key pk.

Definition 3. We say that Sig is t-re-randomizable, if there exists an algorithm
ReRand running in time at most t, such that for all (pk, m, o) with Viy(pk,m,o) =
1 holds that the output distribution of

ReRand(pk, m, o)

is identical to the uniform distribution over X(pk,m).

4.2 Computational Problems and Reductions

The definitions in this section follow [7].



Definition 4. A computational problem IT = (C,S) consists of a set C and a
family of sets S = (S.)cec. We say that C is the set of challenges of II, and
for each ¢ € C set S, is the set of solutions for c. We say that an algorithm A
(ea,ta)-solves II, if A runs in time t 4 and

PrlA(c) € S.:c&C] > eq.

As an example consider a group G of prime order p. Then the computational
Diffie-Hellman problem in G is the problem IT = (C,S) with C =G x G x G
and where for each ¢ = (g, g%, ¢°) € C we have S, = {g?}.

Definition 5. R is a (tr,€r,q,er,tr)-reduction from problem II to breaking
the security of signature scheme Sig, if for any forger F that (tr,ex,q)-breaks
the EUF-CMA security of Sig in the sense of Deﬁm’tion algorithm R (er,tr)-
solves II.

Note that we require that the R works for any forger F, in particular if F is
given as a black-box.

For instance, Section gives an example for an algorithm R that (tr,er, ¢, £
O(1/q), tr)-reduces solving the computational Diffie-Hellman problem to break-
ing the security of Waters’ signature scheme with tg ~ tr.

4.3 Lower Tightness Bound for Re-Randomizable Signature
Schemes

In this section we consider reductions that run Forger F only once, and show
that any such reduction loses a factor of at least gq. A generalization to reductions

that run F repeatedly is straightforward, see

Theorem 4. Let Sig be a trerand-re-randomizable signature scheme and let IT
be a computational problem in the sense of Definition [{} If there exists an
(tr,€r,q, e, tr)-reduction R that runs F once and reduces II to breaking Sig,
then there exists an algorithm A that (€ 4,t)-solves IT with t 4 = 2tr + tReRand
and

eq > er —exp(—1)/q.
We will use the following lemma, which is due to Coron [7].

Lemma 3. Let M be a set and let QQ be a set of sequences of at most q elements
of M, such that for any sequence (m1,...,m;) € Q we have (m1,...,mj_1) € Q.
Let i & lq] and (Mmq,...,mg, m") & MY be uniformly random. Then

Pr [(mla s 7mq) € Q A (mla sy MG—1, m*) ¢ Q] < eXp(—l)/q
See [7, Appendix D] for the proof.
Proof (Proof of|Theorem 4|). Consider an (imaginary) forger F that (tz,er, q)-

breaks the EUF-CMA security of a given signature scheme Sig with some success
probability €£ in some time tx. Forger F works as follows.



1. F receives as input a public key pk from the challenger.

2. Tt selects ¢+ 1 random pairwise different messages (m™), ..., m(®, m*) from
the message space of Sig.
3. Then F queries the challenger for signatures of messages (m(®, ..., m(®),

4. F computes a valid signature ¢* for message m*, such that ¢* is distributed
uniformly over X(pk,m*). (Forger F may be inefficient, since it needs to
forge a signature. However, we will later show how to simulate F efficiently.)

5. Finally F tosses a (biased) coin b < {0,1} with Pr[b = 1] = e.

(a) If b =1 then it outputs o*.
(b) Otherwise it outputs error symbol L.

Note that any (tr,€r, ¢, €R, tr )-reduction from some computational problem
IT to breaking the security of Sig can use Forger F to (eg,tr)-solve IT. In the
sequel we will apply the rewinding technique of Coron [7] to show how to simulate
F, if Sig is re-randomizable.

Consider an algorithm A4 that uses R as follows.

1. A receives as input an instance ¢ of IT, and starts R on input c.

. R outputs a public key pk.

3. A selects a random integer ¢ € [g] and ¢ + 1 random pairwise different
messages (m, ..., m@ m*).

4. Tt queries R for a signature for each message in My = (m(l), co,mUh) m*).
If R aborts, then so does A.

5. Then A rewinds R to the state after it has output the public key (i.e. the
state after Step 2).

6. Now A queries a signature for each message in M; = (m"), ... m(®). Again,
if R aborts, then A aborts too.

7. Then A computes o/ = ReRand(pk, m*, 0*) and tosses a coin b & {0,1} with
Pr[b = 1] — €F.
(a) If b =1 then it submits ¢’ to R.
(b) Otherwise it submits error symbol L.
Finally A returns outputs whatever R returns

[\]

Fix the internal coins of R, and let @ be the set of (ordered) message se-
quences M of size at most ¢, such that R aborts when asked to sign the messages
in M. Let £ denote the event that My ¢ Q and M; € Q. (In other words, &
occurs when R does not abort before the rewinding, but does abort after the
rewinding by A.) Note that, due to the re-randomizability of Sig, A outputs a
uniformly random signature ¢’ from the set X(pk, m*) of all valid signatures for
m* and public key pk. Therefore A simulates F perfectly (after the rewind), and
thus can use R to solve I, unless £ occurs. By applying Lemma 3] we obtain
that the success probability of A is at least

eqa>er —Pri€]l=exr —Pr[My € QA My € Q] > eg —exp(—1)/q.

A essentially runs R twice and performs one re-randomization, therefore the
running time of A is t 4 & 2t + tReRand-



The above theorem directly gives rise to the following corollary.

Corollary 1. Let IT be a (€,2t + trerand)-hard computational problem. Then
the success probability ex of any security reduction from II to breaking a re-
randomizable signature scheme that runs in time t is at most

er < exp(—1)/q +e.

In particular, if € is close to zero and signatures are efficiently re-randomizable,
then this gives an upper bound on the success probability of the reduction of
er S exp(—1)/q for all reductions running in time ¢.

Note that in principle any (probabilistic) signature scheme is re-randomizable,
though not necessarily efficiently. However, the running time of the simulated
forger depends on the running time of the re-randomization algorithm. Thus, in
order to get a meaningful result, we need to require that signatures are efficiently
re-randomizable.

4.4 Reductions that run F more than once

So far we have only considered reductions that run the forger once. While the
reduction from [22] is of this type, it may be possible that there exist a tighter
reduction that runs F several times with different public keys. Fortunately, fol-
lowing [7J17] it is very simple to generalize the result of Section to reductions
that run F repeatedly.

Theorem 5. Let Sig be a trerand-re-randomizable signature scheme and let 1T be
a computational problem as in Definition . If there exists a (tr,er,q, er,tR)-
reduction R that runs F at most v times and reduces Il to breaking Sig, then
there exists an algorithm A that (e 4,t4)-solves IT with t4 = 2 -tr + 7 - tReRand
and

eq > er — (r-exp(—1))/q.

The proof is very similar to the proof of the only difference is
that now A needs to simulate r executions of F. Consider an adversary A which
proceeds exactly like in the proof of and let & denote the event that
the simulation of F fails in the i-th execution. Then we have

€A > ER — ZPr[&;] =€eR — ZPT[MLO gQNM; 1 € Q)
i=1

> e — (r-exp(-1)/a,

where M; o and M, ; are the sequences of chosen-message queries issued by the
simulated forger in the i-th execution of F.



4.5 Waters Signatures are Re-Randomizable

To show that any reduction from a computationally hard problem to the (¢, g, €)-
EUF-CMA security of Waters signatures loses at least a factor 1/¢, it remains
to show that Waters signatures are efficiently re-randomizable.

Note that the original Waters scheme from [22] and the variant from [Section 3]
differ only in the way the hash value H(m) € G is computed. The following
considerations do not depend on a specific function H. Therefore we consider
a Waters signature scheme that uses some abstract hash function H in the
sequel, which makes the analysis applicable to both schemes (and other similar
constructions) simultaneously.

Lemma 4. Waters signatures are t-re-randomizable, where t amounts to two
exponentiations in G plus some minor additional operations.

Proof. Let pk = (G,g,9% ¢°, H) be a given public key, and let m and o =
(01,02) be a given message with valid Waters signature, i.e., o satisfies

6(901,9,8) .6(017H(m)) - 6(970—2)' (5)
Since oy is a group element, we can write o; = g" for some integer r € Z,,
where p = |G| is the order of G. Then [Equation 5| implies that we can write

o2 as g9 = g*PH(m)". The set of all (01, 09) satisfying [Equation 5| is therefore
identical to the set

Z(pk,m) ={(g",g*"H(m)") : r € Zy}.

It remains to show that there exists an efficient algorithm ReRand that pro-
duces uniformly random elements of X'(pk, m) given only the public key pk,
message m, and a valid signature o = (01, 02). Consider algorithm ReRand tak-
ing as input pk, signature (oq,02) = (97, g*?H(m)") for some r, and message

m. The algorithm samples s < Z,, and computes and returns (o}, %) where
ol:=01-¢°=¢""" and o =0y H(m)* = g*PH(m)" 5.

Since s is uniformly distributed over Z,, the resulting signature (o1, 0%) is dis-
tributed uniformly over X'(sk, m), as required.

Combining the above lemma with Theorem [ yields the following result.

Theorem 6. Let II be a computational problem according to Definition [§]. If
there exists a (tr,er,q, er,tr)-reduction R that reduces solving II to breaking
Waters signatures, then there exists an algorithm A that (e a,t4)-solves IT with
ta~2tg and

eq > er —exp(—1)/q.

Thus, a reduction from any computational problem IT to breaking Waters
signatures that runs in time ¢ with success probability significantly better than
1/q implies that there exists an algorithm solving IT in time a 2¢ with significant
success probability.
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