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Abstract. In this paper, we consider the Polly Cracker with Noise
(PCN) cryptosystem by Albrecht, Farshim, Faugère, and Perret (Asi-
acrypt 2011), which is a public-key cryptosystem based on the hardness
of computing Gröbner bases for noisy random systems of multivariate
equations. We examine four settings, covering all possible parameter
ranges of PCN with zero-degree noise. In the first setting, the PCN cryp-
tosystem is known to be equivalent to Regev’s LWE-based scheme. In
the second, it is known to be at most as secure as Regev’s scheme. We
show that for one other settings it is equivalent to a variants of Regev’s
with less efficiency and in the last setting it is completely insecure and
we give an efficient key-recovery attack. Unrelated to the attack, we also
fix some flaws in the security proofs of PCN.
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1 Introduction

Background By the term Polly Cracker-type cryptosystem, we mean a family of
cryptosystems starting from the early 1990s that propose to base their security
on the difficulty of computing Gröbner bases ([8,2]). In its public key version
and the most simple form, the public key is an ideal I in a polynomial ring
(given by sufficiently many polynomials of degree b from I) and the secret key is
a Gröbner basis for I consisting of polynomials of degree d ≤ b. These systems
mostly lack a formal treatment of security and almost all of them have been
broken due fundamental limitations in the construction([2,1]). See [7] for a good
survey on various instantiations and attacks.

Recently, at Asiacrypt 2011, Albrecht, Farshim, Faugère, and Perret [1] proposed
a new cryptosystem called Polly Cracker with Noise (PCN) that tries to overcome
these limitations. Their cryptosystem can be seen both as a high-dimensional

? Due to space limitations, this version does not contain the proofs of Thm. 3. These
are contained in the full version, available on eprint.



generalization of Regev’s LWE-based scheme [12] and a noisy generalization of
the Polly Cracker-style cryptosystems. They also give a formal proof of security,
based on the hardness of computational problems related to Gröbner bases and
ideals in multivariate polynomial rings. Note that this paper refers mainly to the
full version of [1] on eprint, which contains more material than the proceedings
version.

One of the appealing features of the PCN cryptosystem comes from its ideal-
theoretic framework. In this framework it is prominently visible that the PCN
cryptosystem, which contains LWE as a special case, is both multiplicatively and
additively homomorphic for a limited number of operations. For the special case
of LWE, the recent fully homomorphic scheme by Brakerski and Vaikuntanathan
from FOCS 2011 [4] can be represented in this framework.

Our Contributions Our first result is that the Polly Cracker with Noise cryp-
tosystem with zero-degree noise is either insecure or does not offer any secu-
rity benefit (although still a conceptual one) compared to Regev’s scheme. For
b > d > 1, we present an efficient attack that recovers the secret key from the
public key. For d = 1, the security of the PCN cryptosystem is at most that of
Regev’s scheme by [1]. For d = b > 1, PCN has the same security as Regev’s
schem, but with less efficiency. The only remaining case b = d = 1 is exactly
Regev’s scheme by [1].

Note that zero-degree noise is used for the homomorphic properties claimed
in [1], cf. Sect. 2.3.

As a second result, we point out flaws in the security proofs of [1], giving coun-
terexamples to the statements claimed therein. We then give corrected proofs for
d = 1, thereby showing their security proofs only work for d = 1. Note that the
attack against b > d > 1 is unrelated to these flaws. Due to space limitations,
the proofs are only contained in the full version, available on eprint.

Organization of this Work This work is organized as follows: In Section 2, we
start by introducing some notation and recalling the Polly Cracker with Noise
cryptosystem and its security assumptions. In Section 3, we relate the PCN
cryptosystem to Regev’s scheme for b = d and for d = 1.
In Section 4, we give counterexamples to the security proofs of [1] and give
corrected statements for d = 1.
In Section 5, we present our key-recovery attack for b > d > 1.

2 The Polly Cracker with Noise Cryptosystem

2.1 Gröbner Bases

In this section, we introduce some notation and recall some facts regarding
Gröbner bases [5]. For a more detailed exposition, see e.g. [6].



Let P = Fq[X1, X2, . . . , Xn] be a polynomial ring and < be a fixed monomial
ordering for its monomials. For a subspace Q ⊂ P , we denote by Q<k, Q=k, Q≤k
the restriction of Q to polynomials of total degree < k,= k,≤ k, respectively.
We shall always assume that q is odd, for simplicity prime, and that the mono-
mial ordering is compatible with the total degree of monomials (e.g. deglex

or degrevlex), i.e. deg f < deg g implies f < g for all monomials f, g ∈ P ,
where deg denotes total degree. W.l.o.g. we may assume X1 < X2 < . . . < Xn.
For a polynomial f ∈ P , let LC(f),LM(f),LT(f) denote the leading coeffi-
cient, monomial and term, respectively. We always represent polynomials f ∈
P, f =

∑
m≤LM(f) fm · m by their dense coefficient representation, i.e. the list

of the fm. Note that for degree-compatible <, the length of this list is at most
dimP≤deg f =

(
n+deg f
deg f

)
, which is polynomial in n for fixed deg f .

Definition 1. Gröbner basis

Let I ⊂ P be an ideal. A finite set G = {g1, . . . , gl} is called a Gröbner basis for
I if G generates I as an ideal and if for every f ∈ I, there is a gi ∈ G such that
LM(gi) | LM(f).

If additionally, LC(gi) = 1 for all i and no term of gi is divisible by LC(gj) for
i 6= j, we call G a reduced Gröbner basis.

Every ideal I ⊂ P has a Gröbner basis G. If one additionally insists on G being
reduced, G is unique. For any f ∈ P , we can use the multivariate polynomial
division algorithm to compute the remainder, denoted f mod G. The central
property of a Gröbner basis G is that f mod G is unique. We use this property
to identify P/I with the set of remainders, thus viewing P/I ⊂ P . As a vector
space, P/I is generated by those monomials not divisible by any LM(gi) and we
always have P = (P/I)⊕ I.

2.2 Polly Cracker with Noise

In this section, we briefly recall the (symmetric key variant of the) Polly Cracker
with Noise(PCN) cryptosystem.
The secret key of this cryptosystem is a Gröbner basis G for some ideal I ⊂
P . Ciphertexts are noisy samples from I, where the message is appropriately
embedded in the noise. More precisely, we encrypt a message bit M ∈ {0, 1} as
f + 2e+M , where f ←$ I and e←$ X from some noise distribution X on P/I.
We can decrypt c by computing M = (c mod G) mod 2, provided the noise e is
small enough.

In more detail, let us consider P = Fq[X1, . . . , Xn] and < as above. We will also
need to fix some integers 0 < d ≤ b, which will denote the degree of the Gröbner
basis polynomials and the message polynomials, respectively. The parameters
q = q(λ), n = n(λ) will be implicitly functions of the security parameter λ, with
log q = poly(λ) (sometimes even q = poly(λ)), n = poly(λ) and nd = Ω(λ) (so



poly(n) = poly(λ)). Note that we assume b, d not to depend on the security
parameter λ.

The secret key of our cryptosystem will be a (reduced) Gröbner basis G =
{g1, . . . , gn} for some ideal I, so we need an algorithm to generate Gröbner
bases. In general, we require Gen(1λ) to be a ppt algorithm outputting a reduced
Gröbner basis G = {g1, . . . , gk} for an ideal I ( P with deg gi ≤ d.

For definiteness, we will restrict our attention in Sect. 5 to the key generation
algorithm suggested in [1] called GBGendense.

Algorithm 1 GBGendense

function GBGendense(1
λ):

for i = 1 to n do
gi ← Xd

i

for all monomials m ∈ P≤d with m < Xd
i and m 6= Xd

j for any j do
gi,m ←$ Fq uniformly
gi ← gi + gi,m ·m

return G = {g1, . . . , gn}

Writing each gi as gi =
∑
m gi,m ·m where m runs over the possible monomials of

P , GBGendense sets the leading term of gi to be Xd
i . The coefficients of smaller

monomials are chosen uniformly and independently at random.
Buchberger’s first criterion (cf. [3, Lemma 5.66, p. 222] or [6, section 2.9, pp.
99–108]) guarantees that this is indeed a Gröbner basis for its generated ideal
I = (g1, . . . , gn). Setting all coefficients of Xd

j in gi to be 0 for i 6= j guarantees
that G is a reduced Gröbner basis. Note that sampling these coefficients at
random as well and then reducing the Gröbner basis afterward, as originally
done in [1], gives the same output distribution.

We denote by Q = P/I the quotient ring and identify it with a subspace Q ⊂ P
as above, such that P = I ⊕Q.
With G generated by GBGendense, Q is always finite-dimensional and a basis is
given by

{
Xt1

1 · · ·Xtn
n | ti < d

}
. Note that this does not depend on the random-

ness of GBGendense and for simplicity we shall always assume that Q ⊂ P is
finite-dimensional and a basis for Q≤b is publicly known, even for general Gen.
It follows that for d = 1, Q = Fq is just the field of constants in P . In the case
d > 1, the full quotient Q has exponential dimension dimQ = dn, essentially
due to the lack of a fixed bound on total degree. In this case, our cryptosystem
will only make use of the polynomially-dimensional subspace Q≤b ⊂ Q.

Let X be an efficiently sampleable noise distribution on Q≤b. The distributions
we will later be concerned with will be either uniform or discrete Gaussian
distributions on vector sub-spaces. In the case of Gaussians, this will mean we
independently sample each coefficient of e ← X in a particular basis from a
discrete Gaussian distribution.



By the support S of a probability distribution Φ on a finite set Ω, we mean those
elements of Ω that are assigned a non-zero probability by Φ.

Using the Gröbner basis G for I, we can obtain noisy samples from I≤b + X by
applying algorithm 2.1

Algorithm 2 SampleIX
1: function SampleIX (G,b):
2: f ←$ P≤b uniformly
3: e←$ X
4: f := f − (f mod G) + e
5: return f .

By SampleI without subscript, we denote the special case of noiseless sampling
from I≤b (i.e. with e = 0 above).

Following [1], we note that SampleI actually samples uniformly from I≤b and also
give an alternative sampling algorithm, whose equivalence we will need later on:

Lemma 1. For any Gröbner basis G = (g1, . . . , gm) for I, SampleI(G, b) yields
uniform samples from I≤b.
Furthermore, if deg gi = di ≤ b for all gi and the underlying monomial ordering
is compatible with deg, we have the following alternative sampling algorithm,
which gives the same distribution:

Let ti ←$ P≤b−di uniformly for i ∈ {1, . . . ,m} and sample f ∈ I as f =∑m
i=1 ti · gi.

Proof. Clearly, both ways of sampling give us polynomials from I≤b. We ob-
serve that both f 7→ f mod G and (t1, . . . tm) 7→ f =

∑m
i=1 ti · gi are Fq-linear

maps. Since surjective linear maps preserve uniform distributions, both resulting
distributions are uniform on their respective supports.

For SampleI, the support is clearly all of I≤b, since we may choose any element
from I≤b in step 2 of the algorithm.
For the alternative sampling, we note that for f ∈ I≤b, the multivariate poly-
nomial division algorithm for f mod G gives us a (typically non-unique) repre-
sentation f =

∑
i tigi. Since < is compatible with deg, the intermediate results

in that computation have degree ≤ b, which ensures that deg ti ≤ b− di. This
already proves the claim.

To encrypt a message bit M ∈ {0, 1}, we proceed as follows:

1 identifying a set with the uniform distribution on it, I≤b +X actually is the output
distribution of the algorithm



Algorithm 3 EncG
1: function EncG(M):
2: f ← SampleI(G)
3: e←$ X
4: c := f + 2e+M
5: return c

Accordingly, decryption of a ciphertext c ∈ P≤b is performed by the following
algorithm, where for f ∈ P , f=0 denotes the constant coefficient of f :

Algorithm 4 DecG
1: function DecG(c):
2: M := (c mod G)=0 ∈ {−b q2c, . . . , b

q
2
c}

3: return M mod 2

Decryption is correct, provided that for the noise 2e ←$ 2X we have |2e=0| <
b q2c. If X is a sufficiently narrow discrete Gaussian distribution, this will be the
case with overwhelming probability.

Remark 1. Embedding the message in the noise

In algorithm EncG above, the message M is merely one bit and is embedded
only in the degree 0 term of the noise. Hence, in algorithm DecG, we also take
only the degree 0-coefficient (c mod G)=0. In particular, this means that fake
ciphertexts c not generated by EncG still decrypt to a bit, even if c mod G is
not in the support of 2X + {0, 1}. Alternatively, we could output an error in the
latter case.2

In fact, in [1] it is implicitly assumed (and also implemented that way in the
reference implementation) that the noise is completely contained in degree 0.
Unfortunately, these issues are not addressed in [1] and we will show in Sect. 5
that for d > 1 this choice renders the system insecure for b > d. For b = d or
d = 1, compare the following Sect. 3, where we show that these choice offer no
benefit compared to b = d = 1. For b = d = 1, the PCN cryptosystem is a
reformulation of Regev’s scheme.

Actually, if the message is contained only in degree 0, the coefficients belonging
to the monomials ofQ≤d other than the constant term of a ciphertext polynomial
c are completely irrelevant for decryption (cf. Prop. 1, which is a special case of
that).
So unless one wants to detect fake ciphertexts as mentioned above or make use

2 Note that if the support of 2X + {0, 1} is a vector space, a CPA-attacker can check
for this error himself, so this does not affect security.



of the multiplicative homomorphic properties (cf. Sect. 2.3), one should really
use uniform noise for those coefficients (or just leave those coefficients out of the
ciphertext altogether).

In this work we will consider the more general setting, where the message is
contained in degree 0, but the noise distribution X on Q≤b is arbitrary. When
we assume that the noise is concentrated in degree 0, we will explicitly state
that.

2.3 Homomorphic Properties and Public Key Version

One of the appealing aspects of the PCN cryptosystem is that it is somewhat
homomorphic:
P → Q, f 7→ f mod G is actually a ring map. This means that for ciphertexts
c1 = f1 + 2e1 +M1, c2 = f2 + 2e2 +M2, with fi ∈ I≤b, ei ∈ Q≤b,Mi ∈ {0, 1}, we
have

c1 + c2 = (f1 + f2) + 2(e1 + e2) +M1 +M2

and

c1 · c2 = g + 2 (2e1e2 + e1M2 + e2M1 mod G) + (M1M2 mod G),

where g ∈ I≤2b
From this, we get DecG(c1) u DecG(c2) = Dec(c1 u c2), provided that the noise
of the sum/product does not grow too large.

For sums, this implies that for a sufficiently narrow Gaussian X , the cryptosys-
tem supports a limited number of homomorphic additions at the cost of increased
noise, and still decrypts correctly with overwhelming probability.
Note that this also holds in the case that we embed several bits into one ci-
phertext, provided the noise is narrow coefficient-wise. Via the usual generic
construction [14], these additive somewhat homomorphic properties allow to
convert the secret key cryptosystem into a public key cryptosystem by publish-
ing a sufficient amount of encryptions of 0 as the public key. Note that the same
applies to Regev’s scheme [12] described below in Section 3. For simplicity, in
this work we deal with the secret key versions of both schemes, but it is easy to
see that everything carries over directly to the public-key setting.

For multiplications, if the noise is concentrated in degree 0, we get that the
noise is approximately multiplied for each multiplication of ciphertexts3, so we
can also perform a limited number of homomorphic multiplications.
If d > 1 and X is not supported in degree 0, this will actually fail if done näıvely.
The reason is that even if all coefficients of e1, e2 are small, e1 · e2 mod G might
have large coefficients due to reduction mod G.

3 Note that this also increases the total degree, which can be adressed by reencryption
techniques[4], but this will not be important for us here.



This is the case even if the coefficients of the Gröbner basis polynomials are small;
take for example the reduced Gröbner basis G = (g1, . . . , g2n) ⊂ Fq[X1, . . . X2n]
with
g1 = X2

1 − a1, g2 = X2
2 − a2,

g2i = X2
2i − a2iX2i−2X2i−3,

g2i+1 = X2
2i+1 − a2i+1X2i−2X2i−1 for i ≥ 1 and ai ∈ Fq small.

Then for e1 = e2 = X2nX2n−1 ∈ Q≤2, we have e1 · e2 mod G =
∏2n
i=1 ai, which

is exponentially large.

This observation makes it highly desirable to concentrate the noise and message
in degree 0. Unfortunately, this renders the system insecure (cf. Sect. 5) unless
d = 1 or b = d. By the results of Section 3, in the latter cases, we should rather
use b = d = 1.

2.4 Security Assumptions

[1] introduced the following three security problems related to the PCN cryp-
tosystem:

Definition 2. The Gröbner basis with noise (GBN) problem GBNn,Gen,d,b,X
for parameters as above is defined as follows:

Let G← Gen(1λ) be a reduced Gröbner basis. Given access to a sampling oracle
for SampleIX , the task is to find G. The advantage for a (ppt) algorithm A in
solving the GBNn,Gen,d,b,X problem ist given as

Advgbn
n,Gen,d,b,X ,A(λ) = Pr[A solves the GBNn,Gen,d,b,X -problem]− 1

|G|
,

where G is the set of possible secret keys and the probability is over the coins of
Gen,SampleI and A.
Note that we always assume that |G| is exponential.

Definition 3. The Ideal remainder with noise problem IRNn,Gen,d,b,X for pa-
rameters as above is defined as follows:

Let G ← Gen(1λ) and a uniformly random challenge x ←$ P≤b. Given x and
access to a sampling oracle for SampleIX , the task is to find x mod G ∈ Q≤b.
The advantage for a ppt algorithm B for this problem is given as

Advirn
n,Gen,d,b,X ,B(λ) = Pr[B solves the IRNn,Gen,d,b,X -problem]− 1

|Q≤b|
,

where the probability is over the coins of Gen,SampleI, B and the uniform choice
of the challenge x.
Note that this definition of advantage implicitly assumes that Q≤b is known to
the attacker.



Definition 4. The Ideal membership with noise (IMN) problem IMNn,Gen,d,b,X
for parameters as above is defined as follows:

Let G← Gen(1λ). Given access to a sampling oracle for SampleIX , the task is
to distinguish a challenge polynomial x drawn either as x←$ SampleIX or as a
uniform x ∈R P≤b. The advantage for a ppt algorithm C for this is given as

Advimn
n,Gen,d,b,X ,C(λ) = Pr[CSampleIX ()(x) = 1]−Pr[CSampleIX ()(u) = 1]

where x ←$ SampleIX , u ∈R Q≤b and the probability is over the coins of Gen,
SampleI, C and choices of x or u. Note that we differ by a factor 2 from [1].

The security assumption made in [1] is that for appropriate choice of parameters,
namely b ≤ d ≤ 1 arbitrary, Gen = GBGendense and X a sufficiently broad
discrete Gaussian distribution on Fq, the advantage for any ppt algorithm is
negligible for GBN / IRN / IMN.

Also, it was claimed in [1] that all of these assumptions and the IND-CPA-
security of PCN are essentially equivalent:

1. The GBN problem is hard iff the IRN problem is hard.
2. For polynomially-sized Q≤b, IRN is hard iff IMN is hard.
3. If IMN is hard, the PCN cryptosystem is IND-CPA-secure.

As their proofs of 1 and 2 contain errors (amongst other things, the reduction
presents the wrong distributions to the algorithms), we will redo the proofs for
1 and 2 in Sect. 4.
Unfortunately, we will have to make additional assumptions compared to [1],
most importantly we have to assume d = 1 for the ⇒ direction in the first
proof and for the ⇐ direction of the second. We will also give a counterexample
indicating that these additional assumptions are necessary.

3 Relations to LWE and Regev’s Scheme

We will now relate the PCN cryptosystem to LWE and show that the cases b = d
and d = 1 both reduce to Regev’s LWE-based scheme. Let us briefly recall the
LWE distribution, the LWE assumption and Regev’s scheme from [12], which
has a reduction to the LWE assumption:

Definition 5. Learning with Errors (LWE)

Let Φ be some noise distribution on a finite field Fq and n ∈ N and s ∈ Fnq .
The LWE distribution Ls,Φ on Fnq × Fq is obtained by sampling a1, . . . , an ∈ Fq
uniformly random, e←$ Φ and outputting (a1, . . . , an,

∑
aisi + e).

The computational LWE problem LWEn,q,Φ is the following problem: For uni-
formly random s ∈ Fnq , compute s when given oracle access to Ls,Φ.



The decisional LWE problem DLWEn,q,Φ is the following problem: For uniformly
random s ∈ Fnq , distinguish x ∈R Fn+1

q from x←$ Ls,Φ when given oracle access
to Ls,Φ.

The LWE assumption (for q,X given functions of n) states that any ppt algo-
rithm can only solve these problems with negligible advantage.

Definition 6. Regev’s scheme

Let Φ be some noise distribution on a finite field Fq. In its secret key version4,
Regev’s scheme generates a secret key s = (s1, . . . , sn) ∈ Fnq uniformly. We
encrypt a message M ∈ {0, 1} by sampling a = (a1, . . . , an) ∈ Fnq randomly,
e←$ Φ and defining the ciphertext as (a, 〈a, s〉+ 2e+M), where 〈a, s〉 =

∑
aisi

is the scalar product.

Decryption recovers 2e+M and, from that, M itself, provided e is small enough.

As already noted in [1], Regev’s scheme is equivalent to the PCN cryptosystem
for d = b = 1. To see that, we can identify Regev’s secret s with the Gröbner
basis G = (X1 + s1, . . . , Xn + sn). We identify ciphertexts (a, b) with linear
polynomials

∑
aiXi + b and Φ with X .

In fact, such a relationship also holds for b = d > 1 and for b > d = 1, where the
cases with d = 1 were already discussed in [1]:

Theorem 1. Relationship of PCN with LWE for b = d or d = 1

– For b = d, the IND-CPA-security of PCN (with parameters q,X , b, d, n)
is equivalent to the IND-CPA-security of Regev’s scheme (with parameters
q,X , n).

– For d = 1, there exists a tight security reduction from the IND-CPA-security
of PCN (with parameters q,X , b, d, n) to the IND-CPA-security of Regev’s
scheme (with parameters q,X ,

(
n+b
b

)
).

– For b = d = 1, the PCN cryptosystem is a reformulation of Regev’s scheme.

Proof. For b = d, this follows from proposition 1 below, showing that in this
case the PCN cryptosystem is a redundant version of Regev’s scheme. For d =
1, this follows from proposition 2 below, showing that in this case the PCN
cryptosystem is a structured version of Regev’s scheme. The case b = d = 1 was
already discussed above.

Regarding ciphertext length, recall that the PCN-ciphertexts are
(
n+b
b

)
elements

from Fq. As a consequence, for b = d > 1 we have a loss in efficiency, but no gain
in security. For b > 1, d = 1, we have no gain in efficiency (apart from a shorter

4 The public-key version is obtained by using Rothblum’s construction [14] just as
with PCN and all observations carry over directly to the public-key versions of both
schemes.



secret key compared to Regev’s) and potentially a loss in security. Therefore,
there is little point in using the PCN cryptosystem for b = d or d = 1 unless
b = d = 1.

Proposition 1. Relation of PCN with LWE for b = d

Consider the case b = d and assume that X outputs e ←$ X , e =
∑
m em ·m,

where the sum runs over the monomials and the em are chosen independently,
their distribution possibly depending on m (This is the case if the noise is con-
tained in degree 0). Then the PCN cryptosystem is essentially5 a reformulation
of (the secret key version) of the amortized6 variant [11] of Regev’s scheme,
where each monomial m of Q≤b corresponds to one parallel instance of Regev’s
original scheme.

To see this, consider a PCN-ciphertext c. By lemma 1, c is of the form c =∑
ti · gi + 2e+M for e←$ X with ti ∈ Fq. Let us write c =

∑
m cm ·m for the

monomials m of c. Then for 1 6= m ∈ Q≤b, the coefficients of the ciphertext are
cm =

∑
ti · gi,m + 2em and c1 =

∑
ti · gi,1 + 2e1 +M . These are noisy random

linear combinations of the secret gi,m as in Regev’s scheme. The other m /∈ Q≤b
are m = Xd

i and there we have cXdi = ti. It follows that the ciphertexts are
exactly as in the amortized variant of Regev’s.

When taking that point of view for general b = d > 1, beware that by con-
struction, for some m ∈ Q=b and some j ∈ {1, . . . , n} we can have m ≮ Xd

j ,
so gm,Xdj = 0. In that case, the corresponding LWE-instance has a secret key

from Fn′q for some n′ < n. In particular, for GBGendense and m = Xb−1
n Xn−1

we have n′ = 1. Of course, since the message is contained in degree 0, only the
Regev-instance for the constant monomial m = 1 is relevant and the above is not
an issue. The other coefficients (apart from the Xd

i ) are superfluous, not only
for the ciphertexts but also for the secret key, since these coefficients are inde-
pendent of the gi,1 and the message. It follows that for b = d, the security of the
PCN cryptosystem does not depend on d at all, but the efficiency degrades with
d. Note that if the em are not independent, this might only help the attacker.

Proposition 2. Reduction from PCN to LWE for d = 1, b arbitrary

Consider the case d = 1, b arbitrary. Then the PCN cryptosystem can be viewed
as a structured version of Regev’s scheme. There is a reduction from the (IND-
CPA-)security of PCN to the (IND-CPA-)security of Regev’s original scheme,
as already noted in [1].

To see this, first observe that for d = 1, the secret Gröbner basis of the PCN
cryptosystem is necessarily of the form G = (X1 − s1, . . . , Xn − sn) for s =

5 The only difference is that for some of the parallel instances, the secret key has fewer
coordinates

6 This amortized variant just runs parallel instances of Regev’s, where the random
coefficients a of the noisy linear combinations 〈a, s〉+e are shared between instances.



(s1, . . . , sn). We then have f mod G = f(s), so SampleI(G, b) just gives us
polynomials f − f(s) · 1 for f ∈ P≤b uniformly. For a monomial m 6= 1 of
P≤b, let s̃m := m(s) ∈ Fq. It follows that PCN-ciphertexts are of the form∑
m6=1 am ·m− (

∑
m6=1 amm̃s) · 1, where the am ∈ Fq are uniform and the sums

run over the monomials m of P≤b (except the constant one). This implies that
PCN-instances are nothing but Regev-instances with a structured secret key m̃s.

Our reduction just has to remove that structure from the key. This can be done
as in [13] by rerandomizing the secret:
Our reduction chooses tm ∈ Fq uniformly for m 6= 1 monomial of Fq. Then
we bijectively transform any PCN-ciphertext c =

∑
m 6=1 amm+ b into a Regev-

ciphertext Tt(c) = (a, b +
∑
m 6=1 tmam). These ciphertexts are distributed as

Regev-ciphertexts with uniform secret s̃+t with the same ai and the same noise
e←$ X .

4 Security Proofs

In this section, we clarify the relationships between the different security as-
sumptions we recalled in Sect. 2.4 and the security of the PCN cryptosystem.
We will first give counterexamples, showing that, under the LWE assumption,
the GBN, IRN and IMN problems are not equivalent for general d > 1, refuting
the claims from [1]. We will then give corrected proofs for d = 1.

In order to make the proofs for d = 1 work, we need to impose the following
technical restriction on X :

Definition 7. We call a noise distribution X on Q≤b recognizable with noise, if
for every p′ = poly(λ) there exists a ppt algorithm D that, given oracle access to
Xa,p with p ≤ p′, outputs a with overwhelming probability for uniform a←$ Q≤b.
Hereby, Xa,p is defined as a distribution that, with probability

(
1− 1

p(λ)

)
, outputs

a uniform x ←$ Q≤b, and otherwise (with probability 1
p(λ)) outputs x = e + a

for e←$ X .

We remark that a discrete Gaussian distribution with polynomial standard de-
viation is recognizable with noise (using as D the majority vote).

Theorem 2. IRN hard < GBN hard, IRN hard < IMN hard

Assume that the LWE assumption holds for some q = poly(n) and some noise
distribution Φ on Fq that is recognizable with noise.
Then there exists an instantiation for Gen with X recognizable with noise (and,
in particular, distinguishable from uniform), such that the IRN problem is easy,
but both the GBN problem and the IMN problem are hard, contradicting the
proofs from [1].



Proof. Consider the case b = d = 2 and let q = poly(n) and Φ be such that
the LWE assumption holds for q and Φ. We consider Gen that outputs reduced
Gröbner bases of the form G = (X2

1 , X2+s2X1, X3+s3X1, . . . , Xn+snX1). Then
Q = Q≤b is generated by X1 and 1 as a vector space. For the noise distribution
e1X1 + e2 ←$ X , we take e1 ←$ Φ and e2 uniform from Fq.
By construction, the constant coefficient of all Gröbner base polynomials is 0,
so for any f ∈ I≤b we have f mod G = f=0 + r(f)X1 for some r(f) ∈ Fq. This
already implies that we can guess the remainder by guessing r(f) with noticeable
probability 1

q , compared to |Q≤b| = q2, giving a non-negligible advantage for the
IRN problem.

Now let f ←$ SampleIX with f = f (2) + f (1) + f (0) be the homogenous parts
of degree 2, 1 and 0. Since P≥2 ⊂ I and the noise in degree 0 is uniform, we
get that f (2) and f (0) are independently uniform and independent of f (1). Let
us write f = e +

∑
i tigi with gi ∈ G, ti ∈ P, e ∈ Q. Since deg gi ≥ 1, f (1) only

depends on e and the degree-0 part of the ti.
It follows that f (1) = bX1+a2X2+ . . . anXn with ai uniform and b =

∑
aisi+e1

with e1 ←$ Φ, i.e. f (1) is distributed as Ls,Φ. It follows that the IMN problem
is equivalent to the DLWEn−1,q,Φ-problem and the GBN problem is equivalent
to the LWEn−1,q,Φ-problem, both of which we assumed to be hard.

Remark 2. Separation of IRN and GBN.

There is also a separation between IRN and GBN, if we assume that the LWE-
assumption holds for some q and some Gaussian noise. Namely, take b = d = 2
and let Gen output Gröbner bases of the form X2

1 − s1, . . . X2
n− sn with si ∈ Fq

independent and uniformly. Note that there are no linear terms here. As noise
distribution choose Gaussian noise, concentrated in degree 0. Then the GBN
problem is is hard if the LWE assumption holds (cf. Prop. 1). However, IMN is
easy, because noisy samples from the ideal have no linear terms.

Note that we assumed Φ to be recognizable with noise to satisfy the requirements
from [1] and all requirements from Thm 3, apart from d = 1, below. Without that
restriction on the noise, we may take Φ to be uniform and get an information-
theoretical variant of Thm. 2 without the need for an LWE assumption.

For d = 1, the statements from [1] actually hold. The reason why we can make
the proof work only in that case is that we need an amplification step, for which
our rerandomization strategy only works for d = 1.

Theorem 3. IRN hard ⇔ GBN hard ⇔ IMN hard for d = 1, q = poly(n)
and X recognizable with noise

For any Gen,X , b ≤ d, we have:

1. If the IMN problem is hard, the PCN cryptosystem is IND-CPA-secure.
2. If d = 1,X recognizable with noise, then the IRN problem is hard iff the GBN

problem is hard.



3. If q = poly(n), d = 1,X distinguishable from uniform, then then IRN problem
is hard iff the IMN problem is hard.

Proof. Statement 1 is proven in [1]. Statement 2 and 3 are proven in the appendix
of the full version.

5 Attack on Low-Dimensional Noise

In this section, we present our main contribution. We will present a polynomial
time CPA-attack against the PCN cryptosystem that recovers the secret key, if
b > d > 1, using that the noise is contained in degree 0. Note that all concrete
parameter choices of [1] use d = 1, but this attack still violates the explicit
security assumption, which is stated for general d.

Throughout this section we assume that d > 1 and that X is supported in
degree ≤ k. Furthermore, we assume for simplicity that we are using Gen =
GBGendense. Using the notation from Alg. 1 above, let us write the secret key
as G = (g1, . . . , gn) with gi = Xd

i +
∑
m gi,m ·m. Our attack will derive linear

equations for the gi,m.

The intuition behind the attack is the following:
Since the support of X is contained in Q≤k, all ciphertexts are contained in a
vector sub-space N := Ib ⊕ Q≤k $ P≤b. We can recover this vector space N
via a CPA-oracle (In the public-key variant, N is directly given by the public
key). Note that the dimension of N is known, namely, it is dimN = dimP≤b −
dimQ≤b + dimQ≤k = O(nb).

Of course, since gi ∈ I≤b ⊂ N , the secret Gröbner base polynomials must also
lie in this subspace. If the inclusion is proper, this directly translates into linear
equations for the gi,m. Unfortunately (for the attacker), these equations do not
yet determine the gi: We may add any error term h ∈ Q≤k to gi and we still
have gi + h ∈ N .
To overcome this, we make use of the fact that I is an ideal, so t · gi ∈ I≤b ⊂ N
for any polynomial t with deg t ≤ b − d. Roughly speaking, this effectively also
multiplies the error term by t and we will use this to move the error out of
Q≤k. In order to move the error completely out of Q≤k, we need to multiply by
polynomials t of degree > k, so we expect our attack to work whenever b−d > k.
In particular, for k = 0, this strategy will recover the secret key for b > d.

Note that we will also cover the case d > k:
Remember that for d > 1, Q has exponential (in n) dimension and contains
polynomials of degree > d for n large. In the case d > k, we will not get any
useful information from gi ∈ N . But for k < b we still have Q≤k $ Q≤b $ Q
for n large. This means we will get some useful equations from t · gi ∈ N for
polynomials t with b− d ≥ deg t ≥ d− k
We now present the actual algorithm and then we will give a rigorous analysis.



Algorithm 5 ppt attack against PCN cryptosystem with low-degree noise

Input: 1n, k, b, d, access to a CPA oracle
Output: Secret key gi,m

1: N := a vector space basis of Q≤k
2: repeat
3: Create f ∈ I≤b ⊕Q≤k an encryption of 0
4: N := N ∪ {f}
5: until dim(SpanN) = dim(I≤b ⊕Q≤k)

. We now have Span(N) = I≤b ⊕Q≤k
6: Write N as a matrix and perform Gaussian elimination to obtain

Span(N) = kerA for linear A : P≤b → FdimQ≤b−dimQ≤k
q .

7: for i = 1 to n do
8: Let Ei := ∅ be the set of equations for the gi,m.
9: for all monomials t ∈ P≤b−d do

10: Add the inhomogenous linear equations A(t · gi) = 0 in the variables gi,m
to Ei.

11: Solve the system of equations Ei

12: return A solution gi,m for each of the Ei

Theorem 4. Algorithm 5 is correct and runs in polynomial time with
overwhelming probability

With overwhelming probability, algorithm 5 runs in polynomial time O(n2b+d+1).
If n > k, d > 1 and b− d > k, the algorithm outputs the secret key.
In particular, for k = 0, that is, for noise concentrated in degree 0, the algorithm
gives an efficient key-recovery attack for b > d > 1.

More precisely, we claim that, if n > k, we have gi,m = gi,m whenever degm >
k − (b− d).
For any other m with degm ≤ k− (b− d), gi,m may be chosen arbitrarily by the
algorithm (the solution of the Ei is not unique if such monomials exist).

Proof. Let us start with the running time:

In line 2 to 5, we use the CPA-oracle to obtain f ∈ I≤b ⊕Q≤k (Note here that
if the message is embedded only within Q≤k as well, any ciphertext will do).
Since the I≤b-component of f is uniform, after O(dim I≤b) = O(nb) steps, we
will eventually obtain all of I≤b ⊕Q≤k with overwhelming probability.

After that, the running time of the algorithm is dominated by solving the Ei.
Each Ei consists of dimP≤b−d ·(dimQ≤b−dimQ≤k) = O(n2b−d) equations in at
most dimP≤d = O(nd) unknowns. Since 2b− d > d, this gives a running time of
O(n2b−d) ·O(nd) ·O(nd) = O(n2b+d) for solving each Ei, hence a total running
time of O(n2b+d+1) to solve all the Ei (cf. Rmk 3 below).

We now turn to the correctness statement:



By construction, Span(N) = I≤b ⊕Q≤k, starting from line 6.
Since gi ∈ I≤b ⊂ I≤b ⊕ Q≤k, we have A(gi) = 0. Making use of the fact that I
is an ideal, we also have t · gi ∈ I≤b and hence A(t · gi) = 0 for deg t ≤ b− d.

It follows that the equations we derive for the gi,m are correct, that is, the gi,m
satisfy the equations Ei.

Note that in line 10, we rewrite the linear equation A(tgi) as an equation in the
gi,m. Implicitly, we add the equations gi,m = 0 for m > Xd

i , gi,Xdj = 0 for i 6= j

and gi,Xdi = 1 at this point. Since we set the coefficient of Xd
i to be 1 in that

last equation, the resulting system of equations Ei is a system of inhomogeneous
linear equations.

Now, the Ei might have more than one solution, apart from the secret key gi,m.

To show that the coefficients for monomials m with degm ≤ k − (b − d) are
undetermined, we first observe that P≤k mod G = Q≤k, so I≤b ⊕Q≤k = I≤b +
P≤k. Consequently, by Lemma 1 I≤b ⊕Q≤k are exactly all elements of the form
f = e+

∑
tigi with arbitrary e ∈ P≤k, ti ∈ P≤(b−d). The coefficients of the gi of

degree ≤ k − (b − d) then only affect the coefficients of f of degree ≤ k, which
are uniform due to e. So I≤b + P≤k does not depend on the coefficients of gi of
degree ≤ k− (b−d), which implies that these coefficients span a subspace of the
kernel of the Ei.

To show that for n ≥ k + 1,degm > k − (b− d), we have gi,m = gi,m, let gi, gi
′

be 2 solutions for Ei and h = gi − gi′. We need to show deg h ≤ k − (b − d)
(which means h = 0 if the right-hand side is negative).

By construction of the Ei, we know that A(t · h) = 0, or equivalently t · h ∈
I≤b ⊕Q≤k, for all t ∈ P≤b−d. The other equations coming from the restrictions
on the set of monomials that can appear in the gi, gi

′ imply that h can only
contain coefficients for the set of monomials {m | m < Xd

i ,m 6= Xd
j for any j}.

This implies that h ∈ Q≤d, in particular, deg h ≤ d.

We will show that deg h ≤ k − α for 0 ≤ α ≤ b − d, using induction on α. For
α = b− d, the claim then follows.

For the base case α = 0, we already observed that h ∈ Q≤d. Setting t = 1
in A(th) = 0 yields h ∈ I≤b ⊕ Q≤k. Together, these give h ∈ Q≤k ∩ Q≤d, so
deg h ≤ k as desired.

For the inductive step, assume deg h ≤ k − α for α < (b − d). Assume w.l.o.g.
that h 6= 0, since otherwise we are done. Let H = LT(h) be the leading term.
Since the monomial order is degree-compatible, degH = deg h. We need to show
that degH < k − α.

For this, choose a monomial t of degree deg t = α+ 1 ≤ b− d such that t ·H ∈
Q = Span{Xv1

1 · · ·Xvn
n | vi < d for all i}. This can be accomplished for d > 1

and n ≥ k+1 by choosing t = Xi1 · · ·Xiα+1
a product of α+1 pairwise different

variables, disjoint from those of H.7 By the properties of a monomial order,

7 Note that if k < d, any t of degree α+ 1 will do without the restriction on n.



LT(t · h) = t · H. Since t · H ∈ Q, this is not reduced modulo G, so we have
LT((t · h) mod G) = t · H. Since A(t · h) = 0, we have t · h ∈ I≤b ⊕ Q≤k. This
implies (t · h) mod G ∈ Q≤k, in particular (t · h) mod G has degree at most k. It
follows that H has degree at most k− deg t = k− α− 1. This finally proves the
theorem.

Remark 3. Algorithm 5 was optimized for simplicity of analysis. We can get a
better running time by using the highly structured nature of the equations on
the Ei. In particular, we don’t need all t ∈ P≤b−d, as the proof above shows and
we also don’t need to solve the Ei separately for 1 ≤ i ≤ n.

Also, we would like to remark that Algorithm 5 also gives an attack to the
underlying GBN, IRN and IMN problems; in particular the existence of this
attack is not related to the flaws in security proof of [1] we pointed out in
section 4.

6 Conclusion and Open Problems

We have seen that for d > 1, the security reductions from [1] will no longer
work and there arise problems in choosing a noise distribution. Concentrating
the noise in low degree makes the scheme insecure unless b = d, so the obvious
way to go is to spread the noise over the full quotient. We remark that it might
be possible to retain the homomorphic properties by using a different strategy
to generate the Gröbner basis, allowing multiplicative homomorphic properties
in Ring-LWE [10] style. We leave this as an open problem.
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