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Abstract. Gentry’s bootstrapping technique is currently the only known method
of obtaining a “pure” fully homomorphic encryption (FHE) schemes, and it may
offers performance advantages even in cases that do not require pure FHE (e.g.,
when using the noise-control technique of Brakerski-Gentry-Vaikuntanathan).
The main bottleneck in bootstrapping is the need to evaluate homomorphically
the reduction of one integer modulo another. This is typically done by emulating a
binary modular reduction circuit, using bit operations on binary representation of
integers. We present a simpler approach that bypasses the homomorphic modular-
reduction bottleneck to some extent, by working with a modulus very close to a
power of two. Our method is easier to describe and implement than the generic
binary circuit approach, and we expect it to be faster in practice (although we did
not implement it yet). In some cases it also allows us to store the encryption of
the secret key as a single ciphertext, thus reducing the size of the public key.
We also show how to combine our new method with the SIMD homomorphic
computation techniques of Smart-Vercauteren and Gentry-Halevi-Smart, to get a
bootstrapping method that works in time quasi-linear in the security parameter.
This last part requires extending the techniques from prior work to handle arith-
metic not only over fields, but also over some rings. (Specifically, our method uses
arithmetic modulo a power of two, rather than over characteristic-two fields.)

1 Introduction

Fully Homomorphic Encryption (FHE) [12, 7] is a powerful technique to enable
a party to compute an arbitrary function on a set of encrypted inputs; and hence
obtain the encryption of the function’s output. Starting from Gentry’s break-
through result [6, 7], all known FHE schemes are constructed from Somewhat
Homomorphic Encryption (SWHE) schemes, that can only evaluate functions
of bounded complexity. The ciphertexts in these SWHE schemes include some
“noise” to ensure security, and this noise grows when applying homomorphic
operations until it becomes so large that it overwhelms the decryption algorithm
and causes decryption errors. To overcome the growth of noise, Gentry used a
bootstrapping transformation, where the decryption procedure is run homomor-
phically on a given ciphertext, using an encryption of the secret key that can be
found in the public key,3 resulting in a new ciphertext that encrypts the same
message but has potentially smaller noise.

3 This transformation relies on the underlying SWHE being circularly secure.



Over the last two years there has been a considerable amount of work on de-
veloping new constructions and optimizations [5, 13, 9, 3, 14, 2, 8, 1, 11], but all
of these constructions still have noise that keeps growing and must be reduced
before it overwhelms the decryption procedure. The techniques of Brakerski et
al. [1] yield SWHE schemes where the noise grows slower, only linearly with
the depth of the circuit being evaluated, but for any fixed public key one can still
only evaluate circuits of fixed depth. The only known way to get “pure” FHE
that can evaluate arbitrary functions with a fixed public key is by using boot-
strapping. Also, bootstrapping can be used in conjunction with the techniques
from [1] to get better parameters (and hence faster homomorphic evaluation), as
described in [1, 11].

In nearly all SWHE schemes in the literature that support bootstrapping,
decryption is computed by evaluating some ciphertext-dependent linear opera-
tion on the secret key, then reducing the result modulo a public odd modulus q
into the range (−q/2, q/2], and then taking the least significant bit of the re-
sult. Namely, denoting reduction modulo q by [·]q, we decrypt a ciphertext c
by computing a = [[Lc(s)]q]2 where Lc is a linear function and s is the se-
cret key. Given an encryption of the secret key s, computing an encryption of
Lc(s) is straightforward, and the bulk of the work in homomorphic decryption
is devoted to reducing the result modulo q. This is usually done by computing
encryptions of the bits in the binary representation of Lc(s) and then emulating
the binary circuit that reduces modulo q.

The starting point of this work is the observation that when q is very close to
a power of two, the decryption formula takes a particularly simple form. Specifi-
cally, we can compute the linear functionLc(s) modulo a power of two, and then
XOR the top and bottom bits of the result. We then explain how to implement
this simple decryption formula homomorphically, and also how the techniques
of Gentry et al. from [11] can be used to compute this homomorphic decryption
with only polylogarithmic overhead.

We note that applying the techniques from [11] to bootstrapping is not quite
straightforward, because the input and output are not presented in the correct
form for these techniques. (This holds both for the standard approach of emu-
lating binary mod-q circuit and for our new approach.) Also, for our case we
need to extend the results from [11] slightly, since we are computing a function
over a ring (modulo a power of two) and not over a field.

We point out that in all work prior to [11], bootstrapping required adding to
the public key many ciphertexts, encrypting the individual bits (or coefficients)
of the secret key. This resulted in very large public keys, of size at least λ2 ·
polylog(λ) (where λ is the security parameter). Using the techniques from [14,
1, 11], it is possible to encrypt the secret key in a “packed” form, hence reducing



the number of ciphertexts to O(log λ) (so we can get public keys of size quasi-
linear in λ). Using our technique from this work, it is even possible to store an
encryption of the secret key as a single ciphertext, as described in Section 4. We
next outline our main bootstrapping technique in a few more details.

Our method applies mainly to “leveled” schemes that use the noise con-
trol mechanism of Brakerski-Gentry-Vaikuntanathan [1].4 Below and through-
out this paper we concentrate on the BGV ring-LWE-based scheme, since it
offers the most efficient homomorphic operations and the most room for opti-
mizations.5 The scheme is defined over a ringR = Z[X]/F (X) for a monic, ir-
reducible polynomialF (X) (over the integers Z). For an arbitrary integer modu-

lus n (not necessarily prime) we denote the ringRn
def
= R/nR = (Z/nZ)[X]/F (X).

The scheme is parametrized by the number of levels that it can handle, which
we denote by L, and by a set of decreasing odd moduli q0 � q1 � · · · � qL,
one for each level.

The plaintext space is given by the ring R2, while the ciphertext space
for the i’th level consists of vectors in (Rqi)

2. Secret keys are polynomials
s ∈ R with “small” coefficients, and we view s as the second element of
the 2-vector s = (1, s). A level-i ciphertext c = (c0, c1) encrypts a plain-
text polynomial m ∈ R2 with respect to s = (1, s) if we have the equality
over R, [〈c, s〉]qi = [c0 + s · c1]qi ≡ m (mod 2), and moreover the polyno-
mial [c0 + s · c1]qi is “small”, i.e. all its coefficients are considerably smaller
than qi. Roughly, that polynomial is considered the “noise” in the ciphertext,
and its coefficients grow as homomorphic operations are performed.6 The crux
of the noise-control technique from [1] is that a level-i ciphertext can be pub-
licly converted into a level-(i + 1) ciphertext (with respect to the same secret
key), and that this transformation reduces the noise in the ciphertext roughly by
a factor of qi+1/qi.

Secret keys too are associated with levels, and the public key includes some
additional information that (roughly speaking) makes it possible to convert a
ciphertext with respect to level-i key si into a ciphertext with respect to level-
(i + 1) key si+1. In what follows we will only be interested in the secret keys
at level L and level zero; which we will denote by s and s̃ respectively to ease
notation.

4 Our method can be used also with other schemes, as long as the scheme allows us to choose a
modulus very close to a power of two. For example they can be used with the schemes from
[3, 2].

5 Our description of the BGV cryptosystem below assumes modulo-2 plaintext arithmetic, gen-
eralizing to modulo-p arithmetic for other primes p > 2 is straightforward.

6 We ignore here the encryption procedure, since it does not play any role in the current work.



For bootstrapping, we have as input a level-L ciphertext (i.e. a vector c ∈
R/qLR modulo the smallest modulus qL). This means that the noise-control
technique can no longer be applied to reduce the noise, hence (essentially) no
more homomorphic operations can be performed on this ciphertext. To enable
further computation, we must therefore “recrypt” the ciphertext c, to obtain a
new ciphertext that encrypts the same element of R with respect to some lower
level i < L.

Our first observation is that the decryption at level L can be made more
efficient when qL is close to a power of two, specifically qL = 2r + 1 for an
integer r, and moreover the coefficients of Z = 〈c, s〉 mod F (X) are much
smaller than q2L in magnitude. In particular if z is one of the coefficients of the
polynomial Z then [[z]qL ]2 can be computed as z〈r〉 ⊕ z〈0〉, where z〈i〉 is the
i’th bit of z.

To evaluate the decryption formula homomorphically, we temporarily ex-
tend the plaintext space to polynomials modulo 2r+1 (rather than modulo 2).
The level-L secret key is s = (1, s), where all the coefficients of s are small
(in the interval (−2r,+2r)). We can therefore consider s as a plaintext polyno-
mial in R/2r+1R, encrypt it inside a level-0 ciphertext, and keep that ciphertext
in the public key. Thus, given the level-L ciphertext c, we can evaluate the in-
ner product [〈c, s〉 mod F (X)] homomorphically, obtaining a level-0 ciphertext
that encrypts the polynomial Z.

For simplicity, assume for now that what we get is an encryption of all the
coefficients of Z separately. Given an encryption of a coefficient z of Z (which
is an element in Z/2r+1Z) we show in Section 3.1 how to extract (encryptions
of) the zero’th and r’th bit using a data-oblivious algorithm. Hence we can fi-
nally recover a new ciphertext, encrypting the same binary polynomial at a lower
level i < L.

To achieve efficient bootstrapping, we exploit the ability to perform opera-
tions on elements modulo 2r+1 in a SIMD fashion (Single Instruction Multiple
Data); much like in prior work [14, 1, 11]. Some care must be taken when ap-
plying these techniques in our case, since the inputs and outputs of the boot-
strapping procedure are not in the correct format: Specifically, these techniques
require that inputs and outputs be represented using polynomial Chinese Re-
mainders (CRT representation), whereas decryption (and therefore recryption)
inherently deals with polynomials in coefficient representation. We therefore
must use explicit conversion to CRT representation, and ensure that these con-
versions are efficient enough. See details in Section 4.

Also, the techniques from prior work must be extended somewhat to be
usable in our case: Prior work demonstrated that SIMD operations can be per-
formed homomorphically when the underlying arithmetic is over a field, but in



our case we have operations over the ring Z/2r+1Z, which is not a field. The
algebra needed to extend the SIMD techniques to this case is essentially an ap-
plication of the theory of local fields [4]. We prove many of the basic results
that we need in the full version [10], and refer the reader to [4] for a general
introduction and more details.

Notations. Throughout the paper we denote by [z]q the reduction of z mod q into
the interval (− q

2 ,
q
2 ]. We also denote the i’th bit in the binary representation of

the integer z by z〈i〉. Similarly, when a is an integer polynomial of degree dwith
coefficients (a0, a1, . . . , ad), we denote by a〈i〉 the 0-1 degree-d polynomial
whose coefficients are all the i’th bits (a0〈i〉, a1〈i〉, . . . , ad〈i〉). If c, s are two
same-dimension vectors, then 〈c, s〉 denotes their inner product.

Organization. We begin by presenting the simplified decryption formula in
Section 2 and explain how to evaluate it homomorphically in Section 3. Then in
Section 4 we recall some algebra and explain how to use techniques similar to
[11] to run bootstrapping in time quasi-linear in the security parameter. Some of
the proofs are omitted here, these are found in the full version of this work [10].

2 A simpler decryption formula

When the small modulus qL has a special form – i.e. when it equals u ·2r+v for
some integer r and for some small positive odd integers u, v – then the mod-qL
decryption formula can be made to have a particularly simple form. Below we
focus on the case of qL = 2r + 1, which suffices for our purposes.

So, assume that qL = 2r + 1 for some integer r and that we decrypt by
setting a ← [[〈c, s〉 mod F (X)]qL ]2. Consider now the coefficients of the in-
teger polynomial Z = 〈c, s〉 mod F (X), without the reduction mod qL. Since
s has small coefficients (and we assume that reduction mod-F (X) does not in-
crease the coefficients by much) then all the coefficients of Z are much smaller
than q2L. Consider one of these integer coefficients, denoted by z, so we know
that |z| � q2L ≈ 22r. We consider the binary representation of z as a 2r-bit
integer, and assume for now that z ≥ 0 and also [z]qL ≥ 0. We claim that in this
case, the bit [[z]qL ]2 can be computed simply as the sum of the lowest bit and
the r’th bit of z, i.e., [[z]qL ]2 = z〈r〉⊕z〈0〉. (Recall that z〈i〉 is the i’th bit of z.)

Lemma 1. Let q = 2r + 1 for a positive integer r, and let z be a non-negative
integer smaller than q2

2 − q, such that [z]q is also non-negative, [z]q ∈ [0, q2 ].
Then [[z]q]2 = z〈r〉 ⊕ z〈0〉.

Proof. Let z0 = [z]q ∈ [0, q2 ], and consider the sequence of integers zi = z0+iq
for i = 0, 1, 2, · · · . Since we assume that z ≥ 0 then z can be found in this



sequence, say the k’th element z = zk = z0 + kq. Also since z < q2

2 − q
then k = bz/qc < q

2 − 1. The bit that we want to compute is [[z]q]2 = z0〈0〉.
We claim that z0〈0〉 = zk〈0〉 + zk〈r〉 (mod 2). This is because zk = z0 +
kq = z0 + k(2r + 1) = (z0 + k) + k2r, which in particular means that
zk〈0〉 = z0〈0〉+ k〈0〉 (mod 2). But since 0 ≤ z0 ≤ q/2 and 0 ≤ k < q/2− 1
then 0 ≤ z0 + k < q − 1 = 2r, so there is no carry bit from the addition z0 + k
to the r’th bit position. It follows that the r’th bit of zk is equal to the 0’th bit
of k (i.e., zk〈r〉 = k〈0〉), and therefore zk〈0〉 = z0〈0〉+k〈0〉 = z0〈0〉+zk〈r〉
(mod 2), which implies that z0〈0〉 = zk〈0〉+ zk〈r〉 (mod 2), as needed. ut

We note that the proof can easily be extended for the case q = u2r + v, if
the bound on z is strengthened by a factor of v. To remove the assumption that
both z and [z]q are non-negative, we use the following easy corollary:

Corollary 1. Let r ≥ 3 and q = 2r + 1 and let z be an integer with absolute
value smaller than q2

4 − q, such that [z]q ∈ (− q
4 ,

q
4). Then [[z]q]2 = z〈r〉 ⊕

z〈r − 1〉 ⊕ z〈0〉.

Proof. Denoting z′ = z+(q2−1)/4 = z+(q+1)(q−1)/4 =
(
z+ q−1

4

)
+q· q−14 ,

we have z′ ≡ z + q−1
4 (mod q) (since q−1

4 = 2r−2 is an integer). Moreover
since [z]q ∈ (− q

4 ,
q
4 ] then [z]q +

q−1
4 ∈ [0, q/2], hence [z′]q = [z]q +

q−1
4 (over

the integers), and as q−14 is an even integer then [z]q = [z′]q (mod 2), or in other
words [[z]q]2 = [[z′]q]2. Since z > − q2

4 and z is an integer then z ≥ − q2−1
4 and

therefore z′ = z+ q2−1
4 ≥ 0. Thus z′ satisfies all the conditions set in Lemma 1,

so applying that lemma we have [[z]q]2 = [[z′]q]2 = z′〈r〉 ⊕ z′〈0〉.
We next observe that z′ = z + (q + 1)(q − 1)/4 = z + (2r + 2)2r−2 =

z + 2r−1 + 22r−2. Since 2r − 2 > r, this means that the bits 0 through r in the
binary representation of z′ are determined by z + 2r−1 alone, so we have:

z′〈i〉 = z〈i〉 for i = 0, 1, . . . , r − 2

z′〈r − 1〉 = 1− z〈r − 1〉

z′〈r〉 =
{
z〈r〉 if z〈r − 1〉 = 0
1− z〈r〉 if z〈r − 1〉 = 1

}
= z〈r〉 ⊕ z〈r − 1〉

Putting it all together, we get [[z]q]2 = [[z′]q]2 = z′〈r〉 ⊕ z′〈0〉 = z〈r〉 ⊕
z〈r − 1〉 ⊕ z〈0〉. ut

Using Corollary 1 we can get our simplified decryption formula. First, we
set our parameters such that qL = 2r + 1 and all the coefficients of the integer
polynomial Z = 〈c, s〉 mod F (X) are smaller than q2L

4 − 1 in absolute value,
and moreover they are all less than qL−1

4 away from a multiple of qL. Given a



two-element ciphertext c = (c0, c1) ∈ ((Z/qLZ)[X]/F (X))2, then compute
Z ← 〈c, s〉 mod F (X) over the integers (without reduction mod qL), and fi-
nally recover the plaintext as Z〈r〉 + Z〈r − 1〉 + Z〈0〉. Ultimately, we obtain
the plaintext polynomial a ∈ F2[X]/F (X), where each coefficient in a is ob-
tained as the XOR of bits 0, r − 1, and r of the corresponding coefficient in Z.

Working modulo 2r+1. Since we are only interested in the contents of bit posi-
tions 0, r−1, and r in the polynomial Z, we can compute Z modulo 2r+1 rather
than over the integers. Observing that when qL = 2r + 1 then q2L−1

4 ≡ 2r−1

(mod 2r+1), our simplified decryption of a ciphertext vector c = (c0, c1) pro-
ceeds as follows:

1. Compute Z ← [〈c, s〉 mod F (X)]2r+1 ;
2. Recover the 0-1 plaintext polynomial a = [Z〈r〉+ Z〈r − 1〉+ Z〈0〉]2.

3 Basic Homomorphic Decryption

To get a homomorphic implementation of the simplified decryption formula
from above, we use an instance of our homomorphic encryption scheme with
underlying plaintext space Z2r+1 . Namely, denoting by s̃ the level-0 secret-key
and by q0 the largest modulus, a ciphertext encrypting a ∈ (Z/2r+1Z)[X]/F (X)
with respect to s̃ and q0 is a 2-vector c̃ over (Z/q0Z)[X]/F (X) such that
|[〈c̃, s̃〉 mod F (X)]q0 | � q0 and [〈c̃, s̃〉 mod F (X)]q0 ≡ a (mod 2r+1).

Recall that the ciphertext before bootstrapping is with respect to secret key s
and modulus qL = 2r +1. In this section we only handle the simple case where
the public key includes an encryption of each coefficient of the secret-key s sep-
arately. Namely, denoting s = (1, s) and s(X) =

∑d−1
j=0 sjX

j , we encode for
each j the coefficient sj as the constant polynomial sj ∈ (Z/2r+1Z)[X]/F (X).
(I.e., the degree-d polynomial whose free term is sj ∈ [−2r + 1, 2r] and all the
other coefficients are zero.) Then for each j we include in the public key a ci-
phertext c̃j that encrypts this constant polynomial sj with respect to s̃ and q0.
Below we abuse notations somewhat, using the same notation to refer both to a
constant polynomial z ∈ (Z/2rZ)[X]/F (X) and the free term of that polyno-
mial z ∈ (Z/2rZ).

Computing Z Homomorphically. Given the qL-ciphertext c = (c0, c1) (that
encrypts a plaintext polynomial a ∈ F2[X]/F (X)), we use the encryption
of s from the public key to compute the simple decryption formula from above.
Computing an encryption of Z = [〈c, s〉 mod F (X)]2r+1 is easy, since the co-
efficients of Z are just affine functions (over (Z/2r+1Z)) of the coefficients of s,
which we can compute from the encryption of the sj’s in the public key.



3.1 Extracting the Top and Bottom Bits

Now that we have encryptions of the coefficients of Z, we need to extract the
relevant three bits in each of these coefficients and add them (modulo 2) to get
encryptions of the plaintext coefficients. In more details, given a ciphertext c̃ sat-
isfying [〈c̃, s̃〉 mod F (X)]q0 ≡ z (mod 2r+1) where z is some constant poly-
nomial, we would like to compute another ciphertext c̃ satisfying [〈c̃, s̃〉 mod
F (X)]q0 ≡ z〈0〉 + z〈r − 1〉 + z〈r〉 (mod 2) (with [〈c̃, s̃〉 mod F (X)]q0 still
much smaller then q0 in magnitude). To this end, we describe a procedure to
compute for all i = 0, 1, . . . , r a ciphertext c̃i satisfying [〈c̃i, s̃〉 mod F (X)]q0 ≡
z〈i〉 (mod 2). Clearly, we can immediately set c̃0 = c̃, we now describe how
to compute the other c̃i’s.

The basic observation underlying this procedure is that modulo a power of 2,
the second bit of z−z2 is the same as that of z, but the LSB is zero-ed out. Thus
setting z′ = (z − z2)/2 (which is an integer), we get that the LSB of z′ is the
second bit of z. More generally, we have the following lemma:

Lemma 2. Let z be an integer with binary representation z =
∑r

i=0 2
iz〈i〉.

Define w0
def
= z, and for i ≥ 1 define

wi
def
=

z −
∑i−1

j=0 2
jw 2i−j

j mod 2r+1

2i
(division by 2i over the rationals).

(1)
Then the wi’s are integers and we have wi〈0〉 = z〈i〉 for all i.

Proof. The lemma clearly holds for i = 0. Now fix some i ≥ 1, assume that
the lemma holds for all j < i, and we prove that it holds also for i. It is easy to
show by induction that for any integer u and all j ≤ r we have

u2
j
mod 2r+1 = u〈0〉+ 2j+1t for some integer t.

Namely, the LSB of u2
j
mod 2r+1 is the same as the LSB of u, and the next j

bits are all zero. This means that the bit representation of vj
def
= 2jw2i−j

j mod

2r+1 has bits 0, 1, . . . , j − 1 all zero (due to the multiplication by 2j), then
vj〈j〉 = wj〈0〉 = z〈j〉 (by the induction hypothesis), and the next i− j bits are
again zero (by the observation above). In other words, the lowest i + 1 bits of
vj are all zero, except the j’th bit which is equal to the j’th bit of z.

This means that the lowest i bits of the sum
∑i−1

j=0 vj are the same as the
lowest i bits of z, and the i+ 1’st bit of the sum is zero. Hence the lowest i bits
of z −

∑i−1
j=0 vj are all zero, and the i + 1’st bit is z〈i〉. Hence z −

∑i−1
j=0 vj

is divisible by 2i (over the integers), and the lowest bit of the result is z〈i〉, as
needed. ut



Our procedure for computing the ciphertexts c̃i mirrors Lemma 2. Specifi-
cally, we are given the ciphertext c̃ = c̃0 that encrypts z = w0 mod 2r+1, and we
iteratively compute ciphertexts c̃1, c̃2, . . . such that c̃i encrypts wi mod 2r−i+1.
Eventually we get c̃r that encrypts wr mod 2, which is what we need (since the
LSB of wr is the r’th bit of z).

Note that most of the operations in Lemma 2 are carried out in (Z/2r+1Z),
and therefore can be evaluated homomorphically in our (Z/2r+1Z)-homomorphic
cryptosystem. The only exception is the division by 2i in Equation (1), and we
now show how this division can also be evaluated homomorphically. To im-
plement division we begin with an arbitrary ciphertext vector c̃ that encrypts
a plaintext element a ∈ (Z/2jZ)[X]/F (X) (for some j) with respect to the
level-0 key s̃ and modulus q0. Namely, we have the equality over Z[X]:

(〈c̃, s̃〉 mod F (X)) = a+ 2j · S + q0 · T

for some polynomials S, T ∈ Z[X]/F (X), where the norm of a+2jS is much
smaller than q0. Assuming that a is divisible by 2 over the integers (i.e., all its
coefficients are even) consider what happens when we multiply c̃ by the integer
(q0 + 1)/2 (which is the inverse of 2 modulo q0). Then we have

(
〈
q0+1
2 · c̃, s̃

〉
mod F (X)) = q0+1

2 · (〈c̃, s̃〉 mod F (X))

=
(q0 + 1) · a

2
+

(q0 + 1) · 2j · S
2

+
q0 · (q0 + 1) · T

2

= (q0 + 1) · (a/2) + (q0 + 1) · 2j−1S + q0 · q0+1
2 · T

= a/2 + 2j−1 · S + q0 ·
(
a/2 + 2j−1S + q0+1

2 T
)

Clearly the coefficients of a/2 + 2j−1S are half the size of those of a + 2jS,
hence they are much smaller than q0. It follows that c̃′ = [c̃ · (q0 + 1)/2]q0 is
a valid ciphertext that encrypts the plaintext a/2 ∈ (Z/2j−1Z)[X]/F (X) with
respect to secret key s̃ and modulus q0.

The same argument shows that if a is divisible by 2i over the integers (for
some i < j) then [c̃ · ((q0 + 1)/2)i]q0 is a valid ciphertext encrypting a/2i ∈
(Z/2j−iZ)[X]/F (X). Combining this division-by-two procedure with homo-
morphic exponentiation mod 2r+1, the resulting homomorphic bit-extraction
procedure is described in Figure 1.

3.2 Packing the Coefficients

Now that we have encryption of all the coefficients of a, we just need to “pack”
all these coefficients back in one polynomial. Namely, we have encryption of



Bit-Extraction(c̃, r, q0):
Input: A ciphertext c̃ encrypting a constant b ∈ (Z/2r+1Z) w.r.t. secret key s̃ and modulus q0.
Output: A ciphertext c̃′ encrypting b〈0〉 ⊕ b〈r − 1〉 ⊕ b〈r〉 ∈ F2 w.r.t. secret key s̃ and modulus q0.

1. Set c̃0 ← c̃ // c̃ encrypt z w.r.t. s̃
2. For i = 1 to r
3. Set acc← c̃ // acc is an accumulator
4. For j = 0 to i− 1 // Compute z −

∑
j 2

jwi−1
j

5. Set tmp← HomExp(c̃j , 2
i−j) // Homomorphic exponentiation to the power 2i−j

6. Set acc← acc− 2j · tmp mod q0
7. Set c̃i ← acc · ((q0 + 1)/2)i mod q0 // c̃i encrypts z〈i〉
8. Output c̃0 + c̃r−1 + c̃r mod q0

HomExp(c̃, n) uses native homomorphic multiplication to multiply c̃ by itself n times. To aid ex-
position, this code assumes that the modulus and secret key remain fixed, else modulus-switching
and key-switching should be added (and the level increased correspondingly to some i > 0).

Fig. 1. A Homomorphic Bit-Extraction Procedure.

the constant polynomials a0, a1, . . ., and we want to get an encryption of the
polynomial a(X) =

∑
i aiX

i. Since a is just a linear combination of the ai’s
(with the coefficient of each ai being the “scalar” Xi ∈ (Z/2Z)[X]/Φm), we
can just use the additive homomorphism of the cryptosystem to compute an
encryption of a from the encryptions of the ai’s.

3.3 Lower-Degree Bit Extraction

As described in Figure 1, extracting the r’th bit requires computing polynomials
of degree upto 2r, here we describe a simple trick to lower this degree. Recall
our simplified decryption process: we set Z ← [〈c, s〉 mod Φm(X)]2r+1 , and
then recover a = [Z〈r〉+ Z〈r − 1〉+ Z〈0〉]2.

Consider what happens if we add qL to all the odd coefficients in c, call the
resulting vector c′: On one hand, now all the coefficients of c′ are even. On the
other hand, the coefficients of Z ′ = 〈c′, s〉 mod Φm(X) are still small enough
to use Lemma 1 (since they are at most cm · q · ‖s‖1 larger than those of Z itself,
where cm is the ring constant of mod-Φm(X) arithmetic and ‖s‖1 is the l1-norm
of s). Since c′ = c (mod qL) then we have

[[〈c, s〉 mod Φm(X)]qL ]2 = [[
〈
c′, s

〉
mod Φm(X)]qL ]2 = Z ′〈r〉+Z ′〈r〉−1+Z ′〈0〉

However, since c′ is even then so is Z ′. This means that Z ′〈0〉 = 0, and if we
divide Z ′ by two (over the integers), Z ′′ = Z ′/2, then we have [[〈c, s〉 mod
Φm(X)]qL ]2 = Z ′′〈r − 1〉 ⊕ Z ′′〈r − 2〉. We thus have a variation of the simple
decryption formula that only needs to extract the r − 1’st and r − 2’nd bits,



so it can be realized using polynomials of degree upto 2r−1. Note that we can
implement this variant of the decryption formula homomorphically, because Z ′

is even so an q0-encryption of Z ′ can be easily converted into an encryption of
Z ′/2 (by multiplying by q0+1

2 modulo q0 as described in Section 3.1).
This technique can be pushed a little further, adding to c multiples of q so

that it is divisible by 4, 8, 16, etc., and reducing the required degree correspond-
ingly to 2r−2, 2r−3, 2r−4, etc. The limiting factor is that we must maintain that
〈c′, s〉 has coefficients sufficiently smaller than q2L, in order to be able to use
Lemma 1. Clearly, if c′ = c+qκ where all the coefficients of κ are smaller than
some bound B (in absolute value), then the coefficients of 〈c′, s〉 can be larger
than the coefficients of Z = 〈c, s〉 (in absolute value) by at most cm ·q ·B · ‖s‖1.
(Heuristically we expect the difference to depend on the l2 norm of s more than
its l1 norm.)

If we choose our parameters such that the l1-norm of s is below m, and
work over a ring with cm = O(1), then the coefficients of Z can be made
as small as cm · m · q, and we can make the coefficients of κ as large as
B ≈ q/(4cm · m) in absolute value while maintaining the invariant that the
coefficients of Z ′ are smaller than q2/4 (which is what we need to be able to use
Lemma 1). By choosing an appropriate κ, we can ensure that the least signifi-
cant blog(q/(4cmm))c = r − dlog(4cmm)e bits of c′ are all zero. This means
that we can implement bit extraction using only polynomials of degree at most
2dlog(4cmm)e < 8cmm = O(m). (Heuristically, we should even be able to get
polynomials of degree O(

√
m) since the l2 norm of s is only O(

√
m).) More-

over if we assume that ring-LWE is hard even with a very sparse secret, then we
can use a secret key with even smaller norm and get the same reduction in the
degree of the bit-extraction routine.

4 Homomorphic Decryption with Packed Ciphertexts

The homomorphic decryption procedure from Section 3 is rather inefficient,
mostly because we need to repeat the bit-extraction procedure from Figure 1 for
each coefficient separately. Instead, we would like to pack many coefficients in
one ciphertext and extract the top bits of all of them together. To this end we
employ a batching technique, similar to [1, 11, 14], using Chinese remainder-
ing over the ring of polynomials to pack many “plaintext slots” inside a single
plaintext polynomial.

Recall that the BGV scheme is defined over a polynomial ringR = Z[X]/F (X).
If the polynomial F (X) factors modulo two into distinct irreducible polynomi-
als F0(X) × · · · × F`−1(X), then, by the Chinese Remainder Theorem, the



plaintext space factors into a product of finite fields R2
∼= F2[X]/F0(X) ×

· · · × F2[X]/F`−1(X).
This factorization is used in [14, 1, 11] to “pack” a vector of ` elements

(one from each F2[X]/Fi(X)) into one plaintext polynomial, which is then en-
crypted in one ciphertext; each of the ` components called a plaintext slot. The
homomorphic operations (add/mult) are then applied to the different slots in
a SIMD fashion. When F (X) is the m-th cyclotomic polynomial, F (X) =
Φm(X), then the field Q[X]/F (X) is Galois (indeed Abelian) and so the poly-
nomials Fi(X) all have the same degree (which we will denote by d). It was
shown in [11] how to evaluate homomorphically the application of the Galois
group on the slots, and in particular this enables homomorphically performing
arbitrary permutations on the vector of slots in time quasi-linear in m. This, in
turn, is used in [11] to evaluate arbitrary arithmetic circuits (of average width
Ω̃(λ)) with overhead only polylog(λ).

However, the prior work only mentions the case of plaintext spaces taken
modulo a prime (in our case two), i.e. R2. In this work we will need to also con-
sider plaintext spaces which are given by a power of a prime, i.e.R2r+1 for some
positive integer r. (We stress that byR2r+1 we really do mean (Z/2tZ)[X]/F (X)
and not F2r+1 [X]/F (X).) In the full version [10] we show how the techniques
from [11] extends also to this case. The “high brow” way of seeing this is to
consider the message space modulo 2r+1 as the precision r + 1 approximation
to the 2-adic integers; namely we need to consider the localization of the field
K = Q[X]/F (X) at the prime 2.

4.1 Using SIMD Techniques for Bootstrapping

Using the techniques from [11] for bootstrapping is not quite straightforward,
however. The main difficulty is that the input and output of are not presented in a
packed form: The input is a single qL-ciphertext that encrypts a single plaintext
polynomial a (which may or may not have many plaintext elements packed in its
slots), and similarly the output needs to be a single ciphertext that encrypts the
same polynomial a, but with respect to a larger modulus. (We stress that this is
not an artifact of our “simpler decryption formula”, we would need to overcome
the same difficulty also if we tried to use these “SIMD techniques” to speed
up bootstrapping under the standard approach of emulating the binary mod-qL
circuit.) Our “packed bootstrapping” procedure consists of the following steps:

1. Using the encryption of the qL-secret-key with respect to the modulus q0,
we convert the initial qL-ciphertext into a q0-ciphertext encrypting the poly-
nomial Z ∈ (Z/2r+1Z)[X]/Φm(X).

2. Next we apply a homomorphic inverse-DFT transformation to get encryp-
tion of polynomials that have the coefficients of Z in their plaintext slots.



3. Now that we have the coefficients of Z in the plaintext slots, we apply the
bit extraction procedure to all these slots in parallel. The result is encryption
of polynomials that have the coefficients of a in their plaintext slots.

4. Finally, we apply a homomorphic DFT transformation to get back a cipher-
text that encrypts the polynomial a itself.

Below we describe each of these steps in more detail. We note that the main
challenge is to get an efficient implementation of Steps 2 and 4.

4.2 Encrypting the qL-Secret-Key

As in Section 3, we use an encryption scheme with underlying plaintext space
modulo 2r+1 to encrypt the qL-secret-key s under the q0-secret-key s̃. The qL-
secret-key is a vector s = (1, s), where s ∈ Z[X]/Φm(X) is an integer poly-
nomial with small coefficients. Viewing these small coefficients as elements in
Z/2r+1Z, we encrypt s as a q0-ciphertext c̃ = (c̃0, c̃1) with respect to the q0-
secret-key s̃ = (1, s̃), namely we have

[〈c̃, s̃〉 mod Φm]q0 = [̃c0+ c̃1 · s̃ mod Φm]q0 = 2r+1k̃+s (equality over Z[X])

for some polynomial k̃ with small coefficients.

4.3 Step One: Computing Z Homomorphically

Given a qL-ciphertext c = (c0, c1) we recall from the public key the q0 ci-
phertext c̃ = (c̃0, c̃1) that encrypts s, then compute the mod-2r+1 inner product
homomorphically by setting

z̃ =
(
[c0 + c1c̃0 mod Φm]q0 , [c1c̃1 mod Φm]q0

)
. (2)

We claim that z̃ is a q0-ciphertext encrypting our Z with respect to the secret
key s̃ (and plaintext space modulo 2r+1). To see that, recall that we have the
following two equalities over Z[X],

(c0+c1s mod Φm) = 2r+1k+Z and (c̃0+ c̃1s̃ mod Φm) = q0k̃+2r+1k̃′+s,

where k, k̃, k̃′ ∈ Z[X]/Φm, the coefficients of 2r+1k + Z are smaller than
2q2L � q0, and the coefficients of 2r+1k̃′ + s are also much smaller than q0.
It follows that:

(〈z̃, s̃〉 mod Φm) = [c′0 + c1c̃0 mod Φm]q0 + (s̃ · [c1c̃1 mod Φm]q0 mod Φm)

= (c′0 + c1(c̃0 + c̃1s̃) mod Φm) + q0κ

= (c′0 + c1(2
r+1k̃′ + s) mod Φm) + q0κ

′

= (c′0 + c1s mod Φm) + q0κ
′ + 2r+1(c1 · k̃′ mod Φm)

= q0κ
′ + 2r+1(k + c1k̃

′ mod Φm) + Z (equality over Z[X])



for some κ, κ′ ∈ Z[X]/Φm. Moreover, since the coefficients of c1 are smaller
than qL � q0 then the coefficients of 2r+1(k + c1k̃

′ mod Φm) + Z are still
much smaller than q0. Hence z̃ is decrypted under s̃ and q0 to Z, with plaintext
space 2r+1.

4.4 Step Two: Switching to CRT Representation

Now that we have an encryption of the polynomial Z, we want to perform the
homomorphic bit-extraction procedure from Figure 1. However, this procedure
should be applied to each coefficient of Z separately, which is not directly
supported by the native homomorphism of our cryptosystem. (For example,
homomorphically squaring the ciphertext yields an encryption of the polyno-
mial Z2 mod Φm rather than squaring each coefficient of Z separately.) We
therefore need to convert z̃ to CRT-based “packed” ciphertexts that hold the
coefficients of Z in their plaintext slots.

The system parameter m was chosen so that m = Θ̃(λ) and Φm(X) factors
modulo 2 (and therefore also modulo 2r+1) as a product of degree-d polynomi-
als with d = O(logm), Φm(X) =

∏`−1
j=0 Fj(X) (mod 2r+1). This allows us to

view the plaintext polynomial Z(X) as having ` slots, with the j’th slot holding
the value Z(X) mod (Fj(X), 2r+1). This way, adding/multipliying/squaring
the plaintext polynomials has the effect of applying the same operation on each
of the slots separately.

In our case, we have φ(m) coefficients of Z(X) that we want to put in the
plaintext slots, and each ciphertext has only ` = φ(m)/d slots, so we need d
ciphertexts to holds them all. The transformation from the single ciphertext z̃
that encrypts Z itself to the collection of d ciphertexts that hold the coefficients
of Z in their slots is described in Section 4.7 below. (We describe that step last,
since it is the most complicated and it builds on machinery that we develop for
Step Four in Section 4.6.)

4.5 Step Three: Extracting the Relevant Bits

Once we have the coefficients of Z in the plaintext slots, we can just repeat
the procedure from Figure 1. The input to the the bit-extraction procedure is
a collection of some d ciphertexts, each of them holding ` = φ(m)/d of the
coefficients of Z in its ` plaintext slots. (Recall that we chose m = Õ(λ) such
that d = O(logm).) Applying the procedure from Figure 1 to these ciphertexts
will implicitly apply the bit extraction of Lemma 2 to each plaintext slot, thus
leaving us with a collection of d ciphertexts, each holding ` of the coefficients
of a in its plaintext slots.



4.6 Step Four: Switching Back to Coefficient Representation

To finally complete the recryption process, we need to convert the d cipher-
texts holding the coefficients of a in their plaintext slots into a single cipher-
text that encrypts the polynomial a itself. For this transformation, we appeal
to the result of Gentry et al. [11], which says that every depth-L circuit of
average-width Ω̃(λ) and size T can be evaluated homomorphically in time
O(T ) · poly(L, log λ), provided that the inputs and outputs are presented in
a packed form. Below we show that the transformation we seek can be com-
puted on cleartext by a circuit of size T = Õ(m) and depth L = polylog(m),
and hence (since m = Θ̃(λ)) it can be evaluated homomorphically in time
Õ(m) = Õ(λ).

To use the result of Gentry et al. we must first reconcile an apparent “type
mismatch”: that result requires that both input and output be presented in a
packed CRT form, whereas we have input in CRT form but output in coefficient
form. We therefore must interpret the output as “something in CRT representa-
tion” before we can use the result from [11]. The solution is obvious: since we
want the output to be a in coefficient representation, then it is a polynomial that
holds the value Aj = a mod Fj in the j’th slot for all j.

Hence the transformation that we wish to compute takes as input the co-
efficients of the polynomials a(X), and produces as output the polynomials
Aj = a mod Fj for j = 0, 1, . . . , ` − 1. It is important to note that our output
consists of ` values, each of them a degree-d binary polynomial. Since this out-
put is produced by an arithmetic circuit, then we need a circuit that operates on
degree-d binary polynomials, in other words an arithmetic circuit over GF(2d).
This circuit has ` · d inputs (all of which happen to be elements of the base field
F2), and ` outputs that belong to the extension field GF(2d).

Theorem 1. Fix m ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, de-
note ` = φ(m)/d and let G ∈ F2[X] be a degree-d irreducible polynomial
over F2 (that fixes a particular representation of GF(2d)). Let F0(X), F1(X),
. . . , F`−1(X) be the irreducible (degree-d) factors of the m-th cyclotomic poly-
nomial Φm(X) modulo 2.

Then there is an arithmetic circuit Πm over F2[X]/G(X) = GF(2d) with
φ(m) inputs a0, a1, . . . , aφ(m)−1 and ` outputs z0, z1, . . . , z`−1, for which the
following conditions hold:

– When the inputs are from the base field (ai ∈ F2 ∀i) and we denote a(X) =∑
i aiX

i ∈ F2[X], then the outputs satisfy zj = a(X) mod (Fj(X), 2) ∈
F2[X]/G(X).

– Πm has depth O(logm) and size O(m logm).



The proof is in the full version. An immediate corollary of Theorem 1 and the
Gentry et al. result [11, Thm. 3], we have:

Corollary 2. There is an efficient procedure that given d ciphertexts, encrypting
d polynomials that hold the coefficients of a in their slots, computes a single
ciphertext encrypting a. The procedure works in time O(m) · polylog(m) (and
uses at most polylog(m) levels of homomorphic evaluation).

4.7 Details of Step Two

The transformation of Step Two is roughly the inverse of the transformation
that we described above for Step Four, with some added complications. In this
step, we have the polynomial Z(X) over the ring Z/2r+1Z, and we view it as

defining ` plaintext slots with the j’th slot containingBj
def
= Z mod (Fj , 2

r+1).
Note that the Bj’s are degree-d polynomials, and we consider them as elements

in the “extension ring” R d
2r+1

def
= Z[X]/(G(X), 2r+1) (where G is some fixed

irreducible degree-d polynomial modulo 2r+1).
Analogous to Theorem 1, we would like to argue that there is an arithmetic

circuit over R d
2r+1 that get as input the Bj’s (as elements of R d

2r+1), and outputs
all the coefficients of Z (which are elements of the base ring Z/2r+1Z). Then
we could apply again to the result of Gentry et al. [11] to conclude that this
circuit can be evaluated homomorphically with only polylog overhead.

For the current step, however, the arithmetic circuit would contain not only
addition and multiplication gates, but also Frobenius map gates. Namely, gates
ρk(·) (for k ∈ {1, 2, . . . , d− 1}) computing the functions

ρk
(
u(X)

)
= u(X2k) mod (G(X), 2r+1).

It was shown in [11] that arithmetic circuits with Frobenius map gates can also
be evaluated homomorphically with only polylog overhead. The Frobenius oper-
ations being simply an additional automorphism operation which can be applied
homomorphically to ciphertexts.

Theorem 2. Fix m, r ∈ Z, let d ∈ Z be the smallest such that m|2d−1, denote
` = φ(m)/d and let G(X) be a degree-d irreducible polynomial over Z/2r+1Z
(that fixes a particular representation ofR d

2r+1). LetF0(X), F1(X), . . . , F`−1(X)
be the irreducible (degree-d) factors of the m-th cyclotomic polynomial Φm(X)
modulo 2r+1.

Then there is an arithmetic circuit Ψm,r with Frobenius-map gates over
R d
2r+1 that has ` inputB0, B1, . . .,B`−1 and φ(m) outputsZ0, Z1, . . . , Zφ(m)−1,

for which the following conditions hold:



– On any inputsB0, . . . , B`−1 ∈ R d
2r+1 , the outputs of Ψm,r are all in the base

ring, Zi ∈ Z/2r+1Z ∀i. Moreover, denoting Z(X) =
∑

i ZiX
i, it holds

that Z(X) mod (Fj(X), 2r+1) = Bj for all j.
– Πm has depth O(logm+ d) and size O(m(d+ logm)).

The proof is in the full version. As before, a corollary of Theorem 2 and the
result from [11], is the following:

Corollary 3. There is an efficient procedure that given a single ciphertext en-
crypting Z ′ outputs d ciphertexts encrypting d polynomials that hold the coef-
ficients of Z ′ in their plaintext slots. The procedure works in time Õ(m) (and
uses at most polylog(m) levels of homomorphic evaluation).

4.8 An Alternative Variant

The procedure from Section 4.7 works in time Õ(m), but it is still quite expen-
sive. One alternative is to put in the public key not just one ciphertext encrypting
the qL-secret-key s, but rather d ciphertexts encrypting polynomials that hold the
coefficients of s in their plaintext slots. Then, rather than using the simple for-
mula from Equation (2) above, we evaluate homomorphically the inner product
of s = (1, s) and c = (c0, c1) modulo Φm(X) and 2r+1. This procedure will be
even faster if instead of the coefficients of s we encrypt their transformed image
under length-m DFT. Then we can compute the DFT of c1 (in the clear), multi-
ply it homomorphically by the encrypted transformed s (in SIMD fashion) and
then homomorphically compute the inverse-DFT and the reduction modulo Φm.
Unfortunately this procedure still requires that we compute the reduction mod-
Φm(X) homomorphically, which is likely to be the most complicated part of
bootstrapping. Finding a method that does not require this homomorphic poly-
nomial modular reduction is an interesting open problem.
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