Practical Cryptanalysis of the Identification Scheme Based on
the Isomorphism of Polynomial with One Secret Problem

Charles Bouillaguét Jean-Charles Faugérg
Pierre-Alain Fougueand Ludovic Perrét?

1 Ecole Normale Supérieure, Paris, France
{charl es. bouil | aguet, pierre-alain.fouque}@ns.fr
2 INRIA, Paris-Rocquencourt Center, SALSA Project
UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France
jean-charles.faugere@nria.fr, ludovic.perret@ip6.fr

Abstract. This paper presents a practical cryptanalysis of the Identification Schesposed by Patarin at Crypto
1996. This scheme relies on the hardness of the Isomorphism of Palginwith One Secret (IP1S), and enjoys
shorter key than many other schemes based on the hardness of imaimnidl problem (as opposed to number-
theoretic problems). Patarin proposed concrete parameters thatdtaveen broken faster than exhaustive search
so far. On the theoretical side, IP1S has been shown to be harder taph Somorphism, which makes it an
interesting target. We present two new deterministic algorithms to attack ti8 gRiblem, and we rigorously
analyze their complexity and success probability. We show that they dem &gbig) constant fraction of all the
instances of degree two in polynomial time. We verified that our algorithesexy efficient in practice. All the
parameters with degree two proposed by Patarin are now broken insef@mds. The parameters with degree three
can be broken in less than a CPU-month. The identification scheme is tiwdadly broken.

1 Introduction

Multivariate cryptography is concerned with the use of imatiate polynomials over finite fields to design crypto-
graphic schemes. The use of polynomial systems in cryppbgrdates back to the mid eighties with the design of
C* [33], and many others proposals appeared afterwards |BB2®,47]. The security of multivariate schemes is in
general related to the difficulty of solving random or sturetl systems of multivariate polynomial equations. This
problem has been proved to be NP-complgté [22], and it isectunjed [[2] that systems of random polynomials are
hard to solve in practice. As usual when a trapdoor must beedddd in a hard problem, easy instances are trans-
formed into random-looking instances using secret transdtions. In multivariate cryptography, it is common to map
an easily-invertible collection of polynomiadsinto an apparently random ore It is then assumed that, being sup-
posedly indistinguishable from randoim,should be hard to solve. The structure-hiding transforomais very often
the composition with linear (or affine) invertible mappingsnd’, namelyb = T o ao S. The matricess andT are
generally part of the secret-key.

The Isomorphism of Polynomials (IP) is the problem of recowgthe secret transformatiosand?’ givena and
b. Itis a fundamental problem of multivariate cryptograpigice its hardness implies the difficulty of the key-recgver
for various multivariate cryptosystems. Notorious exassphclude C [33], the traitor tracing scheme proposed by
Billet and Gilbert[8], the SFLASH signature schernel [38§ £HC signature schemg[12], the square-vinegar signature
schemel[l] and the Square encryption sch[lﬂﬂll these schemes have been broken, because the strutthee o
central map was not hidden well enough. The correspondipgdBlem was then not random, but structured. However,
when no apparent structure exists in batandb, then the IP problem is fairly difficult. This motivated Patato
introduce it as an intractable assumption by itselflin [3&]. far only exponential algorithms [#0]17] are known to
attack the general IP problem.

An important special case of IP is the problem with one secrgtP1S for short), wher& is the identity matrix.
Patarin suggested in 1996 [36] to construct a zero-knovdedgntification scheme relying on the hardness of IP1S,

% In the description of some of these schemes, the easily-invertible carpatontains parameters that are part of the secret-key.
However, in this case there exists an equivalent secret key wheeeghaesmeters have a fixed value. This is notoriously the case
of C.



inspired by the Zero-Knowledge proof system for Graph Isgphism of [25]. The proposed parameters lead to rel-
atively small key sizes (for instance to secret and publicstef 256 bits each and no additional information), as the
complexity of the problem was believed to be exponentiaé ploposed parameters have not been broken so far, and
no technique better than exhaustive search is known tokati@cscheme. The IP1S problem is also interesting from
a complexity-theoretic point of view. It has been proved4f][that IP1S isGraph Isomorphism-hardGI-hard for
short). This leads Pataret al.to claim that IP1S is unlikely to be solvable in polynomiahé, because no polynomial
algorithm is known for Gl in spite of more than forty years eSearch. On the other hand, Gl is not known to be
NP-complete. Generating hard instances Gl is pretty ngiatirand there are powerful heuristics as well as expected
linear time algorithms for random graphs [19]. This compises the use of Gl as an identification mechanism, and
was part of the motivation for introducing IP1S as an alteveaMoreover, when used in this context, instances of the
IP problem are random, which presumably avoids all the kstaa the cryptographic schemes mentioned above.

Previous and Related Work. The identification scheme based on IP1S is not based on ntthm@netic assumptions,
unlike for instance the well-known Fiat-Shamir protodo8[1Many other identification schemes are not based on
number theoretic assumptions [42(43,44.45,31]. Howeker]P1S-based identification scheme enjoys shorter keys
than most others.

To our knowledge, the first algorithm dedicated to IP1S carido@d in Geiselmanret al. [23]. The authors
of [23] remarked that each row of a matrix solution of IP1Sifies an algebraic system of equations. They then
used an exhaustive search to find the solutions of such syS&eon after, this technique has been improved by
Levy-dit-Vehel and Perret[13] who replaced this exhaestigarch by a Grébner basis computation. This still yields
exponential algorithms, and the improvement induced Iyriplacement is is as significant as the gain obtained when
comparing Grébner basis and exhaustive search for solaimgom algebraic systems. It is negligible over small field
(i.e., typically, IF5), but significant for instances of IP1S over large fields. ldeer, the complexity of those algorithms
remains exponential by nature.

Finally, Perret[[41l] shows that the affine and linear vasanftIP1S are equivalenite., one can without loss of
generality restrict our attention to the case whéris linear (as opposed to affine). In addition, a new approach f
solving IP1S using the Jacobian matrix was proposed. Thogitign is polynomial when the numberof polynomials
in a andb is equal to the number of variables However, when: < n, the complexity of this approach is not well
understood. Moreover, when the number of polynomials iy genall, for instance, = 2, this algorithm is totally
inefficient.

The main application of IP1S is the identification schemeppsed in[[40]. The public key being composed of
two sets ofu polynomials, it is interesting to keep the number of polyimamas small as possiblé 6r 2). For such
parameters, the authentication mechanism based on IPkS dppealing in terms of key size. Additionally, it does
not require hash functions or commitments.

Allin all, the existing literature on the IP and IP1S probleam be split in two categorieleuristicalgorithms with
(more or less vaguely) “known” complexity and unknown sissggrobability([40], andigorousalgorithms that always
succeeds but with unknown complexity [17[41/,13,23]. Thisasion makes it very difficult, if not plainly impossible
to compare these algorithms based on their theoreticalriestThe class of instances that can be solved by a given
algorithm of the first type is in general not known. Conveystie class of instances over which an algorithm of the
second type terminates quickly are often not known as whlk [Bad the authors of IP/IP1S algorithms to measure the
efficiency of their techniques in practice, or even not to soea it at all. Several sets of concrete parameters for IP and
IP1S were proposed by Patarin(in[36], and can be used to meeth&uprogress accomplished since their introduction.
The techniques presented in this paper allow to break aktbballenges in practice.

Techniques. The algorithms presented here are deterministic, and rethe two weapons that have dealt a severe
blow to multivariate cryptography: linear algebra and Grébbases. Our ideas borrow to the recent differential erypt
analysis of multivariate schemes. While the algorithms atesary complicated, analyzing their running time is fairly
non-trivial, and requires the invocation of not-so-wetlekvn results about linear algebra (such as the dimension of
the commutant of a matrix, or the properties of the produtivofskew-symmetric matrices), as well as known results
about random matrices, most notably the distribution ofrtirk and the probability of being cyclic. The two most
delicate steps of the analysis involve lower-bounding fheedsion of the kernel of a homogeneous system of matrix
equations, and upper-bounding the degree of polynomiatépukated by a Grébner-basis algorithm.



Our Results. We present two new “rigorous” and deterministic algorithi®@s the practical side, these algorithms
are efficient: random quadratic IP1S instances and randbim mthomogeneous IP1S instances can be broken in time
O (nS) for any size of the parameters. In particular, all the quicit®1S challenges proposed by Patarin are now
broken in a few seconds. The biggest homogeneous cubic IRdirge can be broken in less than 1 CPU-month.
The IP1S identification scheme is thus broken beyond rep#ie quadratic case. In the case of cubic IP1S, our attack
runs in time® (n6 . q"), and the security parameter have to be seriously recoesigdehich makes the scheme much
less attractive, since the key size is cubi@in

A rigorous analysis of our algorithms is both necessary @okijt When generating linear equations, special care
has to be taken to count how many of them are independent.€deatr history of algebraic cryptanalysis taught us
that failure to do so may have drastic consequences. Additig the complexity of Grobner bases computation, even
though a bit more well-understood now in the generic casijli®ften a delicate matter for structured systems.

A unique and distinctive feature of our algorithms compauethe previous state of affairs, and one of our main
theoretical contribution, is that we characterize thextdsnstances that can be solved by our techniques in poliaiom
time. We show, for instance, that a (big) constant fractiballoquadratic IP1S instances can be solved in polynomial
time.

This break however has little consequences in the mulétartryptology ecosystem, except that it brings the
IP1S-based identification scheme down. The security of UEWY iin particular is not related to the hardness of IP1S,
because in UOV the vector of polynomial composed with a limdange of variable (thea” part) is kept secret.

Organisation of the paper. In sectior 2, we recall some useful facts about the IP1S pnobThen, in sectio 3, we
introduce the identification scheme based on the hardnéB4 8fand compare it to other non-number theoretic based
ID schemes. We then introduce our algorithms to break IP1Bemuadratic case in sectibh 4, and in the cubic case
in sectiorb.

2 The IP1S Problem

We recall the definition of the IP1S problem. Given two fagslofu polynomialsa andb in F[x1, ..., z,] the task
is to find an invertible matrix$ € GL,, (F,) and a vector € (F,)" such that:

b(x) =a(S-x+ ¢). Q)

We will denote byf(*) the homogeneous component of degkeef f, and by extension(*) denotes the vector of
polynomials obtained by taking the homogeneous compormgritegreek of all the coordinates ai. We define the

derivative ofa in c to be the functiorf2 : x — a(x + ¢) — a(x). The following lemma, which is very similar to [17,
lemma 4] is very useful.

Lemmal. i) Forall k£ > 1, we have:
da (k)
b(k) = (a+ 8) o S
C

ii) If d is the degree ok andb, thenb(® = a(® o §.
iii) S transforms the set of common zeroea @t into the set of common zeroesksf).

Proof. It follows from the definition of the derivative that:
Oa
b = —_—
(a + 6c> oS

This equality also holds if only the degrégiomogeneous component is considered. The point is tha Siigclinear
(and thus not “degree-changing”),if is a multivariate polynomial we have:

(Po S)(k) =pP® g

This establishes the first statement of the lemma. The sextatement follows from the fact thatafis of degreed,
then the functior% is of degreel — 1. Thus the homogeneous component of de@reé% is identically zero. The
third statements is a direct consequences of the second one. O



A useful consequence of lemrih 1 is that without loss of gdinerme may assume to be the null vectéh A
consequence of poirt) is that from any instance of the problem we can dedulisesr homogeneoumstance by
considering only the homogeneous component of highesedelfithis instance can be solved, afdan be retrieved,
then recovering is not difficult, using a slight generalization of the ideaw in [24]. If S is known, then% can
be explicitly computed, and can usually be deduced therefrom. More specifically, foausin the homogeneous
component of degree one yields a system of: linear equations im variables that admits as a solution. In most
cases, it will in fact admionly ¢ as a solution, which enables recovering

It was pointed out in[40] that if there is only one quadratitymomial, then the problem is easily solved in polyno-
mial time. This follows from the fact that quadratic formswitla canonical representation (see for instance [30]). The
change of coordinate can then be easily computed. We wikfbre focus on the case of> 2 when the polynomials
are quadratic.

For various reasons, the IP1S problem becosesierwhenw is close ton, andharder when« is small. For
instance, the algorithm given in41] deals with the case n in polynomial time, but cannot tackle the case where
u = 2 andn is big, which prevented it from breaking the parameters gsed by Patarin. Additionally, small values of
u leads to smaller public keys. Therefore, we will restrict atiention to the case whete= 2 when the polynomials
are quadratic, and where = 1 when they are cubic. These are the most cryptographicdllyast cases, and the
most challenging. We will also consider the case wiigyés a field of characteristic two. It can be shown that this
makes the problem a bit harder, but again this is the mostagyaphically relevant case. The quadratic and cubic
IP1S problems are very different and lead to specific apemdcherefore we will discuss them separately.

3 Patarin’s IP1S-Based identification Scheme

Zero-Knowledge proofs were introduced in 1985 by Goldwaddeali and Rackoff in[[26]. Soon afterwards, Fiat
and Shamir[[1B] used the hardness of quadratic residuasibypitd an efficient identification scheme. Many other
identification schemes appeard afterwards, all relyinghenhardness of number-theoretic assumptions. Some cryp-
tographers took a different line of research, and tried igiteidentification scheme from different computational
assumptions, not relying on number theory, but instead eNf-hardness of some specific combinatorial problems.

One of the very-first combinatorial identification schemes\yweoposed by Sham(r[43], and relied on the hardness
of the Permuted Kernel ProblenPKP). Later on, Stern proposed in_[44] a scheme based omtratability of
Syndrome Decodin¢SD), and in[[45] a scheme based on the intractabilitCofstrained Linear Equationd&CLE).
Finally, Pointchevall[42] proposed a scheme related to drdriess of th&erceptron Problemoriginating from the
area of learning theory. All these problems are NP-comfleteopposed to IP1S). The designers proposed practical
parameters, aiming for a security level 25f or more, which are summarized in table 1. In all these scheiniss
required that all users share a public common set of infaomaa “common setting”, usually describing the instance of
the hard problem. For instance, in number-theoretic prob)ehe description of the curve, or of the group over which
a discrete logarithm problem is considered is a common pubiormation. While this information is not a “key”
stricto sensuit must nevertheless be stored by the prover and by theertiéading to higher memory requirements.
However, in some case it can be chosen randomly, or geneyalieé from a small seed using a PRNG.

On the contrary, the IP1S-based identification scheme geabby Patarin in [35,36] does not need the prover
and the verifier to share additional information (except beathe description of the finite field, which is very small).
It works very similarly to the original identification schenbased on a zero-knowledge proof system for Graph-
Isomorphism (Gl) by Goldreich, Micali and Wigdersdn [25]n©of the reasons for replacing Gl by IP1S is the
existence of efficient heuristic algorithms for Gl, capatiesolving efficiently random instances. The generation of
hard instances of Gl is a delicate matter![19]. ReplacingGhe@roblem by IP1S vyields shorted key, and random
instances of IP1S wer priori secure. Patarin proposed concrete parameters, which @ sh table[2. The PKP
and SD schemes lead to bigger keys than IP1S, while the Revnegzheme leads to comparable key-sizes, and CLE
yields smaller keys than IP1S, if we neglect the additionafmary requirement imposed by the common string shared
between all the participants.

Additionnaly, the IP1S-based identification scheme doésmakes use of either hash functions or commitment
schemes. This is in strong contrast with all the other pralsos

The IP1S challenges described in tdlle 2 cannot be attackad the existing techniques [L7]23,41]. As such,
the best attack remains exhaustively searching for theeskey. As a final note, let us mention that Lyubashevsky

“ this was already observed [n[41].



| Scheme|Common SettinfPublic KeySecret Key

2048 256 374

PKP 7992 512 808
sD 131072 256 512
524 288 512 1024

3600 80 80

CLE 3600 96 96
Perceptron 10807 144 117

| IP1S [ 0 [ 256 [ 272 |

Table 1. Key sizes in bits corresponding to practical parameterpgsed in [[42,413,44,45,36] in order to obtain a
security level of roughly2%.

[Challengd] n | ¢ [DegregPolynomial(s)Public Key|Private Key

A 16/2| 2 2 272 bits | 256 bits
B 16/2| 3 1 816 bits | 256 bits
Cc 616] 2 2 168 bits | 144 bits
D 6(16] 3 1 224 bits | 144 bits
E 3212 2 2 1056 bits| 1024 bits

Table 2. Concrete parameters for IP1S. Patarin proposed challé\nge€ and D in [36]. We introduce challenge E.

recently proposed in[31] to build an identification scheramg the hardness of lattice problems, but did not propose
concrete parameters.

4 Cryptanalysis of Quadratic IP1S

The main observation underlying our quadratic IP1S algorits that bydifferentiatingequation[(lL), it is possible to
collect linear equations between the coefficients @ind those o6 —*.
We denote bYD f : (F,)" x (F,)" — FF," thedifferentialof a functionf : F; — F. Df is defined by:

Df(xy) = f(x+y) = f(x) = f(y) + f(0)

It is easy to see thdd f(x,y) = Df(y,x). If f is a polynomial of total degre€, thenD f is a polynomial of total
degreed, but of degreel — 1 in x andy. Thus, whenf is quadratic, the f is a symmetridilinear mapping.
Going back to the quadratic IP1S problem, for all vectarg € (F,)", we have:

vx,y € (F;)", Db(x,y)=Da(S-x,5y).
Using the change of variabj¢ = S - y, this equation becomes:
vx,y' € (F,)", Db(x,S™!'-y') =Da(S -x,y'). (2)

Sincea andb are of total degree 2, théba andDb arebilinear (symmetric) mappings. In this case, since equafibn (2)
is valid for all x andy, then in particular it is valid on a basis @F,)" x (F,)", and substituting fixed basis vectors
for x andy yieldslinear equationsetween the coefficients ¢f and those o5 1.

This idea for obtaining linear equations can also be desdniblatively simply using the usual theory of quadratic
forms. If F, is a field of even (resp. odd) characteristic, then the setoaidgeneous quadratic polynomialszin
variables oveif, is in one-to-one correspondance with the set of symmetricicea with zero diagonal (resp. of
symmetric matrices). L&P (a;) denote the matrix of the symmetric bilinear form associatét a, (it is related to
the polar formof a;, in odd characteristic). Recall that the coefficient of indgx) of P (ay) is Day, (e;, e;), Where
(€i)1<;<, is abasis of F;)". We then have:

S-1 P(bl) =P (al) -tS
S: )
S1.P(by) =P (as) - 'S



Each one of these matrix equations yields? linear homogeneous equations between2itie coefficients ofS
and those off—!. These last: - n? homogeneous linear equations cannot be linearly indep¢adehey admit a non-
trivial solution (S—*, S). The kernel ofS is thus non-trivial, and our hope would be that it descritrely one solution.
Whenu is strictly greater than two, we then have much more lineaaggns than unknowns, and we empirically find
only one solution (when the polynomials are randomly chpséfhenu = 2, which is again the most relevant case,
the situation is unfortunately not as nice; Theotém 1 beloans that the kernel of is of dimension higher thatn
in characteristic two (at least in odd characteristic). This means that solving the linepragions cannot by itself
reveal the solution of the IP1S problem, becaSsadmits at leas§™ solutions, out of which only very few are actual
solutions of the IP1S instarfteHowever, the linear equations collected this way can bd tessimplify the resolution
of the IP1S problem.

When looking at one coordinate @fi (1), we have an equality betwtwo multivariate polynomials that holds for
any value of the variables. Therefore the coefficients otwwpolynomials can be identified (this is essentially the
algorithm presented in[17]). This yields a systSg.q of u - n? /2 quadratic equations in* unknown oveif,. With
u = 2, this precisely givea? equations im? unknown, which cannot be solved by any existing techniqastef than
exhaustive search.

However, we now know tha(S, S*l) lives in the kernel ofS, and thereforeS can be written as the sum of
k = dim ker S matrices that can be easily computed using standard lingelra. |dentifying coefficients ifi{1) then
yields a systens,,.q of u - n?/2 quadratic equations ik unknown. Our hope is thdtis small enough for the system
to be very overdetermined, so that computing a Grébner bé&sig,.q is polynomial in theory, and feasible in practice.

The analysis of the attack then proceeds in two steps:

1. Estimate the rank af (i.e. the value oft).
2. Estimate the complexity of the Grobner basis computation

For the sake of simplicity, we will analyze the attack algfun under some assumptions on the input system. For
instance, we will assume that thatis even, and that one of the two quadratic forms we are dealitiyis non-
degenerate. We will then argue that a random instance sattbiis assumption with high probability, but we are well
aware that some structured instance may not. This is in f#ite tpgical, because a worst-case polynomial algorithm
for IP1S would imply a worst-case polynomial for Graph-Iswphism (a fact that would be quite surprising). The
situation of the IP1S problem is in this respect quite sintibethat of Gl: heuristics are capable of dealing efficiently
with the random case, while some very special instances rieda fail (interestingly, hard instances for Gl are
transformed into hard instances for IP1S through the réohictLastly, we mention that our algorithm does not
necessarily fail on an instance that does not meet our aggmapHowever, we no longer have a guarantee on its
running time. Random instances fail to meet the assumptitthaxssmall probability, but we empirically observed that
the algorithm solves them in reasonable time as well.

4.1 Counting Linearly Independent Equations

Obtaining guarantees on the number of linearly indepeneeguaations inS is the most important and the most
delicate part of the attack. Sindém ker S is a function of the instance, it makes sense to consideatidom variable
giving dim ker § assuming the instance was randomly chosen[Fig. 1 abovessteogexperimentally observed) dis-
tribution for various sizes of the base field. We immediatadg that in odd characteristitim ker S is oftenn, while
in characteristic two it is oftefin. In the sequel we provide mathematical arguments to baslothgervation up. We
will focus on the (harder) case of fields of characteristio,taince this is the more cryptographically relevant case.

Our results are expressed in terms of Hmilarity invariants P, ..., Ps of a matrix M. Their product is the
characteristic polynomial a¥/, P; is the minimal polynomial of\/, and P; divides P, ;. The main technical result
needed to understand the rankifs the following theorem.

Theorem 1. Let A, As, By, B» be four given matrices of sizex n with coefficients irF,. Let us consider the set of
all pairs (X, Y") of n x n matrices satisfying the following linear equations:

S Bi=X-A-Y
: By=X-Ay-Y
Let us assume thaf admits at least one solutiofiXy, Yy) with both X, and Y; invertible, and that4, is also
invertible.

® We note that this contradicts the hope expressed in sectiori 9]of [40]
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Fig. 1: Experimental distribution afim ker S.

i) There is a vector-space isomorphism between the kerebofd the commutant @f = A, - Afl.
11) n < dimker S.
1i1) LetPy,..., P be the similarity invariants of. Then:

dimker S = Z (2s —2j +1) - deg P;
j=1

Proof. Because a solution & exists, thenB; is invertible. Thanks to this, we can write:

S: Y=A7"- X" B
CO\ Be- Byt X=X Ay At

Using the particular solutioX, then gives:

Y=A7"- X1 B
S {c-(xo-l-x) :(Xo-l-x)-c

From there, it is not difficult to see that the kernel®fs in one-to-one correspondance with the commutant of
C, the isomorphism beingX,Y) — Xo_1 - X. The second point of the theorem follows from the well-kndact
thatn lower-bounds the dimension of the commutant of any endohisip on a vector space of dimensionsee
for instance[[7, Fact 2.18.9]). The third point follows frargeneral result on the dimension of the commutant [20,
chapter 6, exercise 32]. O

Theorenf L directly applies to our study of the rankSofith A; = P (a;) andB; = P (b;). However, it holds only
if P (a;) or P (ag) is invertible (we may swap them if we wish, or even take a lireganbination). Note that since
P (a1) is a random skew-symmetric matrix, it cannot be invertible is odd, and the analysis is more complicated
in that case. This is why we focus on the case wheig even, and where one of the two quadratic forms is non-
degenerate. The following lemma gives us the probabiligg Eh(a;) (or P (b;)) is invertible.

Lemma 2 ([32], theorem 3).Let Ny(n, ) denote the number of symmetric matrices of sizen overF, with zeros
on the diagonal and of rank.

s 2s—1

(n,2s) H qq21 . H (q"*i — 1)

1 i=1

N()(’n 25 + 1) =0



If nis even, the probability th&® (a, ) is invertible if¢ = 2 is about0.419 (this probability increases exponentially
with ¢). The probability that eitheP (a;) or P (az) is invertible is then abouit.662 wheng = 2.

Theorent1 is then applicable in more than half of the caseswhe 2 (and we expect this proportion to grow
very quickly with¢q). When it is applicable, what guarantee does it exactly 8ft§e would need to know something
about the similarity invariants @f. An easy case would be when the minimal and characterisijmpmials are the
same (then there is only one invariant factor, and it is gedgithe characteristic polynomial). Then Theofém 1 tedls u
that the dimension dfer S is n. For random matrices, the probability of this event is gitgrihe following lemma.

Lemma 3 ([21], theorem 1).Let ¢(n, ¢) be the proportion of cyclia x n matrices (i.e., matrices for which the
minimal polynomial is of degree). We have:

B P R
Plg+1) @D
And asymptotically, we have:
5 o0
: ¢ -1 1
lim ¢(n,q) = . <1—.>
) = e —ny U\

For random matrices ovéf,, and forn big enough, the proportion of cyclic matrices approach&46. Un-
fortunately,C is hardly a random matrix. In odd characteristic it is theduat of two symmetric matrices, while in
characteristic two it is the product of two symmetric masavith null diagonal (and these are in fakew-symmetric
matrices). The product of two skew-symmetric matricegeis far from being random, and it is in factevercyclic,
as the following result shows.

Theorem 2 ([€]). Let M be a non-singular matrix of even dimension. Then the twovoilg conditions are equiva-
lent:

1) M can be written as the product of two skew-symmetric mattices
13) M has an even number of similarity invarian®s, . .. Py, and Py; 11 = Paiqo.

Corollary 1. In characteristic two, if» is even and’ is invertible, therker S has dimension at leas&t.

Proof. By theoreni 2 has at least two invariants, both equal to the minimal patyiabof C (which thus happens to
be of degree:/2). Then theorerill1, poiniti) shows thaker S has dimension. If C has more invariantger S can
only be of higher dimension. O

Corollary[d shows that with a constant probability (whenttie quadratic forms are non-degeneratey ker S
is greater than, which sounds like bad news. Whéiis not invertible, theoreil 2 no longer holds (there are cardnt
examples), but what does apparently still hold is the faat tthe minimal polynomial of has degree at mosy/2, and
this would be sufficient to show that in all caséis ker S > 2n, in accordance with Fidl 1.

What we would in fact need to know is the probability tat S is exactly of dimensior2n. Theoreni1L still
connects this dimension to the similarity invariant<Cofeven thouglC is not a uniformly random matrix. It seems
plausible that is unlikely to have a very high number of similarity invariagnand that the most common situation
is that it has only two invariants (twice the minimal polyniafh We could not compute explicitly this probability,
and we could not find ways to obtain it in the available literat We measured it experimentally and foun@d46
(after10° trials) wheng = 2. This is strikingly close to the result brought by leminia 3tia tandom case. Under the
conjecture thaf has two invariant factors with this probability, then thewi] tells us that in abo@6% of the cases,
dim ker S = 2n. The empirical probability seems to be even higher, as shaynfig[d.

4.2 Solving Very Overdefined Quadratic Systems

The solution of the IP1S instandd (1) is systematically that®n of a systens,,.q of n? quadratic equations. In
the previous section, we argued that we can reduce thismsyste? equations ir2n unknowns with high probability,
and (much) more unknowns with negligible probability. Tlystem is so overdefined that it can almost be resolved
by linearization. Indeed, it ha¥? /4 equations inV unknowns. In practice, computing a Groébner basis of thel idea
generated bys,,.q terminates very quickly, and allows to recover the actukltgms of the problem.



This last fact can be theoretically justified. It is well-kmothat Grobner basis algorithnis [15],16] are more efficient
on overdefined systems. The complexity of most algorithmengty depend on a parameter of the ideal called the
degree of regularitylndeed, the cost of computing a Grobner basis is polynomittie degree of regularity), .
of the system when the ideal has dimension zeeg,when the number of solutions is finite. The computation of a
Grobner basis essentially amounts to solve a syste a&lparse linear equations i variables, wherél/ is the
number of monomials of degre@,., in N variables. The complexity of this process is roug(i])(NW'Dreg), with
2 < w < 3 the linear algebra constant, andthe number of variables of ideal considered (in our case; 2n).

The behavior of the degree of regularity is well understadfandom” systems of equatioris([3.4,5E(, regular
or semi-regularsystems). It is conjectured that the proportion of semist@gsystems oV variables goes to 1 when
N goes to+oo. Therefore, we can assume that for lafgea random system is almost surely semi-regular. This is to
some extent a worst-case assumption, as it usually meansuhaystem is not easier to solve than the others. The
coefficients of the Hilbert series associated with the ideslerated by a semi-regular sequenceraquations inVv
variables coincide with those of the series expansion ofithetion f(2) = (1 — z2)m /(1 —2)N, up to the degree of
regularity. The degree of regularity is the smallest degrsech that the coefficient of degréén the series expansion
of f(z) is not strictly positive. This property enables an expla@mputation of the degree of regularity for given
values ofm and N.

Furthermore, the available literature readily providenagiotic estimates of the degree of regularity for semi-
generic ideals ofV + k or o - N equations inV variables, but unfortunately not for the casexofN? in N variables,
which is the situation we are facing here. We thus tabulat¢alkile[8 the degree of regularity for semi-regular systems
of equations having the same number of equations and unlsawithose occurring in our attack. From this table,
we conclude that for any reasonable value of the paramétersiegree of regularity will be 3, and thus computing
a Grobner basis af,,.q Should have complexity at moét (n9). In practice, the maximal degree reached by the F
algorithm on our equations is two, which is even better.

n 2 3 4 5 6 7 8 . 16 . 32

N 4 6 8 10 12 14 16 . 32 . 64

m 4 9 16 25 36 49 64 e 256 e 1024
Dreg 5 4 3 3 3 3 3 . 3 . 3

Table 3. Degree of regularity of random with the same parametersaaetbccuring in our attack.

4.3 Implementation

We demonstrated that the algorithm described in this se¢gaminates in timeD (nG) on a constant fraction of

the instances. This reasoning is backed up by empiricabaciet we implemented the algorithm using the computer
algebra system MAGMA[[9]. Solving the equations&f,.q is achieved by first computing a Grébner basis of these
equations for the Graded-Reverse Lexicographic ordemutia F; algorithm [15], and then converting it to the
Lexicographic order using the FGLM algorithm[14]. This ilmmentation breaks the random instances of IP1S in very
practical time. For instance, Challenges A and C are solvedfew seconds. Random instances with- 24, u = 2
require about a minute. Challenge E takes about 10 minutéth® dominating part in the execution of the algorithm

is in fact the symbolic manipulation of polynomials requirte write down the equations &,,.q4. Actually solving

the resulting quadratic equations turns out to be easierdbaerating them. We never generated a random instance
that we could not solve with our technique, for any choicenefparameters.

There are only public parameter sets, and no public chaetg break, so we unfortunately cannot provide the
solution of an open challenge to prove that our algorithmksoHowever, the source code of our implementation is
available on the webpage of the first author.



5 Cryptanalysis of Cubic IP1S

In this section, we focus on the case whamndb are composed of a single cubic polynomial. We assumeathat
b are given explicitly, i.e.:

a = ZZZAL]‘JC ~;v1-xjmk, b= ZZZBL%IG '%il'jl'k.
i=1 j=i k=j i=1 j=i k=j
As already explained, we can restrict our attention to thedgenous case. The techniques developed previously for
the quadratic case cannot directly applied in this setlimdeed, the differential is no longer a bilinear mapping] an
then there is no obvious linear equations between the ciggfficof a solution and those of its inverse. However,
we can combine the use of the differential together with théb@er basis approach proposed.in [17]. We denote by
So = {s}}1<ij<n @ particular solution of IP1S betweenandb, i.e, it holds thatb = a o S. For all vectors
x,y € (F,)", we have:
Da(Sy - x,y) = Db(x, So_l y).
a andb being of total degre8, the coefficients of, and.S; ! appear with degree two in the expressiorDef and
Db above. LetR be the ringK[s1 1. .., Snn,U1,1,- - ., Un,n]. We consider the algebtd® of all n x n matrices over
R.LetS = {s;;} andU = {u,;} in A® be symbolic matrices. We denote By 1, the ideal generated by all the
coefficients inR of the equations:

Da(S -x,y) —Db(x,U -y) =0, U-S—-1,=0,, S-U—-1,=0,.

Itis easy to see thdl = S LandsS = S, is a particular solution of this system, and also a solutibiP®S between
b anda. Our goal is to provide an upper bound on the maximum degishezl during a Grébner basis computation
of Ia,b-

We prove here thab,., = 2 for Z, , under the hypothesis that we know one row of a particulartgwib, i.e.,

we assume then that we know the following idgak= <sl’j - s1 J | j=1,. >
Theorem 3. The degree of regularity &, , + J is 2. Therefore, computing a Grébner basis of this ideal take® i
O (n%).

Proof. We use the fact that the degree of regularity of an ideal issgeally left invariant by any linear change
of the variables or generatoris [29]. In particular, we cdesithe ideaII;b generated by all the coefficients in
Klz1,. .., &n, Y1, - - ., yn| Of the equations:

Da(Sy(S + I,)x,y) — Db(x, (U + I,,)Sy 'y) = 0, U-S=0,, S-U=0,.

Itis clear thatZ, ,, is obtamed frontZ, 1, by replacingS (resp.U) by So(I, + S) (resp.(U + I,,)S; '). Thus, the
degree of regularlty = b andZ, 1, are equal. Using the same transformation, the igeaecomes

j/:<817j ‘j:].,,TL>

We now estimate the degree of regularity of the |d%a,lJ + J'. For areason which will become clear in the sequel, it
is more convenient to work wit, , + 7. In what follows,F’ will denote the generators @, ,, + J'. We will show
that many new linear equations appear when consideringieqaaf degree. To formalize this, we introduce some
definitions related to the Falgorithm [16]. In particular, we will denote b ; the linear space generated during the
k-th step of i when considering polynomials of degrée

Definition 1. We have the following recursive definition/qfy:

I10(F) = Veck (F)

Ij1(F) =Veck (s;;f| 1 <1,
+Veck (u;; f | 1<,

Igk(F) =Veck (s;;f| 1<1i,j
+Veck (u; ;i f | 1 <14,

nandf € I o(F))
<nandf € I;0(F))
nandf € Iy,—1(F)and deg(f) <d—1)

Jj <
J<
<
j<nandf e ly,_1(F)anddeg(f) <d—1).



Roughly speaking, the indéxis the number of steps in ttf, / F; [16] algorithm to compute an elemefite 1, 1 (F).
We show thaf, ; (F') contains exactly,®+2n linear equations. This means that we have already many lagegtions
generated during the first step of a Grobner basis compuotafié'.

Lemma 4. I ; (F') contains the following linear equations:
{ur; |j=1,...,n} (4)
Proof. From the first row of the following zero matri% - U we obtain the following equations:
S1,1U1,1 +S12U21 +81,3U31 + 0+ 81U =0,

S11U12 +512U22 +S13U3 2+ + 81,5 U2 =0,

S51,1U1,3 +S12U23 +513U33+ -+ 51, Up,3 =0,

811U, +S12U2pn +8513U3n + + 81 pUp, =0

Using the equations; ; = 0 from the ideal7’, we obtain theni; ; = 0,u12 =0,...,u1,, = 0. O
We can also predict the existence of other linear equatiofs:i(F).
Lemma 5. For all (i, j) € {1,...,n}? the coefficient of, y;z; in Da(Sy(S + I,,)x,y) — Db(x, (U + I,)S; 'y) is
a non zerd linear equation modulo the equations of the idgdland (@). Among these equations, there arevhich
depend only of the variablesy, » | 1 < k., ¢ < n}.
Proof. We consider the coefficient of the monomial= y,y;z; in the expression

A=A, — A, =Da(Sy(S + I,)x,y) — Db(x, (U + I1,,)Sy 'y).

Since the monomialr is linear inx; it is clear that the corresponding coefficientdy = Da(Sy(S + I,)x,y) is
also linear in the variables ;; moreover this coefficient is non zero. We have now to comstuecoefficient ofn in
Ay. SinceDb(x,y) is the differential of an homogenous polynomial of degeee can always write:

Db(XaY) = Z Zgi,j(yla e 7y77.) Tilj + ZQ1(yla e ayn)xl (5)

i=1 j=i i=1

where/; ; (resp.g;) is a polynomial of degreeé (resp.2). Consequently, the coefficient of in Db is also the
coefficient ofy,y; in ¢; (U + In)So_ly). That is to say, ing;(y) we have now to replacg = (y1,...,yn) by
(U + I,)S; ty). Thus, modulo the equations of the ide&l and [@), we can write the produ@/ + 1,,)S; y) as

1
N uQ71 ...... uQ’n % % ¥ k¥
I B * * * *
X ok ok ok
yn un’l ...... un,n
n * x ok *
(*u271 + -+ *UQ,’IL) ...... (*UQ,I + -+ *UQ,TL)
Un (*unJ + -+ *unl’n) ...... (*u271 + -+ *unl’n)

#y1 + (kug + o xU )Yz + o (KUng o R Yn
*y1 + (*UQ’l + -+ *U2,n)y2 +o (*un,l +ot *u"vn)y”

#y1+ (Fugy 4o A fUgn )Yz + o (Fng A * U ) Un
Hence the coefficient of,y; in ¢; (U + 1,,)S; 'y) is linear in the variables;,; wheni # 1 and the coefficient of?
is a constant. O

® more precisely, generically non zero.



To summarize:

Lemma 6. I, (F) contains exactly? + 2n linear equations.

Proof. In I, ; (F'), we haven linear equations from lemnid 5, linear equations from the very definition ¥, and
n? linear equations from lemnia 5 O

As explained before, we obtait? + 2n linear equations fof, 1 (F'). However, we havén? variables. So, we have to
considerl, »(F'), i.e, the equations generated at degzauring the second step. Thanks to lenitha 6, we can reduce
the original system to a quadratic systen2itf — (2n+n?) = (n—1)? variables. W.l.0.g we can assume that we keep
only the variables; ; where2 < i, j < n. Let F’ be the system obtained frof after substituting thén + n? linear
equations of lemmid 6. All the monomialsiz 1, . . . , Zn, y1, - - - , yn] Of Da(So(S+1,.)x,y)—Db(x, (U+1,)S; 'y)
have the following shape:

Y Yk OF Yz, With 1 <4, 5,k < n.

Hence the number of such monomial§is% = n?(n+ 1) = n3, which implies that the number of equations in

F' is alson?®.

Thanks to this remark, we will now prove that we can lineafizeLet T'(F’) be the set of all monomials occurring
in F’. We can assume th&(G') = [t; <ty < --- < ty].Itisimportantto remark that = uz 2 UP tOt(,,_1)2 = Uy
are in fact variables. Now, le¥/ be the matrix representation 6f w.r.t. 7'(G’). Since we know precisely the shape
of the equations from the proof of lemiah 5, it is possible talgissh that:

1. most of the equations are very sparse, namely each eguativains about? non-zero terms.
2. allthe variables, ..., t_1)2 occur inall the equations

After a Gaussian elimination of the matr{, we obtain the following shape:

L1200 0
o 0 N
M= 0 X
0 X
Hence, we obtain after a second step of computation in dégilee equationsiz » = - -+ = u,_, = 0. This means

that after2 steps of computation at degrgewe obtain(n — 1)2 + 2n + n? = 2n? linear equations iRn? unknowns.
This explains why the maximum degree reached during the ri@iasis computation d&b + J' is bounded by,
and concludes the proof of theor&in 3. O

5.1 Application to the Linear Inhomogeneous Case

If ¢ = 0 in equation[(L), and ifx has a non-trivial homogeneous component of degree one,ldloéing at the
homogeneous component of degree one yields the imagi@ofone point. We are then in a situation where thediem 3
is applicable, and' can be determined though a Grébner basis computation wéiigtirtates in time) (nﬁ)

5.2 Implementation and Application to the Other Cases

All the other cases reduce to the linear homogeneous caseerasoned in sectiof] 2. In this setting, the problem is
that we do not have enough knowledge $mo make the Grobner basis computation efficient. A simpla ideuld

be to guess a column ¢f then compute the Grébner basis. This approach has compt@xit’ - ¢") as explained
before. It is possible to reduce this complexity by a factog,dy discarding guesses for the columnsthat yields
different values ok andb on the corresponding points.

The biggest proposed cubic IP1S challenge (Challenge C ilffipasu = 1, n = 16 andg = 2. Given one
relation onS, the computation of the Grobner basis takes 90 seconds @Gh2 Xeon computer using the publicly
available implementation of ,Ain MAGMA. Since this has to be repeat@d®® times, the whole process takes about
one CPU-month (and can be parallelized at will). For chgiéeb, the Grobner basis is computed in 0.1 second, and
the whole process takes about 2 hours.



5.3 An Interesting Failure

We conclude this section with a simple idea that could hasd te an improvement, by efficiently giving a relation
on S, but which fails in an interesting manner. Let us assumedtatdb are homogeneous, and that 0 (in that
setting, ifc # 0, thenc can be retrieved following the observation of[[24]). Let wndte byZ, (resp.Z,) the set of
zeroes oh (resp.b). Because of lemnid 1, and sin6és linear, we have:

S<ZX>=ZY

XEZqa YE€Zb

This yields a relation o1, which is enough to use theorém=8andb may be assumed to have abqlit'! zeroes.
Finding them requires tim@ (¢™). The complexity of the attack could thus be improved)t()n6 + q”). Surprisingly,
this trick fails systematically, and this happen to be cognsace of the Chevalley-Warning theorémi[10,46].

Lemma 7. The sum of the zeroes of a cubic form on 5 variables or morelfyes always zero.

Proof. Let us consider the elements &f, having« as their first coordinate, and let us denoterlytheir number.
These are in fact the common zeroeg@fz; — a). By the Chevalley-Warning theorem [L0]46] athas at least 5
variables, then the characteristic of the field divides Therefore, their sum has zero on the first coordinate. Apgly
this result for all values ofr shows that the sum of zeroesa@has a null first coordinate. We then just consider all
coordinates successively. O

6 Conclusion

In this paper, we present algorithms for the IP problem witk secret for two random quadratic equations and one
cubic equation. As already explained, there are the mosgtagyaphically relevant instances. Moreover, we explain

the complexity, success probability and give sufficientdittons so that the algorithms work. We combine the use of

the differential and the computation of Grobner bases of weerdefined systems. All the proposed IP1S challenges
can be broken in practice by the technique we describe, deltb@ing table shows.

[ChallengéAttack time on one cotle

3 seconds
1 month
0 seconds
1 hours
3 minutes

m|O| 0| m >

In view of these results, we conclude that Patarin’s IP1SeBadentification scheme is no longer competitive with
respect to others combinatorial-based identification mes[4%,438,44,45].
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