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Abstract. We investigate the security of a generalization of HFE (mul-
tivariate and odd-characteristic variants). First, we propose an improved
version of the basic Kipnis-Shamir key recovery attack against HFE. Sec-
ond, we generalize the Kipnis-Shamir attack to Multi-HFE. The attack
reduces to solve a MinRank problem directly on the public key. This
leads to an improvement of a factor corresponding to the square of the
degree of the extension field. We used recent results on MinRank to show
that our attack is polynomial in the degree of the extension field. It ap-
pears that multi-HFE is less secure than original HFE for equal-sized
keys. Finally, adaptations of our attack overcome several variants (i.e.
minus modifier and embedding). As a proof of concept, we have prac-
tically broken the most conservative parameters given by Chen, Chen,
Ding, Werner and Yang in 9 days for 256 bits security. All in all, our
results give a more precise picture on the (in)security of several variants
of HFE proposed these last years.
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1 Introduction

Multivariate Public-Key Cryptography (MPKC) is the set of public-key schemes
using multivariate polynomials. The concept of MPKC is very appealing since
its security is related to the hardness of a post-quantum problem, namely solv-
ing a quadratic system of algebraic equations [23]. In addition, the encryp-
tion/decryption procedures are very efficient and can be done in constrained
environments [6, 10]. Among these cryptosystems, the Hidden Field Equations
cryptosystem (HFE) is probably the most studied one. It has been proposed
by Patarin [29] after his cryptanalysis [28] of the historical multivariate scheme
C∗ [27]. In [26] Kipnis and Shamir proposed a key recovery attack on HFE, which
reduces to the so-called MinRank [12] problem. Although the attack is not practi-
cal for the proposed parameters, it was conjectured to be sub-exponential. Later,
Faugère and Joux [17, 19] proposed an efficient message recovery attack based
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on Gröbner bases. This attack, which is “quasi-polynomial” [24], raises serious
doubt about the security of HFE. To thwart both attacks on HFE, it has been
proposed to use a multivariate system as the secret key [5] or odd-characteristic
fields [14] or even both in a recent paper [11]. This new family of schemes is
called multi-HFE in the rest of the paper.

Our contributions. We propose here a key recovery attack on HFE, multi-HFE
and some of its variants. Our attack is an adaptation and improvement of the
Kipnis-Shamir attack [26]. Precisely, we reduce the attack to the problem of find-
ing a linear combination of the public quadratic forms of low rank. This problem
is known as the MinRank (MR) problem (MR is usually defined for matrices,
but the problem can be defined equivalently on quadratic forms). The coeffi-
cients in the linear relation that we are looking for are strongly related to one
of the affine transforms used to hide the (multi-)HFE structure. We show that
the MinRank can be expressed in the small field, which allows to considerably
speed-up solving by approximately a factor corresponding to the square of the
degree of the extension field. Thanks to recent results on MinRank [20, 21] and
bilinear systems [22], we conjecture that the attack is polynomial in the degree
of the extension. Using this complexity analysis, we can prove that, for the same
size of keys (a precise definition of this notion is given in Sect. 3.6), multi-HFE
is always less secure than HFE. In addition, the large number of equivalent keys
allows to attack the minus variant (this amounts to remove some equations in
the public key) using the induced degrees of freedom of the MinRank. Finally,
we present an attack on the embedding variant of (multi-)HFE. This variant
consists in instantiating some variables of the public system. However, a low
rank linear combination of the quadratic forms can still be found. In this case,
solving the corresponding MinRank on truncated quadratic forms allows us to
recover only a rectangular sub matrix of the linear transform; to overcome this
difficulty we need to extend this matrix in a special way (details can be found
in Sect. 5) to make it invertible. As a proof of concept, we practically broke
several parameters proposed in [11], supposed to have up to 256 bits security
(experiments are given in Sect. 6). We also mention that the second part of the
attack of Kipnis and Shamir as presented in [26] does not apply in characteristic
2. It is possible to overcome this problem but due to space limitation, this will
be presented in an extended version of this paper. Consequently, we assume in
the rest of the paper that q (the size of the small field) is odd.

2 Multivariate HFE

Throughout this paper, we use the following conventions: an underlined letter
denotes a vector, e.g. v = (v1, . . . , vn). A capital bold font letter denotes a matrix,
e.g. M = [mi,j ]. A calligraphic capital letter denotes a general mapping, e.g. F .

For Multi-HFE, the parameters considered are (q,N, d,D) ∈ N4. Here, q
(odd) denotes the size of the ground field Fq, d is the degree of the extension
field Fqd , N is the number of variables and equations of the secret polynomi-
als in the ring Fqd [X1, . . . , XN ], and D their degree. Throughout the paper,



we use capital letters for elements relative to the big field Fqd (e.g. Vi ∈ Fqd ,
Fi ∈ Fqd [X1, . . . , XN ]), and small letters for elements relative to Fq (e.g. vi ∈ Fq,
fi ∈ Fq[x1, . . . , xn]). The secret internal transformation is F∗ : (V1, . . . , VN ) ∈
(Fqd)N 7→

(
F1(V1, . . . , VN ), . . . , FN (V1, . . . , VN )

)
∈ (Fqd)N with deg (Fi) 6 D.

The degree D is chosen such that F∗ is easy to invert. In addition, the polyno-
mials F1, . . . , FN are constructed in a specific way:

Fk =
∑

16i6j6N

∑
06u,v<d
qu+qv6D

Ak,i,u,
j,v

Xqu

i Xqv

j +
∑

16i6N

∑
06u<d
qu6D

Bk,i,uX
qu

i + Ck.

From now on, we say that such systems have (multi-)HFE-shape. For conve-
nience, we denote n = N d. Let ϕN be the natural morphism (Fqd)N 7→ (Fq)n and

F be the small field representation of the secret polynomials F = ϕN ◦F∗ ◦ϕ−1N

with F : (v1, . . . , vn) ∈ (Fq)n 7→ (f1(v1, . . . , vn), . . . , fn(v1, . . . , vn)) ∈ (Fq)n.
Due to the HFE-shape, each polynomial fi has total degree 2. For the secret
key, the mapping F∗ is supplemented by two affine maps S, T ∈ Aff(n,Fq) rep-
resented by matrices S and T which hide the internal structure. The public key
G = T ◦F◦S : (v1, . . . , vn) ∈ (Fq)n 7→ (g1(v1, . . . , vn), . . . , gn(v1, . . . , vn)) ∈ (Fq)n

is then composed of polynomials g1, . . . , gn ∈ Fq[x1, . . . , xn] of total degree 2.
To encrypt, we evaluate g1, . . . , gn in the message m = (m1, . . . ,mn) ∈

(Fq)n. With the knowledge of the private key, the decryption of a ciphertext
c = (c1, . . . , cn) ∈ (Fq)n is done by computing S−1 ◦ ϕN ◦ F∗−1 ◦ ϕ−1N ◦ T −1(c).
As each part can be inverted efficiently, the decryption is done efficiently.

The original HFE scheme [29] is mostly used over F2 with a single univariate
polynomial as a secret map. It is then an instantiation of multi-HFE with q = 2
and N = 1. The construction PHFE (for projected HFE) of [14] is an odd char-
acteristic univariate HFE that uses the embedding modifier (see Sect. 5). The
scheme IFS (for Intermediate Field System) from [5] is a multi-HFE in character-
istic 2 and THFE from [11] is a multi-HFE in odd characteristic (possibly with
embedding modifier). To make the decryption efficient, all instances of multi-
HFE with N > 1 use quadratic polynomials as internal secret transformations.
Parameters examples from the literature are given in the tables below.

q N d D security

HFE [29] 2 1 128 513 128
PHFE [14] 7 1 67 56 201

q N d D security

IFS [5] 2 8 16 2 128
THFE [11] 31 3 10 2 150

We now review two attacks on the original HFE: the direct algebraic attack
(message recovery) of [19] and the key recovery attack of [26].

2.1 Direct Algebraic Attack

Let (c1, . . . , cn) ∈ (Fq)n be a ciphertext, a message-recovery reduces to solve a
system of quadratic equations, i.e. {g1 − c1 = 0, . . . , gn − cn = 0}. A classical
method to solve algebraic systems is to compute a Gröbner basis [8, 1, 13]. The



historical method for computing Gröbner bases has been proposed by Buchberger
in his PhD thesis [8]. The algorithms F4 [15] and F5 [16] by Faugère permit to
improve the basic Buchberger’s algorithm. A good measure of the complexity
for Gröbner bases is the so-called “degree of regularity” of a system. This is the
maximum degree of the polynomials appearing during the computation (see [2,
3]).

It appeared [17, 19] that inverting the public key of the original HFE is much
easier than expected (i.e. in comparison to a random system of the same size).
For original HFE, the degree of regularity has been experimentally shown to be
roughly logq(D) (see [19]). This makes the attack sub-exponential in the number
of variables. Further analysis of the Gröbner basis approach [24] confirmed this
result. Note that the field equations (i.e. xq1 − x1 = . . . = xqn − xn = 0) are
mandatory to achieve this complexity. Their role is to force the solutions to
be only in the base field Fq. To prevent a direct algebraic attack, it has been
proposed [14] to use a field with a bigger characteristic. Field equations only
intervene in degree at least q. Typically, a HFE system with q > n seems very
hard to solve with a direct approach (for n sufficiently big). Note that the hybrid
approach described in [4] has been designed to solve such systems. However, for
n = 28 and q = 31 the complexity of the hybrid approach is 282. It is better than
a direct solving (2115) but the attack remains exponential. For multi-HFE, the
situation is almost similar. On characteristic 2, multi-HFE can still be attacked
similarly. This confirms that the algebraic attack is somehow “optimal” over F2.
However, the direct algebraic attack does not affect instantiations of multi-HFE
with bigger odd characteristic as adding the field equations would not be useful.

2.2 Original Kipnis-Shamir (KS) Attack

We now describe the key recovery attack proposed in [26] for the original HFE
scheme (N = 1, n = d). The starting idea is to remark that polynomials of the
public key – as well as the transformations S, T – can be viewed as mappings
G∗,S∗, T ∗ : Fqn 7→ Fqn and represented by the univariate polynomials G,S, T ∈
Fqn [X]. The public key relation then becomes G = G∗(X) = T ∗(F∗(S∗(X))).
Kipnis and Shamir [26] proposed interpolation to recover a univariate represen-
tation of the public key. We present a more efficient and simpler way in Sect. 3
to perform this step.

Kipnis and Shamir [26] also showed that the univariate polynomials can be
written as a “non-standard quadratic form”. For instance, we have:

G =

n−1∑
i=0

n−1∑
j=0

gi,jX
qi+qj = XGXt, where X = (X,Xq, . . . , Xqn−1

)

and G = [gi,j ] is a symmetric matrix. Similarly, we define F = [fi,j ] the sym-
metric matrix representation of the secret univariate polynomial.

The Kipnis-Shamir attack is based on the remark that Rank
(
F
)
6 logq (D).

Indeed, the degree of the secret polynomial is smaller than D and the only non-
zero entries in F are fi,j , if i, j 6 logq (D). In addition, if we write T ∗−1(X) =



∑n−1
k=0 tkX

qi and S∗(X) =
∑n−1

k=0 skX
qi the equation G∗(X) = T ∗(F∗(S∗(X)))

implies this so-called “Fundamental Equation” (see [26] for the proof).

n−1∑
k=0

tkG∗k = G′ = W̃FW̃t (1)

where W̃ = [w̃i,j ] is a specified invertible matrix (with w̃i,j = sq
i

j−i) and G∗k the

matrix such that its (i, j)-th entry is gq
k

i−k,j−k. As the rank of F is bounded, so
is the rank of G′. Recovering the tk’s reduces to solve a MinRank problem:
MinRank (MR) in a finite field K
Input: n, r, k ∈ N and matrices M1, . . . ,Mk ∈ Kn×n.

Question: is there a k-tuple (λ1, . . . , λk) ∈ Kk such that Rank
(∑k

i=1 λi Mi

)
6

r.
The MinRank problem is NP-complete [9]. From an algorithmic point of view,
Kipnis and Shamir proposed to model the problem as a system of overdeter-
mined quadratic equations and then to solve it with the so-called relinearization
method [26]. This Kipnis-Shamir modeling – which turns to be a set of bilin-
ear equations [21] – as well as the so-called Minors modeling have been further
studied and improved in [20, 21]. In both modelings, solving MinRank reduces
to compute the solutions of a system of structured algebraic equations.

Once the tk’s of equation (1) are known, the sk’s are recovered by solving a

linear system. From (1), we see that ker(G′) = ker(W̃F) and thus ker(G′) W̃ =
ker(F). Due to the special shape of F, the first ` = logq(D) columns of its left
kernel are 0. This gives rise to a linear system of equations of ` (n− `) equations
in n2 variables. Since wi+1,j+1 = wq

i,j , Kipnis and Shamir proposed to reinterpret

the equations over Fq. This gives n ` (n − `) equations in n2 variables over Fq.
Solving this overdetermined system completes the key recovery.

3 Improvement and Generalization of KS Attack

3.1 Improving the Univariate Case

To generalize the KS attack, it is convenient to interpret it as vector/matrix
operations. In this paper, we denote by Frobk the function raising all the com-
ponents of a vector or a matrix to the power qk in any field K of characteristic

q. For example Frobk(v) = (vq
k

1 , . . . , vq
k

m ), for a vector v = (v1, . . . , vm) ∈ Km

and Frobk(A) = [aq
k

i,j ], for a matrix A = [ai,j ].

Proposition 1. Let (θ1, . . . , θn) ∈ (Fqn)n be a vector basis of Fqn over Fq and
Mn be the n× n matrix whose columns are the Frobenius powers of the basis:

Mn =


θ1 θ

q
1 . . . θ

qn−1

1

θ2 θ
q
2

...
...

. . .
...

θn θ
q
n . . . θ

qn−1

n

 .



We can express the morphism ϕ1 : Fqn 7→ (Fq)n as

V 7→ (V, V q, . . . , V qn−1

) M−1
n

and its inverse ϕ−11 : (Fq)n 7→ Fqn as

(v1, . . . , vn) 7→ V1, with (V1, . . . , Vn) = (v1, . . . , vn) Mn.

Furthermore, we have that V q
(i mod n)+1 = V(i+1 mod n)+1.

Proof. The i-th entry of (v1, . . . , vn) Mn is (
∑n

j=1 vjθj)
qi , the qi-th power of the

representation of (v1, . . . , vn) in Fqn with respect to the basis (θ1, . . . , θn). ut

The matrix Mn allows to go back and forth from the big (Fqn) to the small field
(Fq). It can be used to have the univariate representation of the public key in a
simpler way than in [26]; we replace interpolation by matrix multiplication. For
the sake of simplicity, from now on, we consider only linear transformations and
homogeneous polynomials. What follows can easily be adapted to the affine case
(as pointed in [26]).

Let F∗k be the matrix such that its (i, j)-th entry is fq
k

i−k,j−k. The matrix F∗k

is the “matrix representation” of the qk-th power of the univariate polynomial

F . Indeed, since F =
∑n−1

i=0

∑n−1
j=0 fi,jX

qi+qj , we have

n−1∑
i=0

n−1∑
j=0

fqk

i−k,j−kX
qi+qj =

n−1∑
i=0

n−1∑
j=0

fqk

i,jX
qi+k+qj+k

= F qk .

Then, F qk = XF∗kXt.
Consider now the symmetric matrices (G1, . . . ,Gn) such that gi = xGix

t

for all i, 1 6 i 6 n, where x = (x1, . . . , xn). Using the definition of ϕ1 with the
matrix Mn, the equation G = T ◦ F ◦ S becomes

(G1, . . . ,Gn) = (SMnF∗0Mt
nSt, . . . ,SMnF∗n−1Mt

nSt)M−1
n T.

As T and Mn are invertible, we have

(G1, . . . ,Gn) T−1Mn = (SMnF∗0Mt
nSt, . . . ,SMnF∗n−1Mt

nSt). (2)

In other words, we have a direct relation between the polynomials of the public
key written as quadratic forms and the secret polynomial F or more precisely
its matrices F∗i. From now on, we denote by U the matrix T−1Mn and W the
matrix SMn and rewrite (2) as

(G1, . . . ,Gn) U = (WF∗0Wt, . . . ,WF∗n−1Wt). (3)

By construction, ui,j+1 = uqi,j and wi,j+1 = wq
i,j . Thus, we only need to know

one column of U to recover the whole matrix. By considering (u0,0, . . . , un−1,0)t,
the first column of U, we have

n−1∑
k=0

uk,0Gk+1 = WF∗0Wt = WFWt. (4)



The equation is similar to (1), but we have not used the univariate representation
of G. Here again, as the rank of F is logq(D), so is the rank of WFWt. Contrarily
to the initial attack, Gi are the public matrices and not matrices with coefficients
in the big field. This leads to the following theorem.

Theorem 1. For HFE, recovering U reduce to solve a MinRank with k = n and
r = logq(D) on the public matrices G1, . . . ,Gn whose entries are in Fq.

Computing a Gröbner basis of a system over a smaller field (Fq instead of Fqn

is faster as the cost of arithmetic operations is decreased. The expected gain is
a factor M(n) (the cost of the multiplication of two univariate polynomials of
degree n) over the KS attack. In the table below, we compare the original KS
Minrank attack and the new MinRank attack on HFE (N = 1) with parameters
q = 31, D = 312 + 31 = 992. The implementation used is the same as in Sect. 6.

n 8 9 10 11 12 13 14 15 16

KS attack (in s.) 15.3 20.4 76.9 391 680 1969 2439 3197 13407
new attack (in s.) 0.75 1.25 2.05 4.45 8.80 16.9 30.2 68.5 103

ratio 20.4 16.3 37.5 87.9 77.3 117 80.8 46.7 130

3.2 Attacking Multi-HFE

The Kipnis-Shamir attack uses the univariate representation of the public key.
In multi-HFE the degree of the univariate representation of the secret key is not
bounded. This was in fact the initial motivation for the design of IFS [5]. As a
consequence, there is no linear combination of the G∗k leading to a small rank,
making the MinRank attack impossible. The hidden field structure exists but it
can only be unveiled by working in the right field. To have the correct analogy
with the univariate case, we introduce a new change of basis between the small
field vector space (Fq)n and the big field vector space (Fqd)N .

Proposition 2. Let (θ1, . . . , θd) ∈ (Fqd)d be a vector basis of Fqd over Fq. Let
MN,d be the (n × n)-matrix such that MN,d = Diag(Md, . . . ,Md︸ ︷︷ ︸

N

). We can

express the morphism ϕN : (Fqd)N 7→ (Fq)n as

(V1, . . . , VN ) 7→ (V1, V
q
1 , . . . , V

qd−1

1 , . . . . . . , VN , V
q
N , . . . , V

qd−1

N ) M−1
N,d

and its inverse ϕ−1N : (Fq)n 7→ (Fqd)N as

(v1, . . . , vn) 7→ (V1, Vd+1, . . . , Vd(N−1)+1) with (V1, . . . , Vn) = (v1, . . . , vn) MN,d.

Furthermore, we have that V q
i d+(j mod d)+1 = Vi d+(j+1 mod d)+1.

Proof. The (d (i− 1) + j)-th entry of (v1, . . . , vn) MN,d is
(∑d

`=1 vd (i−1)+`θ`

)qj
.

Each N block of d values represents the vector (Vi, V
q
i , . . . , V

qd−1

i ), for all i,

1 6 i 6 N . Thus (v1, . . . , vn) MN,d is (V1, V
q
1 , . . . , V

qd−1

1 , . . . , VN , V
q
N , . . . , V

qd−1

N )
with respect to the basis (θ1, . . . , θd). ut



Note that M1,d = Md which generalizes Proposition 1. When N > 1, the
qk-th power of a polynomial Fi ∈ Fqd [X1, . . . , XN ] is represented by the ma-

trix Fi
∗d,k = [fq

k

d bi/dc+(i−1 mod d),d bj/dc+(j−1 mod d)] (this definition matches

the case N = 1). Equation (3) can be generalized for multi-HFE. Let Fi
(j) =

WFi
∗d,jWt, with i, 1 6 i 6 N , and j, 0 6 j < d. We have the relation:

(G1, . . . ,Gn) U = (F1
(0), . . . ,F1

(d−1), . . . . . . ,FN
(0), . . . ,FN

(d−1)).

Similarly to (4), as Fi
∗d,0 = Fi, when we consider the (i d)-th columns of U for

0 6 i < N we have

n−1∑
k=0

uk,0Gk+1 = WF1Wt, . . . ,

n−1∑
k=0

uk,NdGk+1 = WFNWt. (5)

As in the univariate case, the problem of finding correct values for U turns to
be a simultaneous MinRank problem.

Theorem 2. For multi-HFE, recovering U reduce to simultaneously solve N
MinRank problems with k = n and r = N logq(D) on the public matrices
G1, . . . ,Gn whose entries are in Fq.

Proof. Each polynomial Fi has degree bounded by D, thus each variable Xi has
at most degree D. By construction of the matrix M of Proposition 2, the only
non-zero entries of the matrix Fi = Fi

∗d,0 are the ones in the upper-left logq(D)
square of each N diagonal (d× d) block. The rank of Fi is then N logq(D). By

construction, the rank of Fi
∗d,j is left unchanged. ut

Before discussing of the complexity of the MinRank attack for Multi-HFE, we
introduce equivalent keys.

3.3 About Equivalent Keys and Induced Degrees of Freedom

Two keys are equivalent if they have the same public key. The subject has already
been treated for original HFE [31, 30]. It has been shown to have (at least)
(n q2n(qn − 1)2) equivalent keys. A larger number of equivalent keys in multi-
HFE induces a degree of freedom when solving the MinRank that can be used to
attack the minus variant. Due to space limitations, proofs of Propositions 3, 4,
and 5 will be given in an extended version of this paper.

Definition 1. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N,
d,D). We say that (F∗′,S ′, T ′) is an equivalent key iff F∗′ has a HFE-shape,
and T ′ ◦ ϕN ◦ F∗′ ◦ ϕ−1N ◦ S ′ = G = T ◦ ϕN ◦ F∗ ◦ ϕ−1N ◦ S (same public key).

Wolf and Preneel [31] introduced the notion of sustaining transformations which
is a couple of affine transformations (A∗,B∗) such that B∗ ◦ F∗ ◦ A∗ preserves
the “shape” of F∗. For HFE, the “big sustainer” (multiplication in the big field),
the “additive sustainer” and the “Frobenius sustainer” keep the HFE-shape un-
changed. In multi-HFE, not only multiplication keeps the HFE-shape. We also
have any affine transformation on the N variables. Thus, the two first sustainers
can be generalized as follows.



Lemma 1. Let (q,N, d,D) ∈ N4 and F∗ : (Fqd)N 7→ (Fqd)N a mapping with
HFE-shape. Let A∗,B∗ be invertible affine transformations over (Fqd)N . Then
B∗ ◦ F∗ ◦ A∗ has the HFE-shape.

Proof. The only exponents occurring in a single variable Xi is a power of q. The
transformation A∗ mixes the variables X1, . . . , XN by affine combinations. Thus
by linearity of the Frobenius, we know that no other exponents can appear and
the system keeps its HFE-shape. Trivially, as B∗ only performs affine combina-
tions of the polynomials F1, . . . , FN the shape is also unchanged. ut

With lemma 1, we can produce HFE internal maps while keeping the same
property. To build equivalent keys, we look at these affine transformations in
the small field Fq.

Proposition 3. Let (F∗,S, T ) be a multi-HFE private key with parameters
(q,N, d,D). For any invertible affine transformations A∗,B∗ over (Fqd)N , let

A = ϕN ◦A∗◦ϕ−1N and B = ϕN ◦B∗◦ϕ−1N , then
(
B∗ ◦ F∗ ◦ A∗,A−1 ◦ S, T ◦ B−1

)
is an equivalent key.

The following proposition gives the structure of one of these transformations in
the linear case. It has to be slightly adapted in the affine case.

Proposition 4. Let A∗ = [ai,j ] be the matrix representing a linear transforma-

tion A∗ over (Fqd)N . A∗ can be represented in the field Fq as A = MN,dÃ∗M
−1
N,d

where MN,d is the matrix of Proposition 2 and Ã∗ is a matrix of N ×N blocks
of Frobenius powers of elements of A∗, i.e.

Ã∗ =



∣∣∣∣∣∣∣∣∣
a0,0

aq
0,0

...

aqd−1

0,0

∣∣∣∣∣∣∣∣∣ . . .
∣∣∣∣∣∣∣∣∣

a0,N−1

aq
0,N−1

...

aqd−1

0,N−1

∣∣∣∣∣∣∣∣∣
...

...∣∣∣∣∣∣∣∣∣
aN−1,0

aq
N−1,0

...

aqd−1

N−1,0

∣∣∣∣∣∣∣∣∣ . . .
∣∣∣∣∣∣∣∣∣
aN−1,N−1

aq
N−1,N−1

...

aqd−1

N−1,N−1

∣∣∣∣∣∣∣∣∣


In addition, for any k, 0 6 k < d, the components polynomials of (Frobk ◦F∗ ◦
Frobd-k)(X1, . . . , XN ) =

(
F∗(Xqd−k

1 , . . . , Xqd−k

N )
)qk

have the same monomials as
F∗(X1, . . . , XN ) but their coefficients are raised to the power of qk. That is, if
F∗(X1, . . . , XN ) has HFE-shape, so is (Frobk ◦F∗ ◦ Frobd-k)(X1, . . . , XN ).

Proposition 5. Let (F∗,S, T ) be a multi-HFE private key with parameters
(q,N, d,D) ∈ N4. For all k, 0 6 k < d,(

Frobk ◦F∗ ◦ Frobd-k, ϕN ◦ Frobk ◦ϕ−1N ◦ S, T ◦ ϕN ◦ Frobd-k ◦ϕ−1N

)
is an equivalent key.



According to Proposition 5, we can derive (d−1) other equivalent keys from any
valid private key. This refers to the so-called Frobenius sustainer of [31]. We can
count the number of equivalent keys.

Theorem 3. For any multi-HFE private key (F∗,S, T ) with given parameters

(q,N, d,D) ∈ N4, there are at least
(
qdN

∏N−1
i=0 (qdN − qd i)

)2
equivalent keys

coming from affine transformations in Aff(N,Fqd).

Proof. There are exactly
∏N−1

i=0

(
(qd)N − (qd)i

)
invertible (N×N)-matrices over

Fqd . We have to multiply this by (qd)N to include the affine transformations.
From Proposition 3, one can choose 2 invertible affine transformations over the
big field to build an equivalent key, thus the previous value is squared. ut

This number may actually be bigger (at most d times) using the Frobenius
sustainer. An interesting particularity of the MinRank arising in HFE/multi-
HFE is that the kernel of the matrices in (5) is independent on which equivalent
key is used up to Frobenius transforms.

Theorem 4. Let (F∗,S, T ) and (F∗′,S ′, T ′) be equivalent multi-HFE private
keys and (G1 . . .Gn) be the matrices of their associated public key. Let S, T,
S′, and T′ be the matrix representation of respectively S, T , S ′, and T ′. Let
U = T−1MN,d = [ui,j ], K = ker(

∑n
i=0 ui,0Gi), U′ = T′−1MN,d = [u′i,j ] and

K′ = ker(
∑n

i=0 u
′
i,0Gi), then ∃k, 0 6 k < d,K′ = Frobk (K).

Proof. By construction of equivalent keys, u′i,j are linear combinations of the uq
k

i,`

for a given k. Linear combinations of ui,j do not change the kernel. By linearity,

u′i,j =
∑

` α`u
qk

i,` =
(∑

` α`ui,`
)qk

. Consequently, K′ = Frobk(K). ut

We discuss the complexity of our attack in the next section.

3.4 Complexity analysis of the attack

In this section, we study the particularities of the MinRank problems coming
from (5). Here again we consider only linear maps and homogeneous polynomials
for the sake of simplicity.

Let an instance of HFE with parameters (q,N, d,D) ∈ N4, and ` = dlogDe.
We have to solve the MinRank problem on the (n × n)-matrices G1 . . .Gn

whose entries lie in Fq with target rank N`. Using the Kipnis-Shamir model-
ing described in [26, 20, 21], it is equivalent to solve the algebraic system of the
(n (n−N`)) bilinear equations in (N` (n−N`)+n) variables given by the entries
of the matrix 1 x1,1 ... x1,N`

. . .
...

...
1 xn−N`,1 ... xn−N`,N`

 ·( n∑
i=1

λiGi

)
. (6)

Note that we are looking for solutions in the field Fqd rather than in Fq.



From now on, and similarly to [20], these equations are called the KS (Kipnis-
Shamir) equations. We denote by IKS the ideal generated by the KS equations
and VKS ⊂ Fqd its associated variety.

Theorem 5. The MinRank problem associated to HFE (resp. multi-HFE) can
be solved by fixing one (resp. N) coefficients to random values. That is, the
dimension of IKS ∩ Fq[λ1, . . . , λn] is at least one (resp. N).

Proof. We know that any column of U = T−1MN,d is a solution of MinRank for
(λ1, . . . , λn). From Proposition 3, for any invertible matrix A∗, the columns of

the matrix UÃ∗ give a solution (λ1, . . . , λn) for the MinRank. As each column of

Ã∗ has N non-zero entries, this allows to choose N coefficients λi arbitrarily. ut

This means that for valid values xi,j , there are (qd)N possible vectors (λ1, . . . , λn)
such that the kernel of

(∑n
i=1 λiGi

)
is the one induced by the xi,j ’s. Therefore,

the values of N components (say λ1, . . . , λN ) can be randomly chosen. The new
system still has (n (n−N`)) equations but only (N` (n−N`)+n−N) variables.
As described in Sect. 3.1, the coefficients are in the small field Fq. To keep
this property, we fix variables with values over the small field. Experimentally,
fixing one variable to 1 (or any value from Fq) and the (N − 1) others to 0
gives the best results. After N variables (λ1, . . . , λN ) have been fixed, VKS has
at least d elements. This property already noticed in [25] for HFE is a direct
consequence of theorem 4. Once K = ker (

∑n
k=1 λkGk) is recovered, finding

a valid transformation U′ is done by solving a linear system as entries of (6)
become linear. Some experimental results of our attack are presented in Sect. 6.

It is interesting to remark that the degree of regularity experimentally ob-
served seems to be constant when d grows. This behavior can be explained the-
oretically using the bound on the degree of regularity of MinRank given in [21].

Proposition 6 (Faugère, Safey El Din, Spaenlehauer [21]). Let (n, r, k)
be the parameters of a MinRank instance. Let A = [ai,j ] be the (r × r)-matrix

defined by ai,j(t) =
∑n−max(i,j)

`=0

(
n−i
`

)(
n−j
`

)
t`. The degree of regularity of the

system associated to MinRank instance is bounded from above by 1+deg (HS(t))
where HS(t) is the polynomial obtained from the first positive terms of the series

(1− t)(n−r)2−k detA(t)

t(
r
2)

.

Back to our specific MinRank problem, we have instantiate this theoretical
bound with multi-HFE parameters for values of N 6 20 and ` 6 10. When
d, is sufficiently bigger than `, we always obtain (N`+ 1) (verified for N d up to
500). Since the parameter d is not involved we state the following conjecture.

Conjecture 1. The degree of regularity of the MinRank problem associated to
a multi-HFE instance does not depend on d. When d grows to infinity, it is
bounded from above by (N`+ 1).

The degree of regularity depends only in the number N of secret variables and
the degree D of the secret polynomials. This is consistent with the observations
on simple HFE where dreg was observed to be log (D). We have the necessary
material to evaluate the difficulty of MinRank involved in HFE/multi-HFE.



Proposition 7. Assuming Conjecture 1, for N and ` fixed, the complexity of
solving the multi-HFE MinRank problem is O

(
d(N`+1)ω

) (
2 6 ω < 3 being the

linear algebra constant
)

and thus polynomial in d.

Proof. According to Conjecture 1, the degree of regularity is (N` + 1) and
thus independent of the degree of the extension d. When d grows to infinity,

the complexity of the Gröbner basis computation [2, 3] is O
((

Nd+N`+1
N`+1

)ω) ∼
O
(
(Nd)(N`+1)ω

)
∼ O

(
d(N`+1)ω

)
. ut

Once the matrix U has been found with the MinRank attack, we need to
recover the matrix W.

3.5 Recovering the transformation on the variables

Kipnis and Shamir [26] originally proposed a method for this step by solving
an overdetermined system of (n ` (n − `)) linear equations in n2 variables over
Fq. Applied to multi-HFE, it would give (n ` (n−N`)) equations in n2 variables
over Fq. We propose here an alternative method which reduces the number of
variables and equations by a factor d while it is done over the big field.

Lemma 2. Let (G1, . . . ,Gn) be a multi-HFE public key and ` = dlogq(D)e.
Suppose that Rank(

∑n
k=1 λkGk) = N` and let K = ker (

∑n
k=1 λkGk). Once K

is known, then we can recover a matrix W′ = S′MN,d such that S′ is a valid
matrix for the private key by solving a linear system of (N` (n−N`)) equations
in (N (n−N)) variables.

Proof. To find the coefficients wi,j , it is enough to remark that from (5) one has
KW′ = ker (Fi). We know by construction of the private key that ker (Fi) has
N` columns set to zero. By construction of W′, N columns are needed to build
the whole matrix. We build the corresponding linear system of

(
N (n − N`)

)
equations in Nn variables. Proposition 3 tells us that one can randomly fix N
variables on each of the N columns which gives (N (n − N)) variables left. If
` > 1, the system is underdetermined. To find the matrix, we have to add the(
(` − 1)N (n − N`)

)
equations coming from Frobj(K)W′ = ker(Fi

∗d,j). For j,

(d − ` + 1) 6 j < d, it can be verified that ker(Fi
∗d,j) has also N` columns set

to zero. The system has
(
N` (n−N`)

)
linear equations. ut

Recovering the polynomial system. Once the matrices T′ = MN,dU
′−1 and

S′ = W′M−1
N,d are recovered, we only need to reconstruct a private transforma-

tion. It is done simply by computing F∗′ = ϕ−1N ◦ T ′−1 ◦ G ◦ S ′−1 ◦ ϕN . By
construction of its components, the transformation F respects the HFE-shape.

3.6 Weaknesses of Multi-HFE Relative to the Original HFE

In order to compare instances of HFE/multi-HFE, we introduce the notion of
“similarity” between instances. Two similar instances share the same size of
public key and private key.



Definition 2. Two (multi-)HFE instances of resp. parameters (q1, N1, d1, D1)
and (q2, N2, d2, D2) are similar iff q1 = q2 and N1d1 = N2d2 and N1 logq1(D1) =
N2 logq2(D2) holds.

The KS equations of two similar instances have the same number of variables and
equations as the target rank is the same N logq(D). According to the complexity
of the MinRank given in Proposition 7, the bigger is d, the harder it is to mount
our attack. In particular, the case N = 1 (original HFE) is the more resistant.
This behavior has been verified experimentally. For similar keys, choosing N = 1
seems to be the optimal value for security. With respect to our attack, multi-HFE
is then less secure than HFE.

As a side remark, speed of decryption has to be taken into account when
designing a scheme. Choosing N = 1 and a big degree D of the inner univariate
polynomial can sometimes dramatically slow down the decryption process for
similar keys. Multi-HFE construction could still be competitive if a modification
can prevent attacks. To this end, the minus modifier and the embedding modifier
have been proposed. We study these variants in the next sections.

4 Multivariate HFE-

In this section, we study a classical variant of multivariate schemes, the so-called
“minus” modifier. It consists in removing some polynomials from the public key.
This construction is only suitable for signature as the decryption (signature
generation) is not unique.

Description. Let (F∗,S, T ) be a multi-HFE private key as defined in Sect. 2
with parameters (q,N, d,D) ∈ N4. We define the parameter s ∈ N and the
projection π : (Fq)n 7→ (Fq)n−s. The public key is the mapping G = π ◦T ◦ϕ−1N ◦
F∗ ◦ ϕN ◦ S viewed as (n − s) polynomials in n variables. To sign, s random
values from Fq are appended to a message m = (m1, . . . ,mn−s) before applying
the basic decryption process. Verifying a signature consists in its evaluation in
G.

Attack. The goal is to find a valid private key with only (n− s) public polyno-
mials. Usually the minus modification is enough to prevent classical attacks as
some information is missing. In particular it is the case for basic HFE (N = 1).
In Sect. 3.4, we have shown that the problem has N degrees of freedom. In-
deed, only (n − N + 1) matrices are needed to recover the kernel. This means
that if s < N , the kernel matrix K can still be found with no additional cost.
Still, the recovering step has to be adapted. We know that there exists a vector
(λ1, . . . , λn) and symmetric (n× n)-matrices (Γ1, . . . ,Γs) such that

ker

(
n−s∑
i=1

λiGi +

s∑
i=1

λn−s+iΓi

)
= K.

The Γi’s matrices are unknown and correspond to the removed polynomials.
If we fix N values λi, we still have solutions to our system. For instance, let



(λn−N+1, . . . , λn) = (`1, . . . , `N ). We write

K ·

(
n−N∑
i=1

λiGi +

N−s∑
i=1

`iGn−N+i +

s∑
i=1

`N−s+iΓi

)
= 0. (7)

The resulting system has n (n − N`) linear equations in
(
(n − N) + sn (n+1)

2

)
variables. The system is greatly underdetermined and hence have many solutions.
To find the correct entries, we use the following remark:

Proposition 8. For any j, 0 6 j < d, we have Frobj(K) ·
(∑n

i=1 λ
qj

i Gi

)
= 0.

Proof. By definition, Frobj

(
K·(

∑n
i=1 λiGi)

)
= 0. By linearity of the Frobenius,

this is equal to Frobj (K) ·
(∑n

i=1 λ
qj

i Frobj (Gi)
)

. As Gi has its entries in Fq,

we also have that Frobj (Gi) = Gi. ut

Solving together equations (7) and their Frobenius images forces the entries of

Γi to be in Fq. To avoid carrying equations of degree qj (coming from λq
j

i ), we

add (d − 1)(n − N) new variables (λ
(1)
1 , . . . , λ

(1)
n−N , . . . , λ

(d−1)
1 , . . . , λ

(d−1)
n−N ). The

new system then becomes:

Frobj(K) ·

(
n−N∑
i=1

λ
(j)
i Gi +

N−s∑
i=1

`q
j

i Gn−N+i +

s∑
i=1

`q
j

N−s+iΓi

)
= 0,

for all j, 0 6 j < d. The resulting system is overdetermined and has a solution
if (`1, . . . , `N ) 6= (0, . . . , 0). We have to solve N times this linear system with
different values for (`1, . . . , `N ) to get a valid matrix U. With this technique,
the private key of a multi-HFE− can be recovered almost as efficiently as the
standard construction if the number of withdrawn equations is less than (N−1).
Experimental results are presented in Sect. 6.

5 Multivariate HFE with Embedding

In [14], it has been proposed to use a variant of HFE with embedding. This
so-called PHFE construction consists in removing few variables of the public
key and is claimed to resist Kipnis-Shamir’s attack. The authors of [11] use the
same modification on multi-HFE and claim that it prevents a possible “big-field”
based attack. Still, for both PHFE and its multivariate version a key recovery
attack is possible.

Description. Let (F∗,S, T ) be a multi-HFE private key as defined in Sect. 2
with parameters (q,N, d,D) ∈ N4. We define a new parameter r ∈ N and the
embedding ρ : (Fq)n−r 7→ (Fq)n which is part of the private key. Then the public
key is the mapping G = T ◦ϕ−1N ◦F∗ ◦ϕN ◦S ◦ρ. To encrypt a plaintext, we still
evaluate G. To decrypt, as in the standard scheme, one inverts each component
separately. To simplify, we can assume w.lo.g. that the embedding is always



ρ0 : (x1, . . . , xn−r) ∈ (Fq)n−r 7→ (x1, . . . , xn−r, 0, . . . , 0) ∈ (Fq)n. Indeed, from
any embedding ρ and any invertible transformation S, one can find an invertible
transformation S ′ such that S ◦ ρ = S ′ ◦ ρ0; this gives equivalent keys.

Attack. The matrix representation Gi of the public key polynomials have (n−r)
rows and columns. However, the rank of

∑n
i=0 ui,0Gi+1 remains bounded by

N logq(D) (i.e. removing rows or columns does not increase the rank).
Let K = ker (

∑n
i=0 ui,0Gi+1). As usual a matrix U′ can still be recovered by

solving a MinRank as soon as K is known. The problem appears when trying
to recover the matrix W′ = S′MN,d where S′ is an equivalent matrix for the
private key. By following the method described in Sect. 3.5, we get a system
having N` (n − r − N`) equations with only N (n − r − N) variables. Let the
following matrix be a solution of this linear system

W′ =


w0,0 wq

0,0 . . . wqd−1

0,0 . . . . . . w0,N−1 wq
0,N−1 . . . wqd−1

0,N−1
...

... . . .
... . . . . . .

...
... . . .

...

wn−r,0 w
q
n−r,0 . . . w

qd−1

n−r,0 . . . . . . wn−r,N−1 w
q
n−r,N−1 . . . w

qd−1

n−r,N−1

 .

The matrix W′ has (n − r) rows and thus is not invertible. However, such W′

needs to be inverted in order to compute a full private key.
The first idea is to build a new invertible matrix Wr by appending to W′

a (r × n)-matrix V = [vi,j ] such that vqi,j = vi,j+1. The secret transformation

is reconstructed by computing Gi
′ = Wr

−1GiWr
−t. As the matrix Wr

−1 has
non-zero coefficients in its r last rows, so is G′i. Since the MinRank was done over
(n− r×n− r)-matrices, when we finally compute

∑n
i=0 ui,0Gi+1

′, monomials in
the last variables (xn−r+1, . . . , xn) are mixed with the other monomials, which
eventually leads to polynomials that are not in HFE-shape (and then hard to
invert). To circumvent this issue, we no longer append a random matrix to W′,
we construct an invertible matrix Wz by appending vertically to W′ the matrix

Z =

0 . . . . . . . . . . . . 0 1
...

...
. . .

0 . . . . . . . . . . . . 0 1

 .

We ensure the property that Wz is invertible. The variables (xn−r+1, . . . , xn)
do not appear when we build Gi

′ = Wz
−1GiWz

−t, and the rank property is
preserved. The only difference is that the relation wq

i,j = wi,j+1 only holds for

all i, 0 6 i < n − r. The consequence is that S′ = WzM
−1
N,d has coefficients in

the big field Fqd . Still, S′ can be inverted and a mapping F∗ with HFE-shape
can be recovered. Experimental results are given in Sect. 6.

6 Experimental results

We present some experimental results for our attacks implemented in Magma [7]
(V2.16-10). All the timings have been obtained on a 2.93 GHz Intel R© Xeon R©

CPU. The MinRank’s have been solved using the Kipnis-Shamir modeling.



The degree of regularity experimentally observed is noted dreg. The theo-
retical degree of regularity is denoted by dtheoreg . We applied our attack to the
real-scale parameters proposed in [10] (multi-HFE with embedding). They are
not secure since they are practically broken (9 days for the most conservative,
i.e. 256 bits claimed security). One may get even better results using the mi-
nors modeling of MinRank and the F5 implementation available in the FGb
software [18]. The following results are obtained on the same computer.

q N d D security dtheoreg
time

Magma
mem

Magma
time
FGb

dreg

31 2 15 2 150 bits 3 2 min 27 s 434 MB 21.1 s 3
31 3 10 2 150 bits 4 1 h 38 min 1500 MB 24 min 56 s 3
31 3 15 2 192 bits 4 2 days 1 h 12 GB 3
31 3 18 2 256 bits 4 9 days 16 h 33 GB 3

We also compare the different steps of our attack to the minus and the
embedding variants for multi-HFE with parameters q = 31, N = 3, d = 8, D =
2 (≈ 120 bits security). The minus modifier does not change the time of the
MinRank attack but recovering W will be slower. In practice, multi-HFE with
the embedding takes more time to break but the degree of regularity is the same.

MR time MR dreg Finding U Finding W

No variant (ref. time) 23.3 s 3 0.01 s 7.29 s

Minus (s = 1) 23.2 s 3 0.01 s 16.71 s
Minus (s = 2) 23.4 s 3 0.01 s 35.24 s
Minus (s = 3) Not possible

Embedding (r = 1) 788 s 3 0.01 s 6.14 s
Embedding (r = 2) 2811 s 3 0.01 s 5.25 s
Embedding (r = 3) 401 s 3 0.01 s 4.44 s

7 Conclusion

Multi-HFE over an odd-characteristic field seems to fix the weaknesses of HFE.
The embedding modifier was also proposed to better hide the big field structure
in the public key. These properties turn out to be weaknesses. Not only does our
attack allow to do a complete key recovery in polynomial time, it is also more
efficient on multi-HFE than on original HFE. On multi-HFE, key recovery on
real-size parameters becomes practical. We broke parameter sets from [11] up to
claimed 256 bits security. It is therefore insecure to use multi-HFE. Increasing
the number N of secret variables/equations or their degree D may lead to a set
of parameters out of reach of our attack but then, the rightful decryption would
be very slow or infeasible. With respect to our attacks, among the studied con-
structions, only the minus variants of HFE/multi-HFE are secure if the removed



equations is bigger than (N − 1). Note that vinegar variants of HFE are not
concerned.
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report RR-4738, INRIA (2003), http://hal.inria.fr/inria-00071849/PDF/RR-
4738.pdf

18. Faugère, J.C.: FGb: A Library for Computing Gröbner Bases. In: Fukuda,
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