
Revocation for Delegatable Anonymous
Credentials

Tolga Acar and Lan Nguyen

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
tolga@microsoft.com, languyen@microsoft.com

http://research.microsoft.com/en-us/people/{tolga,languyen}

Abstract. This paper introduces and formalizes homomorphic proofs
that allow ‘adding’ proofs and proof statements to get a new proof of
the ‘sum’ statement. Additionally, we introduce a construction of ho-
momorphic proofs, and show an accumulator scheme with delegatable
non-membership proofs (ADNMP) as one of its applications with prov-
able security. Finally, the proposed accumulator method extends the BC-
CKLS scheme [1] to create a new provably secure revocable delegatable
anonymous credential (RDAC) system. Intuitively, the new accumula-
tor’s delegatable non-membership (NM) proofs enable user A, without
revealing her identity, to delegate to user B the ability to prove that A’s
identity is not included in a blacklist that can later be updated. The
delegation is redelegatable, unlinkable, and verifiable.

1 Introduction

Proof systems play important roles in many cryptographic systems, such as sig-
nature, authentication, encryption, anonymous credential and mix-net. In a proof
system between a prover and a verifier, an honest prover with a witness can con-
vince a verifier about the truth of a statement but an adversary cannot convince
a verifier of a false statement. Groth and Sahai [2] proposed a novel class of
non-interactive proof systems (GS) with a number of desirable properties which
are not available in previous ones. They are efficient and general. They do not
require the random oracle assumption [3]. They can be randomized, i.e. one
can generate a new proof from an existing proof of the same statement without
knowing the witness. In this paper, we unveil another valuable feature of GS
proofs: homomorphism.

Proof systems are used to construct accumulators [4–8]. An accumulator
allows aggregation of a large set of elements into one constant-size accumulator
value. The ‘membership’ proof system proves that an element is accumulated.
An accumulator is universal if it has ‘non-membership’ proof system to prove
that a given element is not accumulated in the accumulator value [9, 10]. An
accumulator is dynamic if the costs of adding and deleting elements and updating
the accumulator value and proof systems’ witnesses do not depend on the number
of elements aggregated. Applications of accumulators include space-efficient time

2 Tolga Acar and Lan Nguyen

stamping, ad-hoc anonymous authentication, ring signatures, ID-Based systems,
and membership revocation for identity escrow, group signatures and anonymous
credentials [6].

In anonymous credential systems, a user can prove some credentials without
revealing any other private information such as her identity. There have been
several proposals [11, 12, 1]; applications such as in direct anonymous attestation
(DAA) [13] and anonymous electronic identity (eID) token [14, 15]; and imple-
mentations such as U-prove [15], Idemix [14] and java cards [16]. An anonymous
credential system is delegatable [1] if its credential can be delegated from one
user to another user so that a user can anonymously prove a credential which is
delegated some levels away from the original issuer. Delegation is important for
efficient credential management in organizations, as a person typically delegates
certain authorities to colleagues to execute tasks on her behalf. Revocation is
indispensable in credential systems in practice, as dispute, compromise, abuse,
mistake, identity change, hacking and insecurity can make any credential become
invalid before its expiration. The anonymity and delegation properties make re-
vocation more challenging: the user must prove anonymously that her whole
credential chain is not revoked. The primary revocation methods are based on
accumulators [17, 10], offering a constant cost for an unrevoked proof. However,
the current schemes do not work for delegated anonymous credentials.

Contributions. We present three contributions in this paper, incrementally
building on each other: (i) formal definition of homomorphic proofs and a con-
struction based on GS proofs, (ii) dynamic universal accumulators with del-
egatable non-membership proof (ADNMP), and (iii) a revocable delegatable
anonymous credential system (RDAC).

We first introduce and formally define the new notion of homomorphic proofs,
which means there is an operation that ‘adds’ proofs, their statements and wit-
nesses to produce a new proof of the ‘sum’ statement and the ‘sum’ witness. We
present and prove a construction for homomorphic proofs from GS proofs [2].
The general nature of GS proofs partly explains the reason behind its numerous
applications: group signatures, ring signatures, mix-nets, anonymous credentials,
and oblivious transfers. Our homomorphic construction uses the most general
form of GS proofs to maximize the range of possible applications.

Homomorphic proofs can be applied to homomorphic signatures [18], homo-
morphic authentication [19], that found applications in provable cloud storage
[19], network coding [20, 21], digital photography [22] and undeniable signatures
[23]. Another possible application area is homomorphic encryption and commit-
ment schemes that are used in mix-nets [24], voting [25], anonymous credentials
[1] and other multi-party computation systems. Gentry’s recent results on fully
homomorphic encryption [26] allow computing any generic function of encrypted
data without decryption and can be applied to cloud computing and searchable
encryption.

Section 3.3 compares this work to the DHLW homomorphic NIZK (Non In-
teractive Zero Knowledge) recently proposed in [27]. While the DHLW scheme
takes the traditional homomorphism approach, we employ Abelian groups and

Revocation for Delegatable Anonymous Credentials 3

introduce a more general definition where proof systems satisfying the DHLW
definition are a subset of the new proof systems. We note that DHLW’s homo-
morphic NIZK definition and construction do not cover the new homomorphic
proofs to build ADNMP and RDAC. From an application point of view, DHLW
homomorphic NIZK targets leakage-resilient cryptography, and the new homo-
morphic proofs target accumulators and revocation.

Secondly, we introduce and build an accumulator with delegatable non-mem-
bership proof (ADNMP) scheme based on homomorphic proofs. We define secu-
rity requirements for ADNMP, and give security proofs for the ADNMP scheme.
The constructions in the SXDH (Symmetric External Diffie Hellman) or SDLIN
(Symmetric Decisional Linear) instantiations of GS proofs allow the use of the
most efficient curves for pairings in the new accumulator scheme [28].

To our knowledge, this is the first accumulator with a delegatable non-mem-
bership proof. Previously, there were only two accumulators with non-mem-
bership proofs, i.e. universal accumulators LLX [9] and ATSM [10]; both are
not delegatable. Delegability allows us to construct delegatable revocation for
delegatable anonymous credentials. Our accumulator uses GS proofs without
random oracles where LLX and ATSM rely on the random oracle assumption for
non-interactive proofs. LLX is based on the Strong RSA assumption and defined
in composite-order groups, and ATSM is based on the Strong DH assumption
and defined in prime-order bilinear pairing groups. Our scheme is also built in
prime-order bilinear pairing groups that require storage much smaller than RSA
composite-order groups. The new non-membership prover requires no pairing
compared to ATSM’s four pairings.

The main challenge in blacklisting delegatable anonymous credentials that
can further be delegated is to create accumulators satisfying the following re-
quirements. First, user A, without revealing private information, can delegate
the ability to prove that her identity is not accumulated in any blacklist to user
B so that such proofs generated by A and B are indistinguishable and the black-
list may change anytime. Second, the delegation must be unlinkable, i.e. it must
be hard to tell if two such delegations come from the same delegator A. Third,
user B is able to redelegate the ability to prove that A’s credential is not black-
listed to user C, such that the information C obtains from the redelegation is
indistinguishable from the information one obtains from A’s delegation. Finally,
any delegation information must be verifiable for correctness. The new ADNMP
scheme satisfies these requirements.

By employing the ADNMP approach, our final contribution is to create the
first delegatable anonymous credential system with delegatable revocation capa-
bility; an RDAC system. Traditionally, blacklisting of anonymous credentials
relies on accumulators [8]. The identities of revoked credentials are accumulated
in a blacklist, and verification of the accumulator’s NM proof determines the
credential’s revocation status. A natural rule in a revoked delegatable creden-
tial, that our scheme also follows, is to consider all delegated descendants of the
credential revoked. Applying that rule to delegatable anonymous credentials, a

4 Tolga Acar and Lan Nguyen

user must anonymously prove that all ancestor credentials are not revoked, even
when the blacklist changes.

Homomorphic proofs bring delegability of proofs to another level. A proof’s
statement often consists of commitments of variables (witnesses) and conditions.
Randomizable and malleable proofs introduced in [1] allows generation of a new
proof and randomization of the statement’s commitments without knowing the
witness, but the statement’s conditions always stay the same. Homomorphic
proofs allow generating a new proof for a new statement containing new condi-
tions, without any witness. A user can delegate her proving capability to another
user by revealing some homomorphic proofs. A linear combination of these proofs
and their statements allows the delegatee to generate new proofs for other state-
ments with different conditions (e.g., an updated blacklist in ADNMP). In short,
the BCCKLS paper [1] deals with delegating proofs of the same statements’ con-
ditions, whereas this paper deals with delegating proofs of changing statements’
conditions.

2 Background

Tech Report [29] provides more details of existing cryptographic primitives:
Bilinear Map Modules, R-module, Bilinear pairings, SXDH, Composable zero-
knowledge (ZK), Randomizing proofs and commitments, Partial extractability,
Accumulator, and Delegatable anonymous credentials.

Notation. PPT stands for Probabilistic Polynomial Time; CRS for Com-
mon Reference String; Pr for Probability; NM for non-membership; ADNMP for
Accumulator with Delegatable NM Proofs; RDAC for Revocable Delegatable
Anonymous Credential; and ← for random output. For a group G with identity
O, let G∗ := G\{O}. Matm×n(R) is the set of matrices with size m × n in R.
For a matrix Γ , Γ [i, j] is the value in ith row and jth column. A vector ~z of l
elements can be viewed as a matrix of l rows and 1 column. For a vector ~z, z[i] is
the ith element. For a function ν : Z→ R, ν is negligible if |ν(k)| < k−α, ∀α > 0,
∀k > k0, ∃k0 ∈ Z+, k ∈ Z.

Proof System. Let R be an efficiently computable relation of (Para, Sta,
Wit) with setup parameters Para, a statement Sta, and a witness Wit . A non-
interactive proof system for R consists of 3 PPT algorithms: a Setup, a prover
Prove, and a verifier Verify. A non-interactive proof system (Setup, Prove, Verify)
must be complete and sound. Completeness means that for every PPT adversary
A, |Pr[Para ← Setup(1k); (Sta,Wit)← A(Para); Proof ← Prove(Para,Sta,Wit) :
Verify(Para,Sta,Proof) = 1 if (Para,Sta,Wit) ∈ R]−1| is negligible. Soundness
means that for every PPT adversary A, |Pr[Para ← Setup(1k); (Sta,Proof)←
A(Para) : Verify(Para,Sta,Proof) = 0 if (Para,Sta,Wit) /∈ R, ∀Wit] − 1| is
negligible.

GS Proofs. Tech Report [29] provides a comprehensive summary of GS
proofs and its instantiation in SXDH. Briefly, the GS setup algorithm generates
Gk and CRS σ. Gk contains L tuples, each of which has the form (A1, A2, AT , f)
where A1, A2, AT are R-modules with map f : A1 × A2 → AT . L is also

Revocation for Delegatable Anonymous Credentials 5

the number of equations in a statement to be proved. CRS σ contains L cor-
responding tuples of R-modules and maps (B1, B2, BT , ι1, ι2, ιT), where ιj :

Aj → Bj . A GS statement is a set of L corresponding tuples (~a ∈ An1 ,
~b ∈

Am2 , Γ ∈ Matm×n(R), t ∈ AT) satisfying ~a · ~y + ~x · ~b + ~x · Γ~y = t; where
(~x ∈ Am1 , ~y ∈ An2) is the corresponding witness (there are L witness tuples),
and denote ~a · ~y =

∑n
j=1 f(a[j], y[j]). The proof of the statement includes

L corresponding tuples, each of which consists of commitments ~c ∈ Bm1 of

~x and ~d ∈ Bn2 of ~y with values ~π and ~ψ. In the SXDH instantiation of GS
proofs, Para includes bilinear pairing setup Gk = (p,G1,G2,GT , e, P1, P2) and
CRS σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ι

′
1, p
′
1, ι
′
2, p

′
2, ιT , pT , ~u,~v) where B1 = G2

1,
B2 = G2

2 and BT := G4
T . The maps are ιj : Aj → Bj , pj : Bj → Aj , ι

′
j : Zp → Bj

and p′j : Bj → Zp. Vectors ~u of u1, u2 ∈ B1 and ~v of v1, v2 ∈ B2 are commitment
keys for G1 and G2.

3 Homomorphic Proofs

3.1 Formalization

Recall that an Abelian group must satisfy 5 requirements: Closure, Associativity,
Commutativity, Identity Element and Inverse Element.

Definition 1. Let (Setup,Prove,Verify) be a proof system for a relation R and
Para ← Setup(1k). Consider a subset Π of all (Sta,Wit ,Proof) such that (Para,Sta,Wit)
∈ R and Verify(Para,Sta,Proof) = 1, and an operation +Π : Π×Π → Π. Π is
a set of homomorphic proofs if (Π,+Π) satisfies the 3 requirements: Closure,
Associativity and Commutativity.

Consider an IΠ := (Sta0,Wit0,Proof 0) ∈ Π. Π is a set of strongly homo-
morphic proofs if (Π,+Π , IΠ) forms an Abelian group where IΠ is the identity
element.

Note that if Π is strongly homomorphic, then Π is also homomorphic. If
+Π ((Sta1,Wit1,Proof 1), (Sta2,Wit2,Proof 2)) 7→ (Sta,Wit ,Proof), we have
the following notations:

(Sta,Wit ,Proof) ← (Sta1,Wit1,Proof 1) +Π (Sta2,Wit2,Proof 2), Sta ←
Sta1 +Π Sta2, Wit ←Wit1 +Π Wit2, and Proof ← Proof 1 +Π Proof 2.

We also use the multiplicative notation n(Sta,Wit ,Proof) for the self addi-
tion for n times of (Sta,Wit ,Proof). Similarly, we also use

∑
i ni (Stai, Witi,

Proofi) to represent linear combination of statements, witnesses and proofs.
These homomorphic properties are particularly useful for randomizable proofs:
one can randomize a proof computed from the homomorphic operation to get
another proof, which is indistinguishable from a proof generated by Prove.

3.2 GS Homomorphic Proofs

Consider a GS proof system (Setup,Prove,Verify) of L equations. Each map ιi :
Ai → Bi satisfies ιi(x1 + x2) = ιi(x1) + ιi(x2), ∀x1, x2 ∈ A1 and i ∈ {1, 2}.

6 Tolga Acar and Lan Nguyen

We first define the identity IGS = (Sta0,Wit0,Proof 0). Sta0 consists of L

GS equations (~a0, ~b0, Γ0, t0), Wit0 consists of L corresponding GS variables

(~x0, ~y0), Proof 0 consists of L corresponding GS proofs (~c0, ~d0, ~π0, ~ψ0), and there
are L tuples of corresponding maps (ι1, ι2). They satisfy:

� Let m be the dimension of ~b0, ~x0 and ~c0. ∃M ⊆ {1, ...,m} such that ∀i ∈ M ,
b0[i] = 0; ∀j ∈ M̄ , x0[j] = 0 and c0[j] = ι1(0), where M̄ := {1, ...,m}\M .

� Let n be the dimension of ~a0, ~y0 and ~d0. ∃N ⊆ {1, ..., n} such that ∀i ∈ N ,
a0[i] = 0; ∀j ∈ N̄ , y0[j] = 0 and d0[j] = ι2(0), where N̄ := {1, ..., n}\N .

� For both (∀i ∈ M̄, ∀j ∈ N̄) and (∀i ∈M,∀j ∈ N): Γ0[i, j] = 0.

� t0 = 0, ~π0 = 0, and ~ψ0 = 0.

We next define a set ΠGS of tuples (Sta, Wit , Proof) from the identity IGS .

Sta consists of L GS equations (~a,~b, Γ, t) (corresponding to Sta0’s (~a0,~b0, Γ0, t0)
with m, n, M , N); Wit consists of L corresponding GS variables (~x, ~y); Proof

consists of L corresponding GS proofs (~c, ~d, ~π, ~ψ); satisfying:

� ∀i ∈M , x[i] = x0[i] and c[i] = c0[i]. ∀j ∈ M̄ , b[j] = b0[j].

� ∀i ∈ N , y[i] = y0[i] and d[i] = d0[i]. ∀j ∈ N̄ , a[j] = a0[j].

� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ [i, j] = Γ0[i, j]. That means ∀i ∈ M̄, ∀j ∈ N̄ :
Γ [i, j] = 0.

We finally define operation +GS : ΠGS ×ΠGS → ΠGS . For i ∈ {1, 2} and

(Stai,Wit i,Proof i) ∈ ΠGS , Stai consists of L GS equations (~ai,~bi, Γi, ti) corre-

sponding to Sta0’s (~a0,~b0, Γ0, t0), Wit i consists of L corresponding GS variables

(~xi, ~yi), and Proof i consists of L corresponding GS proofs (~ci, ~di, ~πi, ~ψi). We
compute (Sta, Wit , Proof) ← (Sta1,Wit1,Proof 1) +GS (Sta2,Wit2,Proof 2) of

corresponding (~a,~b, Γ, t), (~x, ~y) and (~c, ~d, ~π, ~ψ) as follows.

� ∀i ∈ M : x[i] := x1[i]; c[i] := c1[i]; b[i] := b1[i] + b2[i]. ∀j ∈ M̄ : b[j] := b1[j];
x[j] := x1[j] + x2[j]; c[j] := c1[j] + c2[j].

� ∀i ∈ N : y[i] := y1[i]; d[i] := d1[i]; a[i] := a1[i] + a2[i]. ∀j ∈ N̄ : a[j] := a1[j];
y[j] := y1[j] + y2[j]; d[j] := d1[j] + d2[j].

� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ [i, j] := Γ1[i, j]. Otherwise, Γ [i, j] := Γ1[i, j] +
Γ2[i, j].

� t = t1 + t2, ~π = ~π1 + ~π2, and ~ψ = ~ψ1 + ~ψ2.

Theorem 1. In the definitions above, ΠGS is a set of strongly homomorphic
proofs with operation +GS and the identity element IGS.

Proof of theorem 1 can be found in Tech Report [29]. The proof validates the
closure, associativity, commutativity, identity element, and inverse element prop-
erties of abelian groups.

Revocation for Delegatable Anonymous Credentials 7

3.3 Comparison with the DHLW homomorphic NIZK

We compare our homomorphic proof approach with the independently pro-
posed DHLW homomorphic NIZK [27]. Intuitively, DHLW defines that a NIZK
proof system is homomorphic if for any (Para,Sta1,Wit1), (Para,Sta2,Wit2) ∈
R: Prove(Para,Sta1,Wit1)Rand1

+ Prove(Para,Sta2,Wit2)Rand2
= Prove(Para,

Sta1 + Sta2, Wit1 + Wit2)Rand1+Rand2 , where Prove(. . .)Rand is the output of
Prove() with randomness Rand . The new definition in this paper requires homo-
morphism for a subset of proofs generated by Prove, and differs from DHLW’s
homomorphism requirement for all such proofs, covering more proof systems.

The DHLW’s homomorphic NIZK construction a special case of our con-
struction above. It is for statements of ‘one-sided’ GS equations {~xk · ~bk =
tk}Lk=1 whereas our construction generalizes to statements of ‘full’ GS equa-

tions {~ak · ~yk + ~xk · ~bk + ~xk · Γ~yk = tk}Lk=1. As shown later, the ADNMP
and RDAC are based on a GS homomorphic proof system of ‘full’ equations
{(y1 + y2)Xj1 + yj3A1 = Tj1 ∧Xj3 − yj3A2 = 0 ∧ yj3Xj2 = Tj2}mj=1.

4 Accumulator with Delegatable NM Proofs - ADNMP

We refer to a universal accumulator as (Setup, ProveNM, VerifyNM, CompNMWit,
Accu), that consists of only algorithms for setup; generating, verifying and com-
puting witnesses for non-membership proofs; and accumulating, respectively.
This paper does not deal with membership proofs. Tech Report [29] provides
more details on accumulators.

The delegating ability to prove statements allows another user to prove the
statements on one’s behalf without revealing the witness, even if the statements’
conditions change over time. For privacy reasons, adversaries should not be able
to distinguish different delegations from different users. The delegatee can ver-
ify a delegation and unlinkably redelegate the proving ability further to other
users. Thus, delegating an accumulator’s NM proofs should meet 4 conditions
formalized in Definition 2. Delegability means that an element Ele’s owner can
delegate her ability to prove that Ele is not accumulated without trivially reveal-
ing Ele. Even if the set of accumulated elements change overtime, the delegatee
does not need to contact the delegator again to generate the proof. The owner
gives the delegatee a key De generated from Ele. The proof generated from De
by CompNMProof is indistinguishable from a proof generated by ProveNM. Un-
linkability means that a delegatee should not be able to distinguish whether or
not two delegating keys originate from the same element. It implies that it is
computationally hard to find an element from its delegating keys. Redelegability
means that the delegatee can redelegate De as De′ to other users, and still main-
tains indistinguishability of De and De′. Verifiability means that one is able to
validate that a delegating key De is correctly built.

Definition 2. A universal accumulator (Setup, ProveNM, VerifyNM, CompNMWit,
Accu) is a secure ADNMP (Accumulator with Delegatable NM Proofs) if there
exist PPT algorithms

8 Tolga Acar and Lan Nguyen

– Dele: takes public parameters Para and an element Ele and returns its del-
egating key De;

– Rede: takes Para and a delegating key De and returns another delegating
key De′;

– Vali: takes Para and a delegating key De and returns 1 if De is valid or 0
otherwise;

– CompNMProof: takes Para, De, an accumulator set AcSet and its accumula-
tor value AcV al and returns an NM proof that the element Ele corresponding
to De is not accumulated in AcSet;

satisfying:

– Delegability: For every PPT algorithm (A1,A2), |Pr[(Para, Aux)← Setup(1k);
(Ele,AcSet, state) ← A1(Para); AcV al ← Accu(Para, AcSet); Wit ←
CompNMWit(Para, Ele, AcSet, AcV al); Proof0 ← ProveNM(Para, AcV al,
Wit); De ← Dele(Para, Ele); Proof1 ← CompNMProof(Para, De, AcSet,
AcV al); b ← {0, 1}; b′ ← A2(state, AcV al, Wit, De, Proofb): (Ele /∈
AcSet) ∧ b = b′]− 1/2| is negligible.

– Unlinkability: For every PPT algorithm A, |Pr[(Para, Aux) ← Setup(1k);
(Ele0, Ele1) ← DomPara; De ← Dele (Para, Ele0); b ← {0, 1}; Deb ←
Dele(Para, Eleb); b

′ ← A(Para, De, Deb): b = b′]− 1/2| is negligible.

– Redelegability: For every PPT algorithms (A1,A2), |Pr[(Para, Aux) ←
Setup(1k); (Ele, state) ← A1(Para); De ← Dele(Para,Ele); De0 ← Dele(
Para, Ele); De1 ← Rede (Para, De); b← {0, 1}; b′ ← A2(state,De,Deb) :
b = b′]− 1/2| is negligible.

– Verifiability: For every PPT algorithm A, |Pr[(Para, Aux) ← Setup(1k);
Ele ← A(Para); De ← Dele(Para, Ele): Vali(Para,De) = 1 if Ele ∈
DomPara]−1| and |Pr[(Para,Aux)← Setup(1k);De′ ← A(Para) : Vali(Para,
De′) = 0 if De′ /∈ {De|De ← Dele(Para,Ele′); Ele′ ∈ DomPara}] − 1| are
negligible.

Unlinkability combined with Redelegability generalizes the Unlinkability def-
inition allowing an adversary A access an oracle O(Para,De) that returns an-
other delegating key De′ of the same element corresponding to De. That means
A can get several delegating keys of Ele0 and of Eleb using O. Rede can be used
for such an oracle.

For any ADNMP, given an element Ele and a delegating key De, one can
tell if De is generated by Ele as follows. First, she does not accumulate Ele and
uses De to prove that De’s element is not accumulated. Then she accumulates
Ele and tries to prove again that De’s element is not accumulated. If she cannot
prove that anymore, she can conclude that Ele is De’s element. Due to this
restriction, in ADNMP’s applications, Ele should be a secret that only its owner
knows. This is related to the discussion in Tech Report [29] about the general
conflict between delegability and anonymity.

Revocation for Delegatable Anonymous Credentials 9

5 An ADNMP Scheme

We propose a dynamic universal ADNMP. Its Setup, Accu and UpdateVal are
generalized from [7, 10].

� Setup: We need GS instantiations where GS proofs of this accumulator are
composable ZK. We can use either the SXDH or SDLIN (Symmetric DLIN)
[28] instantiations. We use SXDH as an example. Generate parameters (p,G1,
G2,GT , e, P1, P2) and CRS σ with perfectly binding keys for the SXDH in-
stantiation of GS proofs (Sections 2), and auxiliary information Aux = δ ←
Z∗p. For the proof, generate A ← G1 and τ := ι′2(δ). For efficient accu-
mulating without Aux, a tuple ς = (P1, δP1, . . . , δ

q+1P1) is needed, where
q ∈ Z∗p. The domain for elements to be accumulated is D = Z∗p\{−δ}. We
have Para = (p,G1,G2,GT , e, P1, P2, A, σ, ς, τ).

� Accu: On input AcSet = {a1, ..., aQ} ⊂ D, compute m = dQ/qe. If Aux = δ
is available, the output AcV al is a set of m component accumulator val-
ues {Vj}mj=1 computed as Vj =

∏jq
i=(j−1)q+1;i<Q(δ + ai)δP1. If Aux is not

available, AcV al is efficiently computable from ς and AcSet.
� UpdateVal: In case a′ ∈ D is being accumulated; from 1 to m, find the first Vj

that hasn’t accumulated q elements, and update V ′j = (δ + a′)Vj ; if such Vj
isn’t found, add Vm+1 = (δ+ a′)δP1. In case a′ is removed from AcV al, find
Vj which contains a′ and update V ′j = 1/(δ + a′)Vj .

In previous accumulators [7, 10], the accumulator value is a single value V =∏
ai∈AcSet(δ + ai)δP1 and they require that q of ς is the upper bound on the

number of elements to be accumulated, i.e. m = 1. The above generalization,
where the accumulator value is a set of V instead, relaxes this requirement and
allows the ADNMP scheme to work even when q is less than the number of
accumulated elements. It also allows smaller q at setup.

5.1 NM Proof

We need to prove that an element y2 ∈ D is not in any component accumulator
value Vj of AcV al {Vj}mj=1. Suppose Vj accumulates {a1, ..., ak} where k ≤ q,

denote Poly(δ) :=
∏k
i=1(δ+ai)δ, then Vj = Poly(δ)P1. Let yj3 be the remainder

of polynomial division Poly(δ) mod (δ + y2) in Zp, and Xj1 be scalar product
of the quotient and P1. Similar to [10], the idea for constructing NM proofs is
that y2 is not a member of {a1, ..., ak} if and only if yj3 6= 0. We have the follow-
ing equation between δ, y2, yj3 and Xj1: (δ+ y2)Xj1 + yj3P1 = Vj . Proving this
equation by itself does not guarantee that yj3 is the remainder of the polynomial
division above. It also needs to prove the knowledge of (yj3P2, yj3A) and the fol-
lowing Extended Strong DH (ESDH) assumption. It is a variation of the Hidden
Strong DH (HSDH) assumption [30], though it is not clear which assumption is
stronger. It is in the extended uber-assumption family [31] and can be proved in
generic groups, similar to HSDH.

10 Tolga Acar and Lan Nguyen

Definition. q-ESDH: Let (p,G1,G2,GT , e, P1, P2) be bilinear parameters,
A← G∗1 and δ ← Z∗p. Given P1, δP1, . . . , δq+1P1, A, P2, δP2, it is computation-
ally hard to output (y3

δ+y2
P1, y2, y3P2, y3A) where y3 6= 0.

We will show later that if one can prove the knowledge of (yj3P2, yj3A)
satisfying (δ + y2)Xj1 + yj3P1 = Vj and y2 is accumulated in Vj but yj3 6= 0,
then she can break the assumption. To prove the knowledge of (yj3P2, yj3A), we
need equation Xj3− yj3A = 0. To verify yj3 6= 0, we need equation Tj = yj3Xj2

and the verifier checks Tj 6= 0. We now present the NM proof and its security in
theorem 2. Proof of theorem 2 can be found in Tech Report [29].

� CompNMWit takes y2, and for each component accumulator value Vj of AcV al
{Vj}mj=1, computes remainder yj3 of Poly(δ) mod (δ + y2) in Zp which is
efficiently computable from {a1, ..., ak} and y2. It then computes Xj1 =
(Poly(δ)− yj3)/(δ+ y2)P1, which is efficiently computable from {a1, ..., ak},
y2 and ς. The witness includes y2 and {(Xj1, Xj3 = yj3A, yj3)}mj=1. UpdateNMWit
is for one Vj at a time and similar to [10] with the extra task of updating
Xj3 = yj3A.

� ProveNM generates Xj2 ← G∗1 and outputs Tj = yj3Xj2 for each Vj and a GS
proof for the following equations of variables y1 = δ, y2, {(Xj1, Xj3, Xj2, yj3)}mj=1.∧m
j=1((y1 + y2)Xj1 + yj3P1 = Vj∧ Xj3 − yj3A = 0∧ yj3Xj2 = Tj).

Note that the prover does not need to know y1. From τ , it is efficient to
generate a commitment of δ and the proof.

� VerifyNM verifies the proof generated by ProveNM and checks that Tj 6= 0,
∀j ∈ {1, . . . ,m}. It accepts if both of them pass or rejects otherwise.

Theorem 2. The proof system proves that an element is not accumulated. Its
soundness depends on the ESDH assumption. Its composable ZK depends on the
assumption underlying the GS instantiation (SXDH or SDLIN).

The proof in [29] follows the GS SXDH instantiation and shows that the NM
proof system for this accumulator is composable ZK. The completeness comes
from GS, and soundness relies on the ESDH assumption.

5.2 NM Proofs are Strongly Homomorphic

We can see that for the same constant A, the same variables δ, y2 and Xj2

with the same commitments, the set of NM proofs has the form of strongly
homomorphic GS proofs constructed in Section 3. For constructing delegatable
NM proofs, we just need them to be homomorphic. More specifically, ’adding’ 2
proofs of 2 sets of equations (with the same commitments for δ, y2 and Xj2)∧m
j=1((δ + y2)X

(1)
j1 + y

(1)
j3 P1 = V

(1)
j ∧X(1)

j3 − y
(1)
j3 A = 0 ∧ y(1)j3 Xj2 = T

(1)
j) and∧m

j=1((δ + y2)X
(2)
j1 + y

(2)
j3 P1 = V

(2)
j ∧X(2)

j3 − y
(2)
j3 A = 0 ∧ y(2)j3 Xj2 = T

(2)
j) form a

proof of equations∧m
j=1((δ + y2)Xj1 + yj3P1 = Vj ∧Xj3 − yj3A = 0 ∧ yj3Xj2 = Tj)

where Xj1 = X
(1)
j1 +X

(2)
j1 , Xj3 = X

(1)
j3 +X

(2)
j3 , yj3 = y

(1)
j3 + y

(2)
j3 , Vj = V

(1)
j +V

(2)
j

and Tj = T
(1)
j + T

(2)
j .

Revocation for Delegatable Anonymous Credentials 11

5.3 Delegating NM Proof

We first explain the idea behind the accumulator’s delegatable NM proof con-
struction. We write the component accumulator value V =

∏k
i=1(δ + ai)δP1 as

V =
∑k
i=0 biδ

k+1−iP1 where b0 = 1 and bi =
∑

1≤j1<j2<...<ji≤k
∏i
l=1 ajl . Thus,

V can be written as a linear combination of δP1, . . . , δ
k+1P1 in ς.

Next, we construct homomorphic proofs for (δ + y2)X
(i)
1 + y

(i)
3 P1 = δiP1 ∧

X
(i)
3 − y

(i)
3 A = 0 ∧ y(i)3 X2 = T (i) where i ∈ {1, ..., k + 1}. Using the same

linear combination of δP1, . . . , δ
k+1P1 for V , we linearly combine these proofs

to get a proof for (δ + y2)X1 + y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T , where

X1 =
∑k
i=0 biX

(k+1−i)
1 , X3 =

∑k
i=0 biX

(k+1−i)
3 , y3 =

∑k
i=0 biy

(k+1−i)
3 and T =∑k

i=0 biT
(k+1−i). This is the same as the NM proof for each of the component

accumulator value provided above.
We now provide the algorithms for delegating NM proofs and its security

theorem. We also add UpdateProof to be used in place of CompNMProof when
possible for efficiency.

� Dele(Para,Ele). For each i ∈ {1, ..., q + 1}, compute remainder y
(i)
3 of δi

mod (δ + y2) in Zp, and X
(i)
1 = (δi − y(i)3)/(δ + y2)P1, which are efficiently

computable from y2 and ς. In fact, we have y
(i)
3 = (−1)iyi2 and X

(i+1)
1 =∑i

j=0(−1)jyj2δ
i−jP1 = δiP1 − y2X(i)

1 (so the cost of computing all X
(i)
1 , i ∈

{1, ..., q+ 1} is about q scalar products). Generate X2 ← G∗1, the delegation

key De includes {T (i) = y
(i)
3 X2}q+1

i=1 and a GS proof of equations∧q+1
i=1 ((δ + y2)X

(i)
1 + y

(i)
3 P1 = δiP1 ∧X(i)

3 − y
(i)
3 A = 0 ∧ y(i)3 X2 = T (i)).

� Rede(Para,De). For each i ∈ {1, ..., q + 1}, extract proof Proofi of y
(i)
3 X2 =

T (i) in De. In each Proofi, for the same y
(i)
3 and its commitment, Proofi is

of homomorphic form. So generate r ← Z∗p and compute Proof ′i = rProofi

which is a proof of y
(i)
3 X ′2 = T ′(i), where X ′2 = rX2 and T ′(i) = rT (i). Note

that commitments of y
(i)
3 stay the same. For every i ∈ {1, ..., q + 1}, replace

T (i) by T ′(i) and Proofi by Proof ′i in De to get a new GS proof, which is
then randomized to get the output De′.

� Vali(Para,De). A simple option is to verify the GS proof De. An alternative
way is to use batch verification: Divide De into proofs NMProofi of (δ +

y2)X
(i)
1 +y

(i)
3 P1 = δiP1∧X(i)

3 −y
(i)
3 A = 0∧y(i)3 X2 = T (i) for i ∈ {1, ..., q+1}.

Generate q + 1 random numbers to linearly combine NMProofis and their
statements and verify the combined proof and statement.

� CompNMProof(Para,De,AcSet, AcV al). Divide De into proofs NMProofi
as in Vali. For each component accumulator value V of {a1, ..., ak}, compute
bi for i ∈ {0, ..., k} as above. NMProofis belong to a set of homomorphic

proofs, so compute NMProof =
∑k
i=0 biNMProofk+1−i, which is a proof

of (δ + y2)X1 + y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T where X1, X3, y3, T
and V are as explained above.
Extract proof SubProof of y3X2 = T in NMProof . For the same y3 and

12 Tolga Acar and Lan Nguyen

its commitment, SubProof is of homomorphic form. So generate r ← Z∗p
and compute SubProof ′ = rSubProof which is a proof of y3X

′
2 = T ′, where

X ′2 = rX2 and T ′ = rT . Note that y3’s commitment stays the same. Replace
T by T ′ and SubProof by SubProof ′ in NMProof to get a new proof
NMProof ′.
Concatenate thoseNMProof ′ of all V in AcV al and output a randomization
of the concatenation.

� UpdateProof(Para,De,AcSet,AcV al,Proof ,Opens). Proof is the proof to be
updated and Opens contains openings for randomizing commitments of
y1 = δ and y2 from De to Proof . Suppose there is a change in accumu-
lated elements of a component value V , we just compute NMProof ′ for the
updated V as in CompNMProof. Randomize NMProof ′ so that its commit-
ments of y1 and y2 are the same as those in Proof and put it in Proof in
place of its old part. Output a randomization of the result.

To prove that this construction provides an ADNMP, we need the following
Decisional Strong Diffie Hellman (DSDH) assumption, which is not in the uber-
assumption family [31], but can be proved in generic groups similarly to the
PowerDDH assumption [32]. Proof of theorem 3 is in Tech Report [29].

Definition. q-DSDH: Let (p,G1,G2,GT , e, P1, P2) be bilinear parameters,
B0, B1 ← G∗1, x0, x1 ← Z∗p and b← {0, 1}. Given B0, x0B0, . . . , x

q
0B0, B1, xbB1,

. . . , xqbB1, no PPT algorithm can output b′ = b with a probability non-negligibly
better than a random guess.

Theorem 3. The accumulator is a secure ADNMP, based on ESDH, DSDH
and the assumption underlying the GS instantiation (SXDH or SDLIN).

6 Revocable Delegatable Anonymous Credentials -
RDAC

6.1 Model

This is a model of RDAC systems, extended from BCCKLS [1] which is briefly
described in Tech Report [29]. Participants include users and a Blacklist Au-
thority (BA) owning a blacklist BL. For each credential proof, a user picks a
new nym indistinguishable from her other nyms. We need another type of nym
for revocation, called r-nym, to distinguish between two types of nyms. When
an r-nym is revoked, its owner cannot prove credentials anymore. The PPT
algorithms are:

– Setup(1k) outputs public parameters ParaDC , BA’s secret key SkBA, and
an initially empty blacklist BL. Denote BLe an empty blacklist.

– KeyGen(ParaDC) outputs a secret key Sk and a secret r-nym Rn for a user.
– NymGen(ParaDC , Sk,Rn) outputs a new nym Nym with an auxiliary key
Aux(Nym). A user O can become a root credential issuer by publishing a
nym NymO and a proof that her r-nym RnO is not revoked that O has to
update when BL changes.

Revocation for Delegatable Anonymous Credentials 13

– Issue(ParaDC , NymO, SkI , RnI , NymI , Aux(NymI), Cred,DeInf , NymU ,
BL,L)↔ Obtain(ParaDC , NymO, SkU , RnU , NymU , Aux(NymU), NymI ,
BL,L) lets user I issue a level L+ 1 credential to user U . SkI , RnI , NymI

and Cred are the secret key, r-nym, nym and level L credential rooted at
NymO of issuer I. SkU , RnU and NymU are the secret key, r-nym and nym
of user U . I gets no output and U gets a credential CredU .
Delegation information DeInf is optional. When it is included, U also gets
delegation information DeInfU to later prove that r-nyms of all delegators
in her chain are not revoked. If L = 0 then Cred is omitted and DeInf = 1
is optionally included.

– Revoke(ParaDC , SkBA, Rn,BL) updates BL so that a revoked user Rn can
no longer prove, delegate or receive credentials. Denote Rn ∈ BL or Rn /∈
BL that Rn is blacklisted or not, respectively.

– CredProve(ParaDC ,NymO, Cred,DeInf , Sk,Rn,Nym,Aux(Nym), BL,L)
takes a level L credential Cred, Sk, Rn and optionally DeInf to output
CredProof , which proves that: (i) a credential level L is issued to Nym’s
owner. (ii) Nym’s Rn is not revoked. (iii)(optional, when DeInf is included)
all r-nyms on the credential’s chain are not revoked.

– CredVerify(ParaDC , NymO, CredProof,Nym,BL, L) verifies if CredProof
is a valid proof of the above statements.

The differences with the model for delegatable anonymous credentials with-
out revocation [1] are the introductions of BA with SkBA and BL; r-nyms;
delegation information DeInf ; Revoke; and the two CredProof ’s conditions (ii)
and (iii). Note that DeInf ’s inclusion in the algorithms is optional and allows a
user the choice to either just prove that she is not blacklisted or fully prove and
delegate that all users on her credential chain are not blacklisted. We can use
one of traditional methods for BA to obtain r-nyms to revoke (Tech Report [29]).

Tech Report [29] formally defines RDAC security. Briefly, there are 3 require-
ments extended from the security definition of delegatable anonymous credentials
[1]: Correctness, Anonymity and Unforgeability. Tech Report [29] discusses the
trade offs between delegability and anonymity.

7 An RDAC scheme

7.1 Overview

We first describe intuitions of the BCCKLS delegatable anonymous credential
scheme in [1], and then show how ADNMP extends it to provide revocation.

BCCKLS uses an F -Unforgeable certification secure authentication scheme
AU of PPT algorithms AtSetup, AuthKg, Authen, VerifyAuth. AtSetup(1k) returns
public parameters ParaAt, AuthKg(ParaAt) generates a key Sk, Authen(ParaAt,
Sk, ~m) produces an authenticator Auth authenticating a vector of messages ~m,
and VerifyAuth(ParaAt, Sk, ~m, Auth) accepts if and only if Auth validly authen-
ticates ~m under Sk. The scheme’s security requirements include F -Unforgeability

14 Tolga Acar and Lan Nguyen

[12] for a bijective function F , which means (F (~m), Auth) is unforgeable with-
out obtaining an authenticator on ~m; and certification security, which means
no PPT adversary, even after obtaining an authenticator by the challenge se-
cret key, can forge another authenticator. An adversary can also have access
to two oracles. OAuthen(ParaAt, Sk, ~m) returns Authen(ParaAt, Sk, ~m) and
OCertify(ParaAt, Sk

∗, (Sk,m2, . . . ,mn)) returns Authen(ParaAt, Sk
∗, (Sk, m2,

. . . ,mn)). BCCKLS also uses a secure two party computation protocol (AuthPro)
to obtain a NIZKPK of an authenticator on ~m without revealing anything about
~m.

In BCCKLS, a user U can generate a secret key Sk ← AuthKg(ParaAt), and
many nyms Nym = Com(Sk,Open) by choosing different values Open. Suppose
U has a level L+1 credential from O, let (Sk0 = SkO, Sk1, ... , SkL, SkL+1 = Sk)
be the keys such that Ski’s owner delegated the credential to Ski+1, and let H :
{0, 1}∗ → Zp be a collision resistant hash function. ri = H(NymO, atributes, i)
is computed for a set of attributes for that level’s credential. U generates a proof
of her delegated credential as
CredProof ← NIZKPK[SkO in NymO, Sk in Nym]
{(F (SkO), F (Sk1), ..., F (SkL), F (Sk), auth1, ..., authL+1) :
VerifyAuth(SkO, (Sk1, r1), auth1) ∧
VerifyAuth(Sk1, (Sk2, r2), auth2) ∧ ... ∧
VerifyAuth(SkL−1, (SkL, rL), authL) ∧
VerifyAuth(SkL, (Sk, rL+1), authL+1)}.

Now we show how ADNMP extends BCCKLS to provide revocation. Using
ADNMP, BA’s blacklist BL includes an accumulated set of revoked Rns and
its accumulator value. Beside a secret key Sk, user U has a secret r-nym Rn
in the accumulator’s domain, and generates nyms Nym = (Com(Sk,OpenSk),
Com(Rn,OpenRn)). ADNMP allows delegation and redelegation of a proof that
an Rn is not accumulated in a blacklist Rn /∈ BL. U generates a proof of her
delegated credential and validity of the credential’s chain as follows.

CredProof ← NIZKPK[SkO in NymO[1], Sk in Nym[1], Rn in Nym[2]]

{(F (SkO), F (Sk1), F (Rn1), ..., F (SkL), F (RnL), F (Sk), F (Rn),

auth1, ..., authL, authL+1) :

VerifyAuth(SkO, (Sk1, Rn1, r1), auth1) ∧ (Rn1 /∈ BL)∧
VerifyAuth(Sk1, (Sk2, Rn2, r2), auth2) ∧ (Rn2 /∈ BL) ∧ ...∧
VerifyAuth(SkL−1, (SkL, RnL, rL), authL) ∧ (RnL /∈ BL)∧
VerifyAuth(SkL, (Sk,Rn, rL+1), authL+1) ∧ (Rn /∈ BL)}.

Delegability allows a user, on behalf of the user’s delegators without any
witness, to prove that the user’s ancestor delegators are not included in a chang-
ing blacklist. The proofs a user and a delegator generates are indistinguishable
from each other. Redelegability allows a user to redelegate those proofs on the
delegators to the user’s delegatees. Unlinkability prevents colluding users to link
delegations of the same delegator. Verifiability allows a user to validate the cor-
rectness of a delegation token.

Revocation for Delegatable Anonymous Credentials 15

7.2 Description

The RDAC scheme has several building blocks. (i) An ADNMP with a malleable
NM proof system (NMPS) of AcSetup, ProveNM, VerifyNM, CompNMWit, Accu,
Dele, Rede, Vali, CompNMProof, with commitment ComNM. (ii) Those from
BCCKLS, including AU ; AuthPro; H; and a malleable NIPK credential proof
system (CredPS) of PKSetup, PKProve, PKVerify, RandProof, with commitment
Com. (iii) A malleable proof system (EQPS), with PKSetup and AcSetup in setup,
to prove that two commitments Com and ComNM commit to the same value.

Assume that a delegating key De contains a commitment of element Ele.
CompNMProof and Rede randomize the commitment in De and generate Ele’s
commitment. Elements of the accumulator domain and the authenticator’s key
space can be committed by Com. The following algorithm inputs are the same
as in the model and omitted.

– Setup: Use PKSetup(1k), AtSetup(1k) and AcSetup(1k) to generate ParaPK ,
ParaAt, and (ParaAc, AuxAc). The blacklist includes an accumulated set
of revoked r-nyms and its accumulator value. Output an initial blacklist BL
with an empty accumulator set and its initial accumulator value, ParaDC =
(ParaPK , ParaAt, ParaAc, H), and SkBA = AuxAc.

– KeyGen: Run AuthKg(ParaAt) to output a secret key Sk. Output a random
r-nym Rn from the accumulator’s domain.

– NymGen: Generate random OpenSk and OpenRn, and output nym Nym =
(Com(Sk,OpenSk),Com(Rn,OpenRn)) andAux(Nym) = (OpenSk, OpenRn).

– The credential originator O publishes a NymO and a proof NMProofO that
RnO is not revoked. O updates the proof when BL changes.

– Issue ↔ Obtain: If L = 0 and NymO 6= NymI , aborts. Issue aborts if
NymI 6= (Com(SkI , OpenSkI),Com(RnI , OpenRnI

)) or PKVerify(ParaPK ,
(Nym0, (Com(SkI , 0),Com(RnI , 0))), Cred) rejects, or RnI ∈ BL, or NymU

is invalid. Obtain aborts if NymU 6= (Com(SkU , OpenSkU), Com(RnU ,
OpenRnU

)) or RnU ∈ BL. Otherwise, each of Issue and Obtain generates
a proof and verifies each other’s proofs that RnI /∈ BL and RnU /∈ BL using
(ProveNM, VerifyNM) with EQPS (to prove that Com(RnI) in NymI and
ComNM(RnI) generated by ProveNM commit to the same value RnI , and
similarly forRnU). They then both compute rL+1 = H(NymO, attributes, L+
1) for a set of attributes for that level’s credential. They run AuthPro for the
user U to receive: ProofU ← NIZKPK[SkI in NymI [1], SkU in Com(SkU ,
0),RnU in Com(RnU , 0)] {(F (SkI), F (SkU), F (RnU), auth) : VerifyAuth(SkI ,
(SkU , RnU , rL+1), auth)}. U ’s output is CredU = ProofU when L = 0.
Otherwise, suppose the users on the issuer I’s chain from the root are 0
(same as O), 1, 2,..., L (same as I). I randomizes Cred to get a proof
CredProofI (containing the same NymI) that for every Nymj on I’s chain
(j ∈ {1, ..., L}), Skj and Rnj are authenticated by Skj−1 (with rj). U veri-
fies that PKVerify(ParaPK , (Nym0, NymI), CredProofI) accepts, then con-
catenates ProofU and CredProofI and projects NymI from statement to
proof to get CredU .

16 Tolga Acar and Lan Nguyen

The optional DeInf includes a list of delegating keys Dejs generated by
the accumulator’s Dele to prove that each Rnj is not accumulated in the
blacklist, and a list of EQProofj for proving that two commitments of Rnj
in Cred and Dej commit to the same value Rnj , for j ∈ {1, ..., L− 1}. Ver-
ifying DeInf involves checking Vali(ParaAc, Dej) and EQProofj , for j ∈
{1, ..., L−1}. When DeInf is in the input, Issue would aborts without inter-
acting with Obtain if verifying DeInf fails. Otherwise, it uses CompNMProof
to generate a proof NMChainProof that each Rnj ’s on I’s chain of del-
egators is not accumulated in the blacklist. U aborts if its verification on
NMChainProof fails. Otherwise, I Redes these delegating keys, randomizes
EQProofj to match commitments in the new delegating keys and CredU ,
and adds a new delegating key DeI to prove that RnI is not revoked and a
proof EQProofI that two commitments of RnI in NymI [2] and DeI commit
to the same value. The result DeInfU is sent to and verified by U .

– Revoke: Add Rn to the accumulated set and update the accumulator value.

– CredProve: Abort if Nym 6= (Com(Sk,OpenSk), Com(Rn,OpenRn)), or
PKVerify(ParaPK , (Nym0, (Com(Sk, 0),Com(Rn, 0))), Cred) rejects, or ver-
ifying DeInf fails. Otherwise, use ProveNM to generate a proof NMProof
that Rn is not blacklisted. Generate EQProof ′L that Rn’s commitments in
NMProof and in Nym[2] both commit to the same value. Randomize Cred
to get a proof which contains Nym. Concatenate this proof with NMProof
and EQProof ′L to get CredProof ′. If the optional DeInf is omitted, just
output CredProof ′.

Otherwise, use CompNMProof to generate a proof NMChainProof that
each Rnj ’s on the user’s chain of delegators is not accumulated in the black-
list. For j ∈ {1, ..., L − 1}, update and randomize EQProofj of DeInf to
get EQProof ′j which proves Rnj ’s commitments in NMChainProof and
CredProof ′ both commit to the same value. Concatenate NMChainProof ,
CredProof ′ and EQProof ′j for j ∈ {1, ..., L − 1} to output CredProof as
described in (1).

– CredVerify runs PKVerify on the randomization of Cred, VerifyNM onNMProof
and
NMChainProof , and verifies EQProof ′j for j ∈ {1, ..., L} to output accept
or reject.

Theorem 4. If the authentication scheme is F-unforgeable and certification-
secure; the ADNMP is secure; CredPS, NMPS and EQPS are randomizable and
composable ZK; CredPS is also partially extractable; and H is collision resistant,
then this construction is a secure revocable delegatable anonymous credential
system.

Proof of theorem 4 is given in Tech Report [29]. Instantiation of the building
blocks are given in Tech Report [29]. Briefly, a secure ADNMP is presented in
Section 5; the BCCKLS building blocks can be instantiated as in [1]; and an
EQPS can be constructed from [12, 1].

Revocation for Delegatable Anonymous Credentials 17

References

1. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In Halevi, S.,
ed.: CRYPTO 2009. Volume 5677 of LNCS., Santa Barbara, CA, USA, Springer,
Berlin, Germany (August 16–20, 2009) 108–125

2. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In
Smart, N.P., ed.: EUROCRYPT 2008. Volume 4965 of LNCS., Istanbul, Turkey,
Springer, Berlin, Germany (April 13–17, 2008) 415–432

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In Ashby, V., ed.: ACM CCS 93, Fairfax, Virginia, USA, ACM
Press (November 3–5, 1993) 62–73

4. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In Helleseth, T., ed.: EUROCRYPT’93.
Volume 765 of LNCS., Lofthus, Norway, Springer, Berlin, Germany (May 23–27,
1993) 274–285

5. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes
without trees. In Fumy, W., ed.: EUROCRYPT’97. Volume 1233 of LNCS., Kon-
stanz, Germany, Springer, Berlin, Germany (May 11–15, 1997) 480–494

6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Yung, M., ed.: CRYPTO 2002. Volume
2442 of LNCS., Santa Barbara, CA, USA, Springer, Berlin, Germany (August 18–
22, 2002) 61–76

7. Nguyen, L.: Accumulators from bilinear pairings and applications. In Menezes,
A., ed.: CT-RSA 2005. Volume 3376 of LNCS., San Francisco, CA, USA, Springer,
Berlin, Germany (February 14–18, 2005) 275–292

8. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In Jarecki, S., Tsudik, G., eds.:
PKC 2009. Volume 5443 of LNCS., Irvine, CA, USA, Springer, Berlin, Germany
(March 18–20, 2009) 481–500

9. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In Katz, J., Yung, M., eds.: ACNS 07. Volume 4521 of LNCS., Zhuhai, China,
Springer, Berlin, Germany (June 5–8, 2007) 253–269

10. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In Fischlin, M., ed.: CT-RSA 2009. Volume 5473 of LNCS., San Francisco,
CA, USA, Springer, Berlin, Germany (April 20–24, 2009) 295–308

11. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In Franklin, M., ed.: CRYPTO 2004. Volume 3152 of LNCS.,
Santa Barbara, CA, USA, Springer, Berlin, Germany (August 15–19, 2004) 56–72

12. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In Canetti, R., ed.: TCC 2008. Volume 4948 of
LNCS., San Francisco, CA, USA, Springer, Berlin, Germany (March 19–21, 2008)
356–374

13. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In Atluri,
V., Pfitzmann, B., McDaniel, P., eds.: ACM CCS 04, Washington D.C., USA, ACM
Press (October 25–29, 2004) 132–145

14. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In Atluri, V., ed.: ACM CCS 02, Washington D.C.,
USA, ACM Press (November 18–22, 2002) 21–30

18 Tolga Acar and Lan Nguyen

15. Microsoft: U-prove community technology preview. In:
https://connect.microsoft.com/. (2010)

16. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a
standard java card. In Al-Shaer, E., Jha, S., Keromytis, A.D., eds.: ACM CCS 09,
Chicago, Illinois, USA, ACM Press (November 9–13, 2009) 600–610

17. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: PEREA: towards practical TTP-
free revocation in anonymous authentication. In Ning, P., Syverson, P.F., Jha, S.,
eds.: ACM CCS 08, Alexandria, Virginia, USA, ACM Press (October 27–31, 2008)
333–344

18. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature
schemes. In Preneel, B., ed.: CT-RSA 2002. Volume 2271 of LNCS., San Jose,
CA, USA, Springer, Berlin, Germany (February 18–22, 2002) 244–262

19. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identifi-
cation protocols. In Matsui, M., ed.: ASIACRYPT 2009. Volume 5912 of LNCS.,
Tokyo, Japan, Springer, Berlin, Germany (December 6–10, 2009) 319–333

20. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: International
Journal on Information and Coding Theory. (2006)

21. Yun, A., Cheon, J., Kim, Y.: On homomorphic signatures for network coding. In:
Transactions on Computer. (2009)

22. Johnson, R., Walsh, L., Lamb, M.: Homomorphic signatures for digital pho-
tographs. In: Suny Stony Brook. (2008)

23. Monnerat, J., Vaudenay, S.: Generic homomorphic undeniable signatures. In Lee,
P.J., ed.: ASIACRYPT 2004. Volume 3329 of LNCS., Jeju Island, Korea, Springer,
Berlin, Germany (December 5–9, 2004) 354–371

24. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In Desmedt, Y.,
ed.: PKC 2003. Volume 2567 of LNCS., Miami, USA, Springer, Berlin, Germany
(January 6–8, 2003) 145–160

25. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In Frankel, Y., ed.: FC 2000. Volume 1962 of LNCS., Anguilla, British
West Indies, Springer, Berlin, Germany (February 20–24, 2000) 90–104

26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In Mitzenmacher,
M., ed.: 41st ACM STOC, Bethesda, Maryland, USA, ACM Press (May 17–20,
2009) 169–178

27. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks (2010)

28. Ghadafi, E., Smart, N., Warinschi, B.: Groth sahai proofs revisited. In: PKC.
(2010)

29. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. Technical
Report MSR-TR-2010-170, Microsoft Research, One Microsoft Way, Redmond, WA
98052 (December 2010)

30. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signa-
tures. In Okamoto, T., Wang, X., eds.: PKC 2007. Volume 4450 of LNCS., Beijing,
China, Springer, Berlin, Germany (April 16–20, 2007) 1–15

31. Boyen, X.: The uber-assumption family (invited talk). In Galbraith, S.D., Pater-
son, K.G., eds.: PAIRING 2008. Volume 5209 of LNCS., Egham, UK, Springer,
Berlin, Germany (September 1–3, 2008) 39–56

32. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In Naor, M., ed.: EUROCRYPT 2007. Volume 4515 of LNCS., Barcelona, Spain,
Springer, Berlin, Germany (May 20–24, 2007) 573–590

