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Abstract. Undeniable signatures, introduced by Chaum and van Antwer-
pen, and designated confirmer signatures, introduced by Chaum, allow a
signer to control the verifiability of his signatures by requiring a verifier
to interact with the signer to verify a signature. An important security
requirement for these types of signature schemes is non-transferability
which informally guarantees that even though a verifier has confirmed the
validity of a signature by interacting with the signer, he cannot prove this
knowledge to a third party. Recently Liskov and Micali pointed out that
the commonly used notion of non-transferability only guarantees secu-
rity against an off-line attacker which cannot influence the verifier while
he interacts with the signer, and that almost all previous schemes rely-
ing on interactive protocols are vulnerable to on-line attacks. To address
this, Liskov and Micali formalized on-line non-transferable signatures
which are resistant to on-line attacks, and proposed a generic construc-
tion based on a standard signature scheme and an encryption scheme.
In this paper, we revisit on-line non-transferable signatures. Firstly, we
extend the security model of Liskov and Micali to cover not only the
sign protocol, but also the confirm and disavow protocols executed by
the confirmer. Our security model furthermore considers the use of mul-
tiple (potentially corrupted or malicious) confirmers, and guarantees se-
curity against attacks related to the use of signer specific confirmer keys.
We then present a new approach to the construction of on-line non-
transferable signatures, and propose a new concrete construction which
is provably secure in the standard model. Unlike the construction by
Liskov and Micali, our construction does not require the signer to is-
sue “fake” signatures to maintain security, and allows the confirmer to
both confirm and disavow signatures. Lastly, our construction provides
noticeably shorter signatures than the construction by Liskov and Micali.
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1 Introduction

An ordinary signature scheme provides public verifiability i.e. anyone is able
to verify the validity of a given signature using the public key of the signer.
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?? This author is supported by a JSPS scholarship.



While this property is useful in many scenarios, it might not always be desirable.
For example, a signer who signs a sensitive message might prefer to be able to
control who can verify the validity of his signature. Chaum et al. [5] addressed
this problem with their proposal of undeniable signatures in which a verifier
is required to interact with the signer to verify a signature. Furthermore, to
preserve non-repudiation, the signer is also able to prove invalidity of a signature
through a disavow protocol. Hence, in a dispute, the signer will either be able
to confirm or disavow a purported signature. However, in some scenarios, a
signer might become unavailable or might refuse to cooperate with a verifier, in
which case the validity of a signature cannot be determined. To address this,
Chaum [4] introduced designated confirmer signatures in which a third party,
the confirmer, can interact with a verifier to confirm or disavow a signature on
behalf of the signer. Furthermore, the confirmer can, in the case of a dispute,
extract a publicly verifiable signature (of the signer) from a valid designated
confirmer signature. Since their introduction, a number of undeniable schemes
and designated confirmer schemes have been proposed, e.g. see [3, 7, 12, 14, 2, 8].

Off-line and On-line Non-transferability. An important security notion for these
types of signature schemes is non-transferability. Intuitively, non-transferability
guarantees that once a verifier has verified a signature and is convinced about
its validity, he cannot transfer this conviction to a third party. This is achieved
by ensuring that a verifier is able to simulate a transcript of the interaction with
the signer/confirmer i.e. any “evidence” of validity obtained through the inter-
action, could have been generated by the verifier himself. A scheme providing
this property is said to be off-line non-transferable. However, Liskov and Micali
[13] pointed out that almost all3 previous schemes relying on interactive proto-
cols to provide off-line non-transferability are vulnerable to on-line attacks, i.e.
an attacker who is present while the verifier interacts with a signer/confirmer
might be able to determine the validity of a signature by influencing messages
sent by the verifier. A scheme preventing these types of attacks is said to be on-
line non-transferable and is constructed by enabling the verifier to interactively
simulate the interaction with a signer/confirmer. To preserve soundness of the
scheme, only the verifier should be able to simulate a proof, and to facilitate
this, Liskov and Micali [13] assumed the verifier holds a public/private key pair
i.e. to simulate the interaction between the signer/confirmer and a verifier, the
private key of the verifier is required. Note that this approach to on-line non-
transferability requires that the verifier knows the private key corresponding to
his public key to maintain security. More specifically, if it is possible for a verifier
to convince a third party that he does not know his private key (e.g. by gener-
ating his public key by applying a hash function to a random seed pkV = H(x),
and then presenting x to the third party), the scheme will no longer provide on-
line non-transferability. To prevent this type of malicious behavior, verifier key
registration is required i.e. a verifier should prove knowledge of his private key
when registering his public key (see [13] for further discussion of this). In this

3 See Related Work below for a few exceptions in the random oracle model



paper, we adopt the same general approach as [13], assume verifiers are equipped
with public/private key pairs, and will furthermore explicitly model verifier key
registration in our security model4.

In [13], Liskov and Micali illustrated the feasibility of constructing an on-
line non-transferable signature scheme under the above described assumption of
verifier key registration. More specifically, they proposed a generic construction
based on ind-cpa secure public key encryption and uf-cma secure signatures.
The resulting scheme provides on-line non-transferability of an interactive sign
protocol through which the signer both constructs and proves validity of a sig-
nature. Furthermore, the scheme supports the use of confirmers and is proved
secure in the standard model. However, to achieve on-line non-transferability, a
signer has to be willing to issue “fake” signatures to anyone requesting them.
This is essential since a verifier will not be able to simulate the sign protocol
without the ability to ask the signer for fake signatures. This drawback limits the
practical applicability of the scheme. Furthermore, the functionality and security
guarantees of the confirmer are somewhat limited. More specifically, a confirmer
can disavow but not confirm the validity of a signature, and neither off-line nor
on-line non-transferability are considered for the disavow protocol5.

Our Contribution. In this paper, we address many of the limitations of the ap-
proach by Liskov and Micali. Firstly, we extend the security model to model not
only the on-line non-transferability of the sign protocol, but also of the confirm
and disavow protocols executed by the confirmer. Furthermore, we introduce
two additional security notions, confirmer soundness and key unforgeability, re-
quired by the added ability of the confirmer to confirm signatures and to prevent
attacks related to the forgery of signer specific confirmer keys which are used
both in our construction and in [13] (see Section 3 for details). Unlike [13], our
security model also allows the signer to make use of multiple confirmers and
ensures unforgeability even against malicious confirmers, which will guarantee
security in a more realistic usage scenario.

We then propose a new general approach to the construction of on-line non-
transferable signatures. More specifically, we show how a simple core confirmer
signature scheme, which essentially implements the non-interactive functional-
ity of an on-line non-transferable signature scheme, can be extended to a fully
secure scheme with the additional use of ordinary signatures, sigma protocols,
and trapdoor commitments with an enhanced binding property. Based on this
approach, we propose a concrete instantiation which is provably secure in the
standard model assuming the computational Diffie-Hellman problem and the
decisional linear problem are hard.

Compared to the approach taken by Liskov and Micali, our scheme has sev-
eral advantages. Besides implementing additional confirmer functionality and

4 Note that while the security definitions in [13] does not explicitly describe verifier
key registration, this is a requirement to ensure basic security, and we argue that
our security models are fundamentally the same.

5 The defined disavow protocol in [13] is non-interactive and provides a publicly veri-
fiable proof of invalidity



providing security in our extended security model, our scheme allows a verifier
to independently simulate the sign, confirm and disavow protocols, and does not
require the signer to issue “fake” signatures to maintain security. Lastly, our
concrete instantiation provides efficient protocols and short signatures consist-
ing of four group elements and an integer, whereas the scheme by Liskov and
Micali requires signatures consisting of more than 3k encryptions, where k is the
security parameter. However, we note that our concrete scheme requires large
public keys due to the use of the techniques by Waters [19].

Related Work. Jakobsson et al. [10] introduced an alternative approach to lim-
iting the verifiability of signatures with their proposal of designated verifier sig-
natures in which only a specific verifier chosen by the signer will be convinced
about the validity of a signature. This concept was extended by Steinfeld et
al. [17] who introduced universal designated verifier signatures which allow any
user to convert a publicly verifiable signature into a designated verifier signa-
ture for a chosen verifier. Since this type of schemes do not rely on interactive
protocols for signature confirmation, on-line attacks are not a concern. However,
these schemes do not provide a mechanism to determine the validity of a (con-
verted) signature in a dispute, and most of the recently proposed schemes will
in fact enable the designated verifier to construct signatures which are perfectly
indistinguishable from signatures constructed by the signer. Hence, unlike unde-
niable and designated confirmer signatures, non-repudiation cannot be enforced
in these schemes which make them unsuitable for a number of applications.

A few existing schemes, which are provably secure in the random oracle
model, implicitly provide protection against on-line attacks. For example, the
undeniable signature schemes by Kudla et al. [11] and Huang et al. [9] provide
non-interactive proofs which are simulatable by the verifier, and hence avoid the
problem of on-line attacks. Furthermore, Monnerat et al. [15] proposed an unde-
niable signature scheme with interactive 2-move confirm and disavow protocols.
While the used definition of non-transferability in [15] only guarantees transcript
simulatability (i.e. defines off-line non-transferability), the concrete scheme al-
lows a verifier to use his private key to simulate proofs interactively, and hence
the scheme provides on-line non-transferability. However, we emphasize that all
of the above schemes are only provable secure in the random oracle model, and
that the schemes furthermore do not support the use of confirmers to ensure
non-repudiation if the signer becomes off-line or refuses to cooperate.

2 On-line Non-transferable Signatures

An on-line non-transferable signature (ONS) scheme involves a signer S, a con-
firmer C, and a verifier V , and is given by the following probabilistic polynomial
time (PPT) algorithms:

– Setup which, given a security parameter 1k, returns the public parameters
par.



– KeyGenS , KeyGenC , and KeyGenV which, given par, return public/private
key pairs (pkS , skS), (pkC , skC), and (pkV , skV ) for a signer, a confirmer,
and a verifier, respectively.

– CSetup which on input par, skC and pkS , returns a signer specific pub-
lic/private confirmer key pair (pkC,S , skC,S). This algorithm is run once by
the confirmer for each signer S, and the confirmer stores skC,S for later
use. The public key pkC,S is given to the signer who is to use this when
constructing signatures with confirmer C.

– CKeyValid which, on input par, pkS , pkC , and pkC,S , outputs either accept
or reject.

– (Sign, Receive) which is a pair of interactive algorithms with common in-
put (par, pkS , pkC , pkC,S , pkV ,m). Sign is run by the signer and is given skS
as private input, and Receive is run by the verifier. At the end of the in-
teraction, both Sign and Receive will output a signature, σS and σR, and
Receive will in addition output either accept or reject.

– Convert which, on input par, pkS , m, σ, and skC,S , returns a verification
token tkσ.

– TkVerify which, on input par, pkS , pkC , pkC,S , m, σ, and tkσ, returns either
accept or reject.

– (Confirm, VC) which is a pair of interactive algorithms with common in-
put (par, pkS , pkC , pkC,S , pkV ,m, σ). Confirm is run by the confirmer and is
given skC,S as private input, and VC is run by the verifier. At the end of the
interaction, VC outputs either accept or reject.

– (Disavow, VD) which is also a pair of interactive algorithms. Input for Disavow
and VD is exactly as in (Confirm, VC) above, and the output of VD is either
accept or reject.

Like Liskov and Micali [13], we require that before signer S makes use of a
confirmer C, he will approach C to obtain a signer specific confirmer key pkC,S
which C generates by running CSetup. This process can be seen as a registration
procedure in which the confirmer agrees to act as a confirmer for this specific
signer. Note that this does not require a confidential channel between the signer
and confirmer. Our definition differs slightly from that of [13] in that we explicitly
define a key validation algorithm CKeyValid for signer specific confirmer keys6,
and introduce (Confirm, VC) to allow C to confirm signatures. Furthermore, we
do not include a fake signature algorithm which is required to maintain the
security of the scheme in [13].

Using the above defined algorithms, a confirmer can verify a signature by
first computing a verification token using Convert and then verifying the signa-
ture using TkVerify. To simplify notation, we define an algorithm Valid which
performs these two steps:

– Valid: given the input (par, pkS , pkC , pkC,S ,m, σ, skC,S), compute the ver-
ification token tkσ ← Convert(par, pkS ,m, σ, skC,S) and return the output
of TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ).

6 This algorithm is required by our extended security model. More specifically, it is
required to define key unforgeability (see Section 3).



We will use the notation {Sign(skS) ↔ Receive}(par, pkS , pkC , pkC,S , pkV ,m)
to denote the interaction between Sign and Receive on the common input
(par, pkS , pkC , pkC,S , pkV ,m) and private input skS to the Sign algorithm. To
shorten this notation, we will sometimes use PK = (pkS , pkC , pkC,S , pkV ) to
represent the public keys. We furthermore use (σS , (σR, z)) ← {Sign(skS) ↔
Receive}(par, PK,m) to denote the output of Sign and Receive, respectively,
and use (σR, z) ←2 {Sign(skS) ↔ Receive}(par, PK,m) when we are only
considering the output of Receive. Similar notation is used for the confirm and
disavow protocols.

Correctness. We require that for all honestly generated public parameters par
and key pairs (pkS , skC), (pkC , skC), (pkV , skV ), and (pkC,S , skC,S), that z ←
CKeyValid(par, pkC , pkS , pkC,S) yields z = accept and that, for all messages m,
the signature generation (σS , (σR, zR))← {Sign(skS)↔ Receive}(par, PK,m),
where PK ← (pkS , pkC , pkC,S , pkV ), yields that zR = accept and σR = σS , that
Valid(par, pkS , pkC , pkC,S , skC,S ,m, σ) = true and that zC ← {Confirm(skC,S)↔
VC}(par, PK,m, σ) results in zC = accept. Furthermore, for all (m′, σ′) such
that Valid(par, pkS , pkC , pkC,S , skC,S ,m

′, σ′) = false, we require that zD ←2

{Disavow(skC,S)↔ VD}(par, PK,m′, σ′) yields zD = accept.

3 Security Model

An ONS scheme is required to satisfy the security notions unforgeability, key un-
forgeability, soundness, non-repudiation and non-transferability to be considered
secure. However, before we can formally define these security notions, we require
a scheme to define the verifier simulation algorithms SimSign(par, PK,m, skV ),
SimCon(par, PK,m, σ, skV ) and SimDis(par, PK,m, σ, skV ) which simulates the
Sign, Confirm and Disavow algorithms, respectively. While these algorithms are
not part of the basic functionality of an ONS scheme, they must be defined to
ensure that a verifier can simulate the interactive protocols of the scheme as
required by the non-transferability notion defined below. Furthermore, since an
adversary might observe the execution of these algorithms while attempting to
mount attacks against other security properties of the scheme, we must provide
the adversary with oracle access to these algorithms in the relevant security
definitions.

Unforgeability. Our notion of unforgeability requires that, even for a maliciously
chosen confirmer key, an adversary with oracle access to an honest signer cannot
produce a new message/signature pair and convince a verifier about the validity
of this pair, either by interacting with the verifier in the confirm protocol or by
producing a token such that TkVerify outputs accept. Our definition allows
the adversary to obtain signatures using any confirmer key, and thereby ensures
security in a scenario where a signer makes use of multiple potentially malicious
confirmers. In comparison, the unforgeability notion defined by Liskov and Mi-
cali only considers a signer using a single honest confirmer. Formally, we define



unforgeability of an ONS scheme N via the experiment Expuf-cmaN,A shown in Fig-
ure 1. In the experiment, A has access to the oracles O = {OV KeyReg,OSign,
OSimSign,OSimCon, OSimDis} which are defined below. The oracle OV KeyReg
implements verifier key registration and maintains a list, LV KeyReg, of regis-
tered keys. It is assumed that it can be verified that a key pair (pkV , skV ) is
valid i.e. that (pkV , skV ) lies in the range of KeyGenV .

– OV KeyReg: given (pkV , skV ), this oracle stores (pkV , skV ) in the list LV KeyReg
and returns > to A if (pkV , skV ) is a valid key pair. Otherwise, the oracle
returns ⊥ to A. In the following, if a query to an oracle involves a verifier
key pkV , it is assumed that A has previously submitted pkV to this oracle
as part of a valid key pair. If this is not the case, the relevant oracle will
return ⊥ to A.

– OSign: given input (pkC , pkC,S , pkV ,m), this oracle interacts with A by run-
ning Sign with common input (par, pkS , pkC , pkC,S , pkV ,m) and secret input
skS . Local output of Sign will be a signature σ, and (pkC , pkC,S ,m, σ) is
added to LSign.

– OSimSign: given input pkS , pkC , pkC,S , and m, this oracle interact with A
by running the simulation algorithm SimSign(par, pkS , pkC , pkC,S ,m, skV ).

– OSimCon: given input pkS , pkC , pkC,S , m and σ, this oracle interacts with
A by running the algorithm SimCon(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ).

– OSimDis: given the same input as OSimCon, this oracle interacts with A by
running the algorithm SimDis(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ).

Definition 1 An ONS scheme N is said to be unforgeable, if no PPT algorithm
A with non-negligible advantage Adv

uf-cma
N,A (k) = Pr[Expuf-cmaN,A (1k) = 1] exists.

Key unforgeability. The use of the confirmer setup, CSetup, warrants additional
security requirements. Key unforgeability requires that an adversary without
access to the private confirmer key, cannot produce a new valid signer specific
confirmer key i.e. a new key which is accepted by CKeyValid. The security
model in [13] does not have a similar security requirement and does in fact
not rule out the possibility that a signer is able to forge a signer specific con-
firmer key and then use this forged key in the sign protocol. This would leave
the confirmer unable to either confirm, disavow or convert the signature. How-
ever, such concerns are eliminated by explicitly requiring key unforgeability.
Formally, key unforgeability of an ONS scheme N is defined via the experiment
Exp

key-uf
N,A (1k) shown in Figure 1. In the experiment, A has access to the oracles

O = {OV KeyReg,OCSetup,OConvert,OCon,ODis} where OV KeyReg is defined as
above, and the remaining oracles are defined as follows:

– OCSetup: given pkS , this oracle runs (pkC,S , skC,S)← CSetup(par, pkS , skC),
stores (pkS , pkC,S , skC,S) in LCSetup, and returns pkC,S to A.

– OConvert: given pkS , pkC,S , m, and σ, this oracle searches for a matching
tuple (pkS , pkC,S , skC,S) in LCSetup, and returns ⊥ if no such tuple is found.
Otherwise, the oracle returns tkσ ← Convert(par, pkS ,m, σ, skC,S).



Expuf-cmaS,A (1k)

LSign ← {}; LVKeyReg ← {}
par ← Setup(1k)
(pkS , skS)← KeyGenS(par)
(pkV , skV )← KeyGenV (par)
(pkC , pkC,S ,m, σ, tkσ, st)

← AO(par, pkS , pkV )
PK ← (pkS , pkC , pkC,S , pkV )
z ←2 {AO(st)↔ VC(par, PK,m, σ)}
z′ ← TkVer(par, pkS , pkC , pkC,S ,m, σ, tkσ)
if (pkC , pkC,S ,m, σ) 6∈ LSign∧

(z = accept ∨ z′ = accept)
output 1

else output 0

Exp
key-uf
S,A (1k)

LCSetup ← {}; LVKeyReg ← {}
par ← Setup(1k)
(pkC , skC)← KeyGenS(par)
(pkS , pkC,S)← AO(par, pkC)
z ← CKeyValid(par, pkS , pkC , pkC,S)
if (pkS , pkC,S , ∗) 6∈ LCSetup∧
z = true

output 1
else output 0

Exp
non-rep
S,A (1k)

par ← Setup(1k)
(pkV , skV )← KeyGenV (par)
(pkS , pkC , pkC,S ,m, st)← AO(par, pkV )
PK ← (pkS , pkC , pkC,S , pkV )
(st′, (σ, z1))← {AO(st)↔ Receive(par, PK,m)}
z2 ←2 {AO(st′)↔ VD(par, PK,m, σ)}
if z1 = z2 = accept output 1
else output 0

Fig. 1. Unforgeability, key unforgeability and non-repudiation security experiments

– OCon: given pkS , pkC,S , pkV , m, and σ, the oracle searches for a tuple
(pkS , pkC,S , skC,S) in LCSetup. If no such tuple is found the oracle returns
⊥. Otherwise, the oracle interacts with A by running Confirm with common
input (par, pkS , pkC , pkC,S , pkV ,m, σ) and secret input skC,S .

– ODis: given the same input as OCon, this oracle returns ⊥ to A if there is
no tuple (pkS , pkC,S , skC,S) in LCSetup. Otherwise, the oracle interacts with
A by running Disavow with common input (par, pkS , pkC , pkC,S , pkV ,m, σ)
and secret input skC,S .

Definition 2 An ONS scheme N is said to be key unforgeable if no PPT al-
gorithm A with non-negligible advantage Adv

key-uf
N,A (k) = Pr[Expkey-ufN,A (1k) = 1]

exists.

Non-repudiation. Informally, non-repudiation requires that, even if a malicious
signer and confirmer collude, it is not possible for the signer to make an honest
verifier accept a message/signature pair as valid in the sign protocol, while the
confirmer is able to disavow the validity of the message/signature pair. Our def-
inition of non-repudiation is slightly weaker than the definition given in [13] in
that we allow the adversary a negligible success probability whereas [13] requires
the success probability to be zero. However, we highlight that [13] makes use of
a non-interactive disavow protocol which is both off-line and on-line transfer-
able which allows the slightly stronger non-repudiation property, whereas our



Exp
snd-sign
N,A (1k)

par ← Setup(1k); (pkC , skC)← KeyGenC(par)
(pkV , skV )← KeyGenV (par)
(pkS ,m, st)← AO(par, pkC , skC , pkV )
(pkC,S , skC,S)← CSetup(par, pkS , skC)
PK ← (pkS , pkC , pkC,S , pkV )
(σ, z1)←2 {AO(st, pkC,S , skC,S)↔ Receive(par, PK,m)}
z2 ← Valid(par, pkS , pkC , pkC,S ,m, σ, skC,S)
if z1 = accept ∧ z2 = reject output 1
else output 0

Expsnd-confN,A (1k)

par ← Setup(1k); (pkV , skV )← KeyGenV (par)
(pkS , pkC , pkC,S ,m, σ, tkσ, st)← AO(par, pkV )
PK ← (pkS , pkC , pkC,S , pkV )
z1 ←2 {AO(st)↔ VD(par, PK,m, σ)}
z2 ←2 {AO(st)↔ VC(par, PK,m, σ)}
z3 ← TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ)
if z1 = accept ∧ (z2 = accept ∨ z3 = accept) output 1
else output 0

Fig. 2. Soundness security experiments.

constructions will rely on interactive non-transferable protocols with negligible
soundness error. We define non-repudiation of an ONS scheme N via the exper-
iment Exp

non-rep
N,A (1k) shown in Figure 1. In the experiment, A has access to the

oracles O = {OSimSign,OSimCon,OSimDis} which are defined as above.

Definition 3 An ONS scheme N is said to provide non-repudiation if no PPT
algorithm A with non-negligible advantage Adv

non-rep
N,A (k) = Pr[Expnon-repN,A (1k) = 1]

exists.

Soundness. We consider two soundness notions – signer soundness and confirmer
soundness. The first notion, signer soundness, guarantees that a signer cannot
make a verifier accept a message/signature pair as valid through the sign protocol
without the confirmer being able to confirm the validity of this pair as well as
compute a verification token showing validity. Our definition guarantees signer
soundness even if the confirmer is corrupted since the adversary is allowed to
access the private confirmer key, and implies the soundness notion by Liskov
and Micali which only grants the adversary access to the public confirmer key.
Formally, we define signer soundness of an ONS scheme N via the experiment
Exp

snd-sign
N,A (1k) shown in Figure 2. In the experiment, A will have access to the

oracles O = {OSimSign,OSimCon,OSimDis} defined as above.

Definition 4 An ONS scheme N is said to provide signer soundness if no PPT
algorithm A with non-negligible advantage Adv

snd-sign
N,A (k) = Pr[Exp

snd-sign
N,A (1k) =

1] exists.



The second notion, confirmer soundness, guarantees that even if both signer
and confirmer key is maliciously generated, a confirmer cannot produce a mes-
sage/signature pair which he can successfully disavow by completing the dis-
avow protocol, while still being able to confirm validity of this pair, either
by completing the confirm protocol or by producing a token that will make
TkVerify output accept. Since Liskov and Micali do not consider the con-
firmer’s ability to confirm a signature, an equivalent security notion is not defined
in [13]. We define confirmer soundness of an ONS scheme N via the experiment
Expsnd-confN,A (1k) shown in Figure 2. In the experiment, A has access to the oracles
O = {OSimSign,OSimCon,OSimDis} defined as above.

Definition 5 An ONS scheme is said to provide confirmer soundness if no PPT
algorithm A with non-negligible advantage Adv

snd-conf
N,A (k) = Pr[Expsnd-confN,A (1k) =

1] exists.

On-line Non-transferability. Intuitively, on-line non-transferability of a protocol
requires that an adversary cannot distinguish between a real execution of the
protocol and a simulated execution by the verifier. Note that since we are con-
sidering the on-line non-transferability of both the sign, confirm and disavow
protocols, a verifier must be able to provide a consistent response, even if the
adversary first obtains a signature through the (simulated) sign protocol and
later try to re-confirm the validity through the (simulated) confirm protocol. We
define a single non-transferability notion covering the non-transferability of all
three interactive protocols. More specifically, we require that an adversary can-
not distinguish between a scenario in which he obtains a valid signature through
the sign protocol, confirms the validity through the confirm protocol, and then
interacts in the simulated disavow protocol, and a scenario in which he obtains
a signature through the simulated sign protocol, confirms the validity through
the simulated confirm protocol, and then interacts in the disavow protocol. Our
non-transferability notion implies a similar type of non-transferability of the sign
protocol as defined by Liskov and Micali, but does not involve fake signature
generation. Formally, we define on-line non-transferability of a ONS scheme N
via the experiment Expnon-transN,A (1k) shown in Figure 3. In the experiment, A has
access to the oracles O = {OV KeyReg,OCSetup,OSign,OConvert,OCon,ODis} de-
fined as in the unforgeability and the key unforgeability experiments. The oracles
O′ are defined exactly as O, except that OConvert will not respond to the query
consisting of the challenge (pkS , pkC,S), m∗ and σ∗, and OCon and ODis will
not respond to queries on the challenge (pkS , pkC,S), m∗, σ∗ and any pkV . Note
that OSign allows the adversary to obtain signatures under any confirmer key,
and that OConvert, OCon and ODis accepts any signer key. This ensures security
in a scenario where multiple confirmers service multiple signers. Note also that
the adversary is given the private key of the verifier. This will ensure that even
if the verifier is compromised, the non-transferability is still maintained.

Definition 6 An ONS scheme N is said to be on-line non-transferable if no
PPT algorithm A with non-negligible advantage Advnon-transN,A (k) = |Pr[Expnon-transN,A (1k) =

1]− 1
2 | exits .



Expnon-transN,A (1k)

LVKeyReg ← {}; par ← Setup(1k); (pkS , skS)← KeyGenS(par)
(pkC , skC)← KeyGenC(par); (pkC,S , skC,S)← CSetup(par, pkS , skC)
(pkV , skV )← KeyGenV (par); PK ← (pkS , pkC , pkC,S , pkV )
(m, st)← AO(par, PK, skV )
b← {0, 1}
if b = 0

(σ, st′)← {Sign(par, PK,m, skS)↔ A(st)}
st′′ ←2 {Confirm(par, PK,m, σ∗, skC,S)↔ A(st′)}
st′′′ ←2 {SimDis(par, PK,m, σ, skV )↔ A(st′′)}

else (b = 1)
(σ∗, st′)← {SimSign(par, PK,m, skV )↔ A(st)}
st′′ ←2 {SimCon(par, PK,m, σ, skV )↔ A(st′)}
st′′′ ←2 {Disavow(par, PK,m, σ, skC,S)↔ A(st′′)}

b′ ← AO
′
(st′′′)

if b = b′ output 1
else output 0

Fig. 3. On-line non-transferability security experiment.

4 Construction of an ONS scheme

In this section we will present a construction of an ONS scheme based on four
simpler building blocks: a standard signature scheme, a core confirmer signature
scheme, sigma protocols, and a trapdoor commitment scheme with an enhanced
binding property. In the following, we will formally define a core confirmer sig-
nature scheme as well as the needed security requirements, motivate and define
the enhanced binding property of a trapdoor commitment scheme, and finally
show how the above mentioned primitives can be combined into a secure ONS
scheme. Formal definitions of standard signatures, sigma protocols and trapdoor
commitments can be found in the full version.

4.1 Core Confirmer Signature Scheme

A core confirmer signature scheme is essentially an ONS scheme without any of
the interactive algorithms. More specifically, a core confirmer signature scheme
is defined by CS = {CS.Setup, CS.KeyGenS , CS.KeyGenC , CS.Sign, CS.Convert,
CS.TkVerify} where the algorithms CS.Setup, CS.KeyGenS , and CS.KeyGenC are
defined as in a full ONS scheme, and the CS.Sign, CS.Convert and CS.TkVerify

algorithms are defined as follows:

– CS.Sign: given par, pkC , m, and skS , this algorithm returns a signature σ.
– CS.Convert: given par, pkS , m, σ and skC , this algorithm returns a verifi-

cation token tkσ.
– CS.TkVerify: given par, pkS , pkC , m, σ and tkσ, this algorithm returns

either accept or reject.



Both CS.Convert and CS.TkVerify are assumed to be deterministic. Note that
all algorithms are non-interactive and that no specific confirmer keys pkC,S or
verifier keys pkV are required. Like for an ONS scheme, we define an algorithm
CS.Valid as

– CS.Valid: given par, pkS , pkC , m, σ and skC , this algorithms computes the
verification token tkσ ← CS.Convert(par, pkS ,m, σ, skC) and returns the
output of CS.TkVerify(par, pkS , pkC ,m, σ, tkσ).

We require that a scheme is correct i.e. for all par ← CS.Setup(1k), (pkS , skS)←
CS.KeyGenS(par), (pkC , skC) ← CS.KeyGenV (par), all messages m and all σ ←
CS.Sign(par, pkC ,m, skS), we require that z ← CS.Valid(par, pkS , pkC ,m, σ, skC)
yields z = accept. Furthermore, we require that a core confirmer signature
scheme has unique private confirmer keys i.e. for any pkC , there exists at most
one skC such that (pkC , skC) ∈ {CS.KeyGenC(par)} where {CS.KeyGenC(par)}
denotes the set of all possible confirmer key pairs generated by CS.KeyGenC .7

Security Requirements. For a core confirmer signature scheme to be secure, we
require that the scheme provides unforgeability, invisibility and token soundness.
However, due to the reduced functionality of a core confirmer signature scheme,
these definitions will be much simpler compared to the security definitions of a
full ONS scheme.

We define unforgeability of a core confirmer signature scheme CS via the
experiment Expcs-uf-cmaCS,A (1k) shown in Figure 4. In the experiment, A has access
to the oracle OSign defined as follows:

– OSign: given pkC , andm, this oracle computes σ ← CS.Sign(par, pkC ,m, skS),
adds (pkC ,m, σ) to LCSSign, and returns σ.

Definition 7 A core confirmer signature scheme CS is said to be unforge-
able if no PPT algorithm A with non-negligible advantage Adv

cs-uf-cma
CS,A (k) =

Pr[Expcs-uf-cmaCS,A (1k) = 1] exists.

Invisibility of a core confirmer signature scheme CS, which captures the
property that valid signatures cannot be distinguished from random elements of
the signature space, is defined via the experiment Expcs-inv-cmaCS,A shown in Figure
4. In the experiment, S denotes the signature space of the scheme, and A has
access to the oracles O = {OSign,OConvert} where OSign is defined as in the
above unforgeability experiment, and OConvert is defined as follows:

– OConvert: given m and σ, this oracle returns the verification token tkσ ←
CS.Convert(par, pkS , pkC ,m, σ, skC).

Note that OConvert will only convert signatures from the signer pkS and is not
required to work for maliciously generated public signer keys for which the adver-
sary might know the corresponding private key. Hence, intuitively, this security

7 This property is needed to prove confirmer soundness (Theorem 15) of the construc-
tion presented in Section 4.3.



Expcs-uf-cmaCS,A (1k)

LCSSign ← {}
par ← CS.Setup(1k)
(pkS , skS)← CS.KeyGenS(par)
(pk∗C ,m

∗, σ∗, tk∗σ)← AO(par, pkS)
z ← CS.TkVerify(par, pkS , pk

∗
C , σ

∗,m∗, tk∗σ)
if (pk∗C ,m

∗, σ∗) 6∈ LCSSign ∧ z = accept

output 1
else output 0

Expcs-inv-cmaCS,A (1k)

par ← CS.Setup(1k)
(pkS , skS)← CS.KeyGenS(par)
(pkC , skC)← CS.KeyGenC(par)
(m∗, st)← AO(par, pkS , pkC)
b← {0, 1}
if b = 0 σ∗ ← S
else σ∗ ← CS.Sign(par, pkC ,m, skS)
b′ ← AO(st, σ∗)
if b = b′ output 1
else output 0

Expcs-tk-sndCS,A (1k)

par ← CS.Setup(1k)
(pk∗S , pk

∗
C , sk

∗
C ,m

∗, σ∗, tk∗σ)← A(par)
z1 ← CS.TkVerify(par, pk∗S , pk

∗
C , σ

∗,m∗, tk∗σ)
z2 ← CS.Valid(par, pk∗S , pk

∗
C , σ

∗,m∗, sk∗C)
if (pk∗C , sk

∗
C) ∈ {CS.KeyGenC(par)} ∧ z1 = accept ∧ z2 = reject

output 1
else output 0

Fig. 4. Unforgeability, invisibility and token soundness experiments for a core confirmer
signature scheme.

requirement only requires the scheme to be secure in a “single user” setting
in which a confirmer only services a single signer. This weaker requirement is
important for the security proof of our concrete construction.

Definition 8 A core confirmer signature scheme CS is said to be invisible if
there exists no PPT algorithm A with non-negligible advantage Advcs-inv-cmaCS,A (k) =

|Pr[Expcs-inv-cmaCS,A (1k) = 1]− 1
2 | exists.

Lastly, we consider token soundness which intuitively captures the property
that an accepting verification token cannot be constructed for an invalid signa-
ture. Formally, we define token soundness of a scheme CS via the experiment
Expcs-tk-sndCS,A shown in Figure 4. In the figure, {CS.KeyGenC(par)} denotes the set
of all possible key pairs generated by CS.KeyGenC .

Definition 9 A core confirmer signature scheme CS is said to provide token
soundness if there exists no PPT algorithm A with non-negligible advantage
Advcs-tk-sndCS,A (k) = Pr[Expcs-tk-sndCS,A (1k) = 1].

Compatible Sigma Protocols. In our full ONS scheme, we will base the construc-
tion of on-line non-transferable protocols on sigma protocols. For this purpose,
we require that a set of sigma protocols compatible with the core confirmer sig-
nature scheme exists. More specifically, we say that a triple of sigma protocols,
ΣS , ΣC and ΣC , and a core confirmer signature scheme CS are compatible if
the sigma protocols are defined for the common input x = (par, pkS , pkC ,m, σ)



and the following relations.

ΣS{(x, (skS , r)) : (pkS , skS) ∈ {CS.KeyGenS(par)}∧
σ = CS.Sign(par, pkC ,m, skS ; r)}

ΣC{(x, skC) : (pkC , skC) ∈ {CS.KeyGenC(par)}∧
CS.Valid(par, pkS , pkC ,m, σ, skC) = accept}

ΣC{(x, skC) : (pkC , skC) ∈ {CS.KeyGenC(par)}∧
CS.Valid(par, pkS , pkC ,m, σ, skC) = false}

In the above, we use the notation Σ{(x,w) : R(x,w) = 1} to denote the sigma
protocol Σ for relation R with common input x and witness w. For simplicity,
we assume that the challenge space of ΣS , ΣC and ΣC are of the same size.

4.2 On-line Non-transferable Protocols

Our construction of on-line non-transferable protocols is based on a simple and
intuitive approach inspired by the construction of designated verifier proofs by
Jakobsson et al. [10] and is furthermore closely related to the construction of
efficient zero-knowledge proofs in the auxiliary string model [6]. More specifically,
we modify the compatible sigma protocols using a trapdoor commitment scheme,
and let a prover and a verifier interact as follows:

1. The prover computes the first message a of the sigma protocol and the com-
mitment com← Comm(ck, a, r) for random r, and sends com to the verifier.

2. The verifier then sends a random challenge c to the prover.
3. The prover computes the last message z of the sigma protocol and sends

the opening (a, r) together with z to the verifier. The verifier checks that
com = Comm(ck, a, r), and accepts if (a, c, z) is an accepting transcript of the
sigma protocol.

The commitment key and trapdoor (ck, td) will be used as the public/private
key pair (pkV , skV ) of the verifier. Hence, using skV , the verifier will be able to
open com to any message a of his choice, and can therefor postpone generating
a until after the challenge c is revealed which allows him to simulate the proof
interactively. We use the notation NT(ck)-Σ to denote the non-transferable pro-
tocol obtained by modifying the sigma protocol Σ as described above using the
commitment key ck.

However, the above approach is not sufficient for proving our constructions
secure. Essentially the problem is that an adversary can request to interact with
SimSign, SimCon and SimDis in many of the security notions defined in Section
3, choosing any message or message/signature pair (valid or invalid) as input.
This type of query can be difficult to handle for a simulator not knowing the
trapdoor of the commitment scheme, whereas a simulator knowing the trapdoor
might not gain sufficient information from an adversary breaking the security
of the scheme. To address this problem, we introduce a commitment scheme



with a stronger binding property. Specifically, we consider the advantage of an
adversary A against a scheme T defined by

AdvbindT,A (k) = Pr[(ck, td)← G(1k); (w, r, w′, r′)← AOc,Oo(ck) :

w 6= w′ ∧ Comm(ck, w, r) = Comm(ck, w′, r′)]

where A has access to a commit and an open oracle, Oc and Oo, which behave
as follows: upon request, Oc computes (com, aux) ← TdComm, stores aux and
returns com to A. Given a commitment com returned by Oc and a value w,
Oo retrieves the corresponding aux and returns r ← TdOpen(aux,w, td) such
that com = Comm(ck, w, r). The adversary is only allowed to query Oo with a
commitment com obtained from Oc, and is not allowed to make more than one
query to Oo for a given commitment com.

Definition 10 A trapdoor commitment scheme T is said to be binding under
selective trapdoor openings if no PPT algorithm A with non-negligible advantage
AdvbindT,A (k) exists.

Pedersen’s commitment scheme [16] can be shown to be binding under selective
trapdoor openings assuming the one more discrete logarithm problem is hard.
However, to obtain a commitment scheme which can be shown secure only as-
suming the ordinary discrete logarithm problem is hard, we can make use of
the “double trapdoor” extension also used to strengthen the security of ordinary
signatures [18]. In the full version, we recall this scheme and prove it binding
under selective trapdoor openings.

4.3 Combined Scheme

We now show how to combine the above mentioned primitives into a full ONS
scheme. More specifically, let CS = {CS.Setup, CS.KeyGenS , CS.KeyGenC , CS.Sign,
CS.Convert, CS.TkVerify} be a core confirmer signature scheme with compati-
ble sigma protocols ΣS , ΣC and ΣC , let T = {T.G, T.Comm, T.TdComm, T.TdOpen}
be a trapdoor commitment scheme, and let S = {S.Setup, S.KeyGen, S.Sign,
S.Verify} be an ordinary signature scheme. We construct an ONS scheme N as
follows:

– Setup(1k): Compute parS ← S.Setup(1k) and parCS ← CS.Setup(1k), and
return the parameters par ← (parS , parCS). It is assumed that parCS include
a description of the randomness space R used by the CS.Sign algorithm.

– KeyGenS(par): Return (pkS , skS)← CS.KeyGenS(parCS).
– KeyGenC(par): Return (pkC , skC)← S.KeyGen(parS).
– KeyGenV (par): Return (pkV , skV )← T.G(1k).
– CSetup(par, pkS , skC): Compute the key pair (pk′C , sk

′
C)← CS.KeyGenC(parCS)

and the signature δ ← S.Sign(parS , “pkS ||pk′C”, skC), and return pkC,S ←
(pk′C , δ) and skC,S ← sk′C .

– CKeyValid(par, pkS , pkC , pkC,S) Let pkC,S = (pk′C , δ) and return the result
of the verification S.Verify(parS , pkC , “pkS ||pk′C”, δ).



– (Sign, Receive): The common input is (par, pkS , pkC , pkC,S , pkV ,m) where
pkC,S = (pk′C , δ) and the signer is given skS as private input. The signer
picks r ∈ R and computes σ ← CS.Sign(parCS , pk

′
C , skS , pkC ||pkC,S ||m; r).

Then the signer sends σ to the verifier, and interacts with the verifier in
the protocol NT(pkV )-ΣS using (par, pkS , pk

′
C , pkC ||pkC,S ||m,σ) as common

input and (skS , r) as secret input. 8

– Convert(par, pkS ,m, σ, skC,S): Return the core confirmer signature verifica-
tion token tkσ ← CS.Convert(parCS , pkS ,m, σ, skC,S).

– TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ): Firstly, verify the validity of pkC,S
by computing z ← CKeyValid(par, pkS , pkC , pkC,S), and return reject if
z = reject. Otherwise, let pkC,S = (pk′C , δ) and return the output of
CS.TkVerify(parCS , pkS , pk

′
C , pkC ||pkC,S ||m,σ, tkσ).

– (Confirm, VC): The common input is given by (par, pkS , pkC , pkC,S , pkV ,m, σ)
where pkC,S = (pk′C , δ) and the signer is given skC,S as private input. Firstly,
the verifier checks validity of pkC,S by running CKeyValid(par, pkS , pkC , pkC,S),
and aborts if the output is reject. The confirmer then interacts with the
verifier in the protocol NT(pkV )-ΣC with private input skC,S and common
input (parS , pkS , pk

′
C , pkC ||pkC,S ||m,σ).

– (Disavow, VD): Having the same input as in (Confirm, VC), the verifier firstly
checks if CKeyValid(par, pkS , pkC , pkC,S) = accept, and aborts if this is not
the case. The verifier and signer then interact in the protocol NT(pkV )-ΣC

with common input (parS , pkS , pk
′
C , pkC ||pkC,S ||m,σ) and private input skC,S

to the confirmer.

Security. We will now state the theorems showing that the above constructed
ONS scheme satisfies the security definitions given in Section 3 assuming the
underlying primitives are secure. Due to space limitation, the proofs are not
included here, but can be found in the full version.

Theorem 11 Assume that CS is unforgeable, that ΣS is honest verifier zero-
knowledge and has special soundness, and that T is perfectly hiding and binding
under selective trapdoor openings. Then the above ONS scheme N is unforgeable.

Theorem 12 Assume that S is strongly unforgeable. Then the above ONS scheme
N has key unforgeability.

Theorem 13 Assume that ΣS and ΣC have special soundness, and that T is
binding under selective trapdoor openings. Then the above ONS scheme N pro-
vides non-repudiation.

Theorem 14 Assume that ΣS have special soundness, and that T is binding
under selective trapdoor openings. Then the above ONS scheme N provides signer
soundness.
8 Note that this construction of the sign protocol is slightly more flexible than required

by the definition in Section 2 in that a signer is able to re-confirm a signature by
running NT(pkV )-ΣS . This, however, requires the signer to remember the randomness
used to construct the signature.



Theorem 15 Assume that CS has unique private confirmer keys and provides
token soundness, that ΣC and ΣC have special soundness, and that T is bind-
ing under selective trapdoor openings. Then the above ONS scheme N provides
confirmer soundness.

Theorem 16 Assume that CS is invisible, that ΣS, ΣC and ΣC are honest
verifier zero-knowledge, and that T provides a perfect trapdoor property. Then
the above ONS scheme N provides on-line non-transferability.

4.4 Concrete Instantiation

To instantiate the above construction, we can use the strongly unforgeable
signature scheme by Boneh et al. [1] and the double trapdoor Pedersen com-
mitment scheme mentioned above. In the full version, we define and prove
secure a core confirmer signature scheme and compatible sigma protocols to
complete the instantiation. The scheme is essentially based on a linear en-
cryption of the first component of a Waters signature [19] combined with the
technique of Boneh et al. [1] to obtain a strongly unforgeable scheme. More
specifically, the public/private key pairs of the signer and confirmer is given
by (pkS , skS) = ((gα, g2, h, F ), α) and (pkC , skC) = ((u, v), (x, y)) where F is
a Waters hash function and ux = vy = g, and a signature is of the form σ =
(ua, vb, ga+b+r, gα2H(M)r, s) where M = gths, t = H(pkC ||ua||vb||ga+b+r||m),
and H is a collision resistant hash function. The scheme is invisible assuming
the decisional linear problem is hard, and is strongly unforgeable assume the
discrete logarithm problem is hard, H is collision resistant and Waters signa-
tures are (weakly) unforgeable. Furthermore, the structure of the scheme allows
the compatible sigma protocols to be implemented using well-know techniques
for proving equality and inequality of discrete logarithms. We refer the reader
to the full version for the details.

5 Comparison

The generic construction by Liskov and Micali [13] provides many instantiation
options due to their use of standard primitives, whereas our approach relies on
special building blocks. However, our concrete instantiation has several advan-
tages compared to any instantiation of the scheme by Liskov and Micali, both
in terms of functionality, efficiency and security. More specifically, our scheme
allows a confirmer to both confirm and disavow signatures, provides short sig-
natures compared to the O(k) size signatures of [13] which furthermore allows a
more efficient sign protocol, and lastly, all interactive protocols are on-line non-
transferable, security is guaranteed when multiple (potentially malicious) con-
firmers are used, and the signer is not required to engage in any “fake” signing
protocols to maintain security. As mentioned in the introduction, these security
properties are not enjoyed by [13]. We note, however, that our scheme requires
large public keys whereas [13] can be instantiated to provide compact public
keys, and that the non-interactive disavow protocol of [13] allows perfect non-
repudiation whereas our scheme only achieves computational non-repudiation.
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