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Abstract. Multivariate public key cryptography is one of the main approaches to guarantee
the security of communication in the post-quantum world. Due to its high efficiency and
modest computational requirements, multivariate cryptography seems especially appropriate
for signature schemes on low cost devices. However, multivariate schemes are not much used
yet, mainly because of the large size of their public keys. In [PB10] Petzoldt et al. presented
an idea how to create a multivariate signature scheme with a partially cyclic public key
based on the UOV scheme of Kipnis and Patarin [KP99]. In this paper we use their idea to
create a multivariate signature scheme whose public key is mainly given by a linear recurring
sequence (LRS). By doing so, we are able to reduce the size of the public key by up to 86
%. Moreover, we get a public key with good statistical properties.
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1 Introduction

When quantum computers arrive, cryptosystems based on number theoretic problems such as in-
teger factoring or discrete logarithms will become insecure, since such problems can be efficiently
solved via Shor’s algorithm [Sh97] [BB08]. So, to guarantee the security of communication in the
post-quantum world, alternatives to classical public key schemes are needed. Besides lattice-, code-
and hash-based cryptosystems, multivariate public key cryptography [DG06] is one of the main
approaches to achieve this goal. Since they require only modest computational resources, multi-
variate schemes seem to be appropriate for the use on low cost devices like RFID’s and smartcards.
However, these schemes are not widely used yet, mainly because of the large size of their public
and private keys.

The basic idea behind multivariate cryptography is to choose a system Q of m quadratic poly-
nomials in n variables which can be easily inverted (central map). After that one chooses two
affine invertible maps S and T to hide the structure of the central map. The public key of the
cryptosystem is the composed quadratic map P = S ◦ Q ◦ T which should be difficult to invert.
The private key consists of S, Q and T and therefore allows to invert P .

In the last years, a lot of work has been done to find ways how to reduce the key size of multivariate
schemes. Thereby, most researchers concentrated on reducing the size of the private key. One way
to achieve this is by choosing the coefficients of the private maps out of smaller fields (e.g. GF (16)
instead of GF (256)). However, this increases the signature length [CC08]. Another way to reduce
the size of the private key is by using sparse central polynomials, which is done for example in
the TTS schemes of Yang and Chen [YC05]. By using a strategy called ”similar keys” Hu et al.
[HW05] produced interesting results in this direction, too.



In [PB10] Petzoldt et al. presented an idea how to reduce the public key size of the UOV sig-
nature scheme of Kipnis and Patarin [KP99]. They achieved this by inserting a partially circulant
matrix into the coefficient matrix of the public key polynomials. By doing so, they were able to
reduce the public key size of the standard UOV scheme by a large factor.

In this paper we use their idea to create a multivariate signature scheme whose public key is
mainly given by a linear recurring sequence (LRS). Despite of the fact that until now no attack
against the partially cyclic scheme is known, we aim at replacing the partially cyclic key by a
key which is statistically more random (see Subsection 4.2) without increasing the key size. So, it
should become more difficult to develop a dedicated attack against the scheme. We also get closer
to the ”provably secure” UOV scheme of [BP10].
As in [PB10], we are not able to create a scheme whose public key is completely given by an
LRS. So, we will have MP = (B|E), where B is generated by an LRS and E is a matrix with
no apparent structure. Thus we have to store only the parameters of the LRS and the matrix E,
which reduces the size of the public key by up to 86 %.

The rest of the paper is organized as follows:
In Section 2 we describe the Unbalanced Oil and Vinegar (UOV) signature scheme, which is the
basis of our construction. Section 3 reviews the approach of [PB10] to create a UOV-based scheme
with a partially cyclic public key. In Section 4 we repeat results from the theory of linear recurring
sequences (LRS’s) needed in the following sections and make some remarks about randomness
measurements of sequences. Section 5 describes the construction and presents our new scheme in
detail. In Section 6 we answer the question how to choose the parameters of the LRS, whereas
Section 7 studies the security of our scheme under known attacks. Parameter proposals for our
scheme can be found in Section 8, and Section 9 concludes the paper.

2 The (Unbalanced) Oil and Vinegar Signature Scheme

One way to create easily invertible multivariate quadratic systems is the principle of Oil and Vine-
gar, which was first proposed by J. Patarin in [Pa97].

Let Fq be a finite field. Let o and v be two integers and set n = o + v. We set V = {1, . . . , v}
and O = {v + 1, . . . , n}. Of the n variables x1, . . . , xn we call x1, . . . , xv the Vinegar variables and
xv+1, . . . , xn Oil variables. We define o quadratic polynomials
q(k)(x) = q(k)(x1, . . . , xn) by

q(k)(x) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑

i,j∈V, i≤j

β
(k)
ij xixj +

∑

i∈V ∪O

γ
(k)
i xi + η(k) (1 ≤ k ≤ o)

Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar in a salad dressing.

The map Q = (q(1)(x), . . . , q(o)(x)) can be easily inverted. First, we choose the values of the
v Vinegar variables x1, . . . , xv at random. Therefore we get a system of o linear equations in the o
Oil variables xv+1, . . . , xn which can be solved by Gaussian Elimination. (If the system does not
have a solution, one has to choose other values of x1, . . . , xv and try again).

To hide the structure of Q in the public key one concatenates it with an affine invertible map
T : F

n → F
n. So, the public key of the UOV signature scheme is given as

P = Q ◦ T (1)

Remark 1: In opposite to other multivariate schemes the second affine map S is not needed for
the security of UOV. So it can be dropped.



Signature generation and verification To sign a message with a hash value h ∈ F
o
q, one

computes recursively y = Q−1(h) and z = T −1(y). The signature of the message is z ∈ F
n
q . Here

Q−1(h) means finding one pre-image of h ∈ F
o
q under Q, which we get by choosing the Vinegar

variables at random and solving the resulting linear system for the Oil variables.
To verify a signature z ∈ F

n
q , one computes w = P(z) ∈ F

o
q. If w = h holds, the signature is

accepted, otherwise rejected.

In the original paper [Pa97], Patarin suggested to use o = v (Balanced Oil and Vinegar (OV)).
After this scheme was broken by Kipnis and Shamir in [KS98], it was suggested in [KP99] to use
v > o (Unbalanced Oil and Vinegar (UOV)).
The UOV signature scheme over GF (28) is commonly believed to be secure for o ≥ 26 equations
and v = 2 · o Vinegar variables [BF08].

3 The approach of [PB10]

In this section we review the approach of [PB10] to create a UOV-based scheme with a partially
cyclic public key.
Remember that, in the case of the Unbalanced Oil and Vinegar signature scheme [KP99], the
public key P is given as the concatenation of the central UOV-map Q and an affine invertible map
T = ((tij)

n
i,j=1, cT ), i.e.

P = Q ◦ T . (2)

The authors of [PB10] observed, that this equation (after fixing the affine map T ), leads to a linear
relation between the coefficients of the quadratic monomials of P and Q of the form

p
(k)
ij =

n∑

i=1

n∑

j=i

αrs
ij · q

(k)
rs , (3)

where p
(k)
ij and q

(k)
ij are the coefficients of xixj in the k-th component of P and Q respectively and

the αrs
ij are given as

αrs
ij =

{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise

. (4)

Let D := v·(v+1)
2 + o · v be the number of non-zero quadratic terms in any component of Q and

D′ := n·(n+1)
2 be the number of quadratic terms in the public polynomials. Let MP and MQ be

the Macaulay matrices of P and Q respectively (in graded lexicographical order). The matrices
MP and MQ are divided into submatrices as shown in Figure 1. Note that, due to the absence of
oil × oil terms in the central polynomials, we have a block of zeros in the middle of MQ.

Q

B

0
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Qlin
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D D′
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Fig. 1. Layout of the matrices MP and MQ



Furthermore, the authors of [PB10] defined the so called transformation matrix A ∈ F
D×D
q con-

taining the coefficients αrs
ij of equation (3)

A =
(
αrs

ij

)
(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ v, i ≤ j ≤ n for the columns), i.e.

A =








α11
11 α11

12 . . . α11
vn

α12
11 α12

12 . . . α12
vn

...
...

αvn
11 αvn

12 . . . αvn
vn








. (5)

With this notation, equation (3) yields
B = Q ·A (6)

If the matrix A is invertible, this relation becomes bijective.
By solving equation (6) for Q, the authors of [PB10] were able to insert a partially circulant matrix
into the UOV public key. By doing so, they reduced the public key size of the scheme by a large
factor.

4 Preliminaries

4.1 Linear Recurring Sequences (LRS)

In this subsection we repeat briefly results from the theory of linear recurring sequences (LRS’s)
needed in the following sections. For a more detailed introduction and the proofs we refer to
[LN86].

Definition 1. Let L be a positive integer and γ1, . . . , γL be given elements of a finite field Fq. A
linear recurring sequence (LRS) of length L is a sequence {s1, s2, . . . } of Fq-elements satisfying
the relation

sj = γ1 · sj−1 + γ2 · sj−2 + · · ·+ γL · sj−L =

L∑

i=1

γi · sj−i (∀j > L). (7)

The values s1, . . . , sL are called the initial values of the LRS.

Definition 2. The connection polynomial of an LRS is defined as

C(x) = γLxL + γL−1x
L−1 + · · ·+ γ1 ·X + 1 =

L∑

i=1

γiX
i + 1.

The LRS S is uniquely determined by its initial values s1, . . . , sL and the connection polynomial
C (due to equation (7)). Therefore we denote the LRS by S(s1, . . . , sL, C).

Definition 3. An irreducible polynomial f(x) ∈ Fq[x] of degree d is called a primitive polynomial
if one of the roots of f(x) is a generator of F

⋆
qd , the multiplicative group of all the non-zero elements

of Fqd .

Lemma 1. The irreducible polynomial f(x) ∈ Fq[x] of degree d is a primitive polynomial if and
only if f(x) divides xk − 1 for k = qd − 1 and for no smaller positive integer k.

Definition 4. A sequence {σ1, σ2, . . . } of Fq-elements is said to be periodic with minimal period
k, if k is the smallest integer such that σi = σi+t·k (∀i, t ∈ N).

Lemma 2. An LRS of length L with primitive connection polynomial C(x) ∈ Fq[x] and (s1, . . . , sL) ∈
F

L
q \ {0} is periodic with minimal period qL − 1.

Definition 5. An LRS as in Lemma 2 is called an m-sequence.

Definition 6. Let Σ = {σ1, σ2, . . . } be a (finite or infinite) sequence of Fq-elements. The linear
complexity LC(Σ) is defined as the length of the shortest LRS S such that σi = si ∀i.

Lemma 3. Let S = S(s1, . . . , sL, C) be an LRS of length L with irreducible connection polynomial
C. Then, the linear complexity of S is equal to L.



4.2 Golomb’s Randomness Postulates [Go67]

In this subsection we look at sequences over a finite field Fq. We cite from [GG05] some criteria a
sequence Σ must fulfill to be considered a random sequence.

Definition 7. Let λ, η, ζ ∈ Fq with λ 6= η and λ 6= ζ. A subsequence σ̄ of Σ = {σ1, σ2, . . . } of the
form

η, λ, . . . , λ
︸ ︷︷ ︸

k−times

, ζ

is called a run of λ of length k.

Definition 8. The auto-correlation function of a sequence Σ = {σ1, σ2, . . . } with period qn− 1 is
defined as

ACΣ(τ) =

qn−2
∑

i=0

χ(σi) · χ(σi+τ ) (0 ≤ τ ≤ qn − 2),

where χ is given by
χ(x) = e2πi Tr(x)/p

with Tr being the standard trace function between Fq and its prime field Fp.

Golomb formulated three postulates a sequence must fulfill to be considered a random sequence.
Let Σ be a sequence with period qn − 1.

R-1 In every period, every non-zero element occurs qn−1 times and the zero element occurs qn−1−1
times.

R-2 In every period,
1. for 1 ≤ k ≤ n− 2, the runs of each element of length k occur (q − 1)2 · qn−k−2 times.
2. the runs of each non-zero element of Fq of length n− 1 occur q − 2 times.
3. the runs of the zero element of length n− 1 occurs q − 1 times.
4. the run of every non-zero element of length n occurs once.

R-3 The auto-correlation function ACΣ is two valued with

ACΣ(τ) =

{
qn − 1 if τ ≡ 0 mod (qn − 1)
−1 if τ 6≡ 0 mod (qn − 1)

Remark 2: The auto-correlation function ACΣ measures the amount of similarity between the
sequence Σ and its shift by τ positions. Postulate R-3 states that for τ ≥ 1 the value ACΣ(τ)
should be quite small.

Postulate R-1 can be extended as follows

R-4 In every period, each non-zero n-tuple (λ1, . . . , λn) ∈ F
n
q appears exactly once.

Lemma 4. Any m-sequence fulfills the postulates R-1 to R-4 (for n = L).

Remark 3: In the partially cyclic approach of [PB10], the rows of the matrix B are given as
b(i) = Ri−1(b) (i = 1, . . . , o), where R is the cyclic right shift and b is a randomly chosen vector.
The sequence obtained by this construction clearly doesn’t fulfill these postulates. For example, for
most of the λ ∈ Fq the 2-run (λ, λ) does not appear in such a sequence (contradiction to postulate
R-2).

Remark 4: Because of the good statistical properties of m-sequences, linear recurring sequences
are used to bring randomness into a large number of areas, for example digital broadcasting and
the Global Positioning System (GPS). However, an m-sequence can’t be said to be a truely random
sequence. For example, the linear complexity of an m-sequence obtained by an LRS of length L is
L, whereas the linear complexity of a random sequence of length N should be about N/2. There-
fore, the elements of an m-sequence are easily predictable. Hence, for cryptographic applications
like stream ciphers, one has to add some non-linearity features.



5 Description of the scheme

In this section we deal with the construction of our scheme and describe it in detail.

Additionally to the matrix A defined in Section 3 we define a matrix A′ ∈ F
D×D′

q by

A′ =
(
αrs

ij

)
(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ j ≤ n for the columns), (8)

whose entries αrs
ij are given by equation (4). The order in which the αrs

ij appear in A′ is given
by the graded lexicographical ordering (for both rows and columns). Note that the matrix A (as
defined in Section 3) is a submatrix of A′.

5.1 Construction

At the beginning of our construction we choose randomly an affine invertible map T (given as
a matrix MT = (tij)

n
i,j=1 and an n−vector cT ) and compute the corresponding transformation

matrix A (using equations (4) and (5)). Furthermore, we choose an LRS of length L with initial

values s1, . . . , sL and primitive connection polynomial C(X) =
∑L

i=1 γiX
i + 1 and compute its

first o ·D elements (using equation (7)).

We define the o×D-matrix B (see Figure 1) as

B = (bij) with bij = sD·(i−1)+j (i = 1, . . . o, j = 1, . . . , D) (9)

As in [PB10] equation (3) yields
B = Q ·A (10)

and we get
(B|H) = Q ·A′ (11)

Under the assumption of A being invertible we can invert equation (10) and compute the homo-
geneous quadratic part of the central map.

Remark 5: To justify the assumption of A being invertible, we carried out a number of ex-
periments. For different values of o and v we created 1000 matrices MT each time and tested, how
many of the corresponding matrices A were invertible. Table 1 shows the results.

(28,o,v) (2,4) (5,10) (10,20) (15,30) (20,40)

% invertible 99.3 99.6 99.7 99.5 99.4

Table 1. Percentage of the matrices A being invertible

As the table shows, the condition of A being invertible is nearly always complied.



5.2 The Scheme

Key Generation

1. Choose randomly a vector (s1, . . . , sL) ∈ F
L
q \ {0} and a primitive connection polynomial

C(X) =
∑L

i=1 γiX
i + 1.

2. Compute the first o ·D elements of the LRS S = S(s1, . . . , sL, C) using equation (7).
3. Compute the matrix B using equation (9).
4. Choose an affine map T = (MT , cT ) : F

n
q → F

n
q at random. If MT is not invertible, choose

again.
5. Compute for T the corresponding transformation matrix A (using equations (4) and (5)). If

A is not invertible, go back to step 4.
6. Solve the linear systems given by equation (10) to get the matrix Q and therewith the homo-

geneous quadratic part of the central map Q.
7. Choose the coefficients of the linear terms of the central polynomials at random.
8. Compute the public key as P = Q ◦ T .

Signature generation and verification work as in the case of the standard UOV scheme (see Section
2).

The public key consists of the last
(

o·(o+1)
2 + o + v + 1

)

columns of the matrix MP , the initial

values s1, . . . , sL and the connection polynomial C of the LRS.
The private key consists of the maps Q and T .
The size of the public key is given as

o ·

(
o · (o + 1)

2
+ o + v + 1

)

+ 2 · L field elements,

the size of the private key is

o ·

(
v · (v + 1)

2
+ o · v + o + v + 1

)

field elements.

We denote the scheme by UOVLRS(q, o, v, L), where q is the cardinality of the underlying field.

6 Choice of the parameter L

In this section we look at the question how to choose the length of the LRS.

6.1 General Remarks

Proposition 1. Let the o×D matrix B be generated by an LRS of length L ≤ o (as described in
Subsection 5.2). Then we have rank(B) ≤ L.

Proof. We denote B′ to be the upper left L×L submatrix of B. Its rows we denote by b′(1), . . . ,b′(L).
Let’s assume that we have already found L linear independent rows of B. W.l.o.g. these are the
first L rows of B, namely b(1), . . . ,b(L). Due to Lemma 5 B′ is then invertible.
We have to show, that all the other rows b(L+1), . . . ,b(o) can be written as linear combinations of
the rows b(1), . . . ,b(L).
Let L < i ≤ o. First we show that the vector b′(i) (consisting of the first L elements of b(i)) can
be written as a linear combination of the vectors b′(1), . . . ,b′(L). In other words, we need to find
a vector β(i) ∈ F

L
q such that b′(i) = B′ · β(i). Since B′ is invertible, β(i) can be computed by

β(i) = B′−1 · b′(i).



To finish the proof, it remains to show that the vector β(i) fulfills the relation b(i) =
∑L

j=1 β
(i)
j ·

b(j). Remember that β(i) was chosen in such a way that the relation is fulfilled for the first L

elements of b(i). In the following we show this equality for every element b
(i)
r with (L < r ≤ D)

by induction. Note that, due to the recurrence relation (7), we have b
(i)
r =

∑L
j=1 γjb

(i)
r−j (i =

1, . . . , o, r > L).
r = L + 1:

b
(i)
L+1 =

L∑

j=1

γj · b
(i)
L+1−j =

L∑

j=1

γj ·

(
L∑

l=1

β
(i)
l · b

(l)
L+1−j

)

=

L∑

l=1

β
(i)
l ·





L∑

j=1

γj · b
(l)
L+1−j



 =

L∑

l=1

β
(i)
l · b

l
L+1

r ← r + 1:

b(i)
r =

L∑

j=1

γj · b
(i)
r−j =

L∑

j=1

γj ·

(
L∑

l=1

β
(i)
l · b

(l)
r−j

)

=

L∑

l=1

β
(i)
l ·





L∑

j=1

γj · b
(l)
r−j



 =

L∑

l=1

β
(i)
l · b

l
r ⊓⊔

Lemma 5. If the first L rows of B are linearly independent, then the matrix B′ is invertible.

Proof. Let’s assume that B′ doesn’t have full rank. Then there exists a linear relation of the form
∑L

i=1 βi · B
′
i = 0, where B′

i (i = 1, . . . , L) are the columns of B′. In other words, there exists an

index j ∈ {1, . . . , L} such that B′
j =

∑L
i=1, i6=j δi ·B

′
i.

Let L + 1 ≤ k ≤ D. If we denote by B′′
k the k-th column of the matrix B′′, which we define to be

given by the first L rows of B, we get due to the recurrence relation (7)

B′′
k =

L∑

i=1

ηi ·B
′
i =

L∑

i=1, i6=j

ηi ·B
′
i + ηj ·

L∑

i=1, i6=j

δi ·B
′
i =

L∑

i=1, i6=j

(ηi + ηj · δi) ·B
′
i.

Therefore, the rank of the matrix B′′ would be less than L and the vectors b(1), . . . ,b(L) would
be linearly dependent. ⊓⊔

Remark 6: To study the question, which values of rank(B) occur in practice, we carried out a
number of experiments. For different parameter sets we created 10000 matrices B and computed
their rank. Table 2 shows the results.
The experiments seem to show that for fields of cardinality ≥ 8 the rank of the matrix B is always

(o, v, L) GF(2) GF(3) GF(4) GF(5) GF(7) GF(8) GF(16) GF(31) GF(256)

(8, 16, 5)
rank(B) = L 9037 9118 9722 9871 9974 10000 10000 10000 10000
B′ invertible 9037 9118 9722 9871 9974 10000 10000 10000 10000

(8, 16, 8)
rank(B) = L 9973 9980 9983 9984 9995 10000 10000 10000 10000
B′ invertible 9973 9980 9983 9984 9995 10000 10000 10000 10000

(20, 40, 15)
rank(B) = L 9981 9998 10000 10000 10000 10000 10000 10000 10000
B′ invertible 9981 9998 10000 10000 10000 10000 10000 10000 10000

(20, 40, 20)
rank(B) = L 9962 9983 9995 10000 10000 10000 10000 10000 10000
B′ invertible 9962 9983 9995 10000 10000 10000 10000 10000 10000

Table 2. Number of matrices B with rank L

equal to L. Furthermore, the matrix B′ was always invertible for these fields.



Proposition 2. Let (P ,Q, T ) be a UOV-scheme, whose public key is generated by an LRS of
length L ≤ o. Then we have rank(Q) = rank(B) ≤ L.

Proof. According to our assumption the matrix A is invertible. Therefore, the proposition follows
directly from equation (10). ⊓⊔

Remark 7: Despite of the relation between the rows of Q, there is no obvious relation between
the columns of Q. In particular, there exists no LRS of small length which creates Q.

Theorem 1. Let (P ,Q, T ) be a UOV scheme generated by an LRS of length L ≤ o. Then we
have rank(B|H) = rank(B) ≤ L.

Proof. Since B is a submatrix of (B|H), the rank of (B|H) can’t be less than that of B. But,
according to equation (11), the rank of (B|H) can’t be larger than rank(Q) = rank(B), too. ⊓⊔

Theorem 1 states that for L < o the homogeneous quadratic parts of the public polynomials are
linearly dependent. In particular, of the o quadratic polynomials of a public key generated by an
LRS of length L < o, only L have linear independent homogeneous quadratic parts. So, solving the
equation P(x) = h (o equations) is only as difficult as solving a system of L quadratic equations.
As a consequence of this, to achieve the maximal possible security, we should choose the length of
the LRS at least o. 3

To check the correctness of these theoretical considerations, we carried out a number of experiments
with MAGMA [BC97]. For different parameter sets (28, o, v, L) we created instances of our scheme
and solved the corresponding systems using the MAGMA command GroebnerBasis. Table 3
shows the results.

(28, o, v) (10, 20) (11, 22) (12, 24) (13, 26) (14, 28)

L = o 67 s 384 s 3071 s 23528 s 186382 s

L = o − 1 8.3 s 68 s 395 s 3215 s 24652 s

L = o − 2 1.7 s 8.4 s 67 s 408 s 3249 s

Table 3. Running time of the direct attack for different values of L

As the table shows, solving a UOV system with o equations generated by an LRS of length L < o
is only as difficult as solving a system with L equations.

6.2 Choice of L for smaller fields

For small fields (e.g. GF (16)) it might be useful to choose L < o. The reason for this is that for
small fields the needed number of equations is determined by the length of the hash value and not
by attacks against the scheme itself. For example, for GF (16) one needs 40 equations to achieve a
hash length of 160 bit. However, only 30 equations are needed to defend the scheme against direct
attacks [BF08]. So, it might be useful to choose the homogeneous quadratic part of the last 10
public equations to be a linear combination of the quadratic parts of the previous ones. The fact
that the linear part of the public equations is independent of the homogeneous quadratic part,
guarantees the functionality of the scheme. This strategy decreases the sizes of both public and
private key by about 25 %. Furthermore, key generation and signature generation/ verification
become faster.

We plan to study this idea (especially its effects on the security of the scheme) further.

3 For smaller fields (e.g. GF (24)) it might be useful to choose L < o. (see Subsection 6.2)



7 Security

In this section we look at known attacks against the UOV signature scheme and study the effect
of the special structure of our public key.

7.1 Direct attacks

The most straightforward method to forge a signature for a message h is by trying to solve
the system P(x) = h directly, i.e. by an equation solver like XL or a Gröbner Basis method
like Buchbergers algorithm or Faugère’s F4/F5. We carried out a number of experiments with
MAGMA, which contains an efficient implementation of the F4 algorithm [Fa99]. Before using the
MAGMA command GroebnerBasis, we had to fix some of the variables to create a determined
system. Since the number of solutions of an underdetermined UOV system is approximately qv, it
can be expected that, after fixing v of the variables, the determined system has a solution. Table
4 shows the results of our experiments on UOV-like schemes and random systems.

(28, o, v, L) (10, 20, 10) (11, 22, 11) (12, 24, 12) (13, 26, 13) (14, 28, 14)

UOVLRS 67 s 384 s 3071 s 23528 s 186382 s

UOV 68 s 386 s 3068 s 23677 s 186425 s

random system 68 s 386 s 3072 s 23725 s 186483 s

Table 4. Results of our experiments with direct attacks

As the table shows, the running time of direct attacks against our scheme is nearly the same as for
the standard UOV scheme and for random systems. So, for o ≥ 26 equations [BF08] our scheme
seems to be secure against direct attacks.

Definition 9. Let p(x) = p(x1, . . . , xn) be a quadratic multivariate polynomial and

dp(x, c) = p(x + c)− p(x)− p(c) + p(0)

its discrete differential. We define Hp to be the symmetric matrix such that

dp = xT ·Hp · c

For the matrix Hpi
representing the quadratic part of the i-th public polynomial we write in short

Hi. Analogous, we denote the symmetric matrix representing the homogeneous quadratic part of
the i-th central polynomial by Qi (i = 1, . . . , o).

7.2 UOV-Reconciliation

The goal of the UOV-Reconciliation attack is to find a change of variables which brings the ma-
trices Hi into UOV-form, which means that the lower right o× o submatrix is the zeromatrix. By
doing so, the attacker creates an equivalent private key and therefore is able to forge signatures
for arbitrary messages.
To achieve this goal, the attacker has to solve several multivariate quadratic systems. The com-
plexity of the attack is mainly determined by the complexity of the first step which is the solving
of a quadratic system of o equations in v variables. Table 5 shows the time MAGMA needs for
solving this initial system for our scheme and the standard UOV scheme.
As the table shows, the special structure of our public key has only a negligible effect on the
running time of the UOV-Reconciliation attack.
Since, for the parameters proposed in Section 2, the UOV scheme is believed to be secure against
the UOV-Reconciliation attack, we can assume the same for our scheme.



(28,o,v,L) (10,20,10) ( 11,22,11) (12,24,12) (13,26,13) (14,28,14)

UOVLRS 66 s 385 s 3072 s 23526 s 186380 s

UOV 68 s 384 s 3074 s 23534 s 186423 s

Table 5. Running time of the UOV-Reconciliation attack

7.3 Rank attacks

In this paragraph we look at the behavior of Rank attacks against the standard UOV and our
scheme. To do this, we carried out experiments with 10000 instances of our scheme for different
parameters (28, o, v, o). We observed that, just as in the case of the standard UOV scheme, all the
matrices Qi representing the homogeneous quadratic parts of the central equations have full rank
n. This prevents the MinRank attack. Furthermore, all the variables x1, . . . , xn appear in every of
the o central equations, which prevents HighRank attacks.

7.4 UOV Attack [KP99]

The goal of this attack is to find the pre-image of the oil subspace O = {x ∈ Kn : x1 = · · · =
xv = 0} under the affine invertible transformation T . To achieve this, one forms a random linear
combination P =

∑o
j=1 βjHj , multiplies it with the inverse of one of the Hi and looks for invariant

subspaces of this matrix. For each parameter set (28, o, v, L) listed in the table we created 100
instances of both schemes. Then we attacked these instances by the UOV-attack to find out the
number of trials we need to find a basis of T −1(O). Table 6 shows the results.

(28,o,v,L) (5,7,5) (8,11,8) (12, 15,12) (15, 18,15)

UOVLRS 1725 530826 851836 1178392

UOV 1734 531768 852738 1183621

Table 6. Average number of trials in the UOV-attack

As the table shows, there is only a negligible difference between the number of trials we need
between our scheme and the standard UOV. Since for the parameters proposed in Section 2 UOV
is believed to be secure against this attack, we can say the same for our scheme.

7.5 Summary

As the previous four subsections showed, known attacks against the UOV signature scheme do not
work significantly better in our case, which means that they can not use the special structure of
our public key. So, in this sense our scheme seems to be secure and we do not have to adapt our
parameter sets.
However, in the future we are going to study the security of our scheme under other attacks, e.g.
decomposition attacks [FP09]. It might also be possible that dedicated attacks against our scheme
exist. Still, since the statistical properties of the public key are rather strong due to the use of
m-sequences, we believe that the development of such an attack is a hard task.



8 Parameters

Based on our security analysis (see previous section) we propose for our scheme the same param-
eters as for the standard UOV signature scheme (see Section 2). According to our considerations
in Section 6, the length of the LRS should be at least o. Such we get

q = 28, o = 26, v = 52, L = 26.

Table 7 compares our scheme with the scheme of [PB10] and the standard UOV for this and a
more conservative parameter set.

public key private key hash size signature reduction
size (kB) size (kB) (bit) size (bit) factor (%)

UOV(28,26,52) 80.2 71.3 208 624 -

cyclicUOV(28,26,52) 13.6 71.3 208 624 83.0

UOVLRS(28,26,52,26) 11.0 71.3 208 624 86.3

UOV(28,28,56) 99.9 88.8 224 672 -

cyclicUOV(28,28,56) 16.5 88.8 224 672 83.4

UOVLRS(28,28,56,28) 13.5 88.8 224 672 86.4

Table 7. Comparison of different UOV based schemes

As the table shows, the public key size of our scheme is only slightly smaller than that of the
cyclicUOV scheme of [PB10]. However, due to the good statistical properties of our public key, we
believe our scheme to be more secure.

9 Conclusion

In this paper we proposed a multivariate signature scheme whose public key is mainly generated
by a linear recurring sequence (LRS). By doing so, we were able to reduce the public key size of the
standard UOV scheme by up to 86 %. Moreover, the so obtained public keys have good statistical
properties, which makes it difficult to develop dedicated attacks against our scheme. We think
that our approach is an interesting idea on reducing the key size of multivariate schemes. Points
of research we want to address in the future include

– Exhaustive security analysis (including decomposition attacks).
– Extension of the strategy to other underlying fields.

While in this paper we have concentrated on an underlying field of 256 elements, we are
planning to use our strategy for other fields (especially GF(16) or GF(31)). Here, the main
points of our construction stay the same, while one has to study the invertibility of the matrix
A and the security of the scheme. Furthermore, we are going to study the impact of the idea
mentioned in Subsection 6.2.

– Use of pseudo-random number generators (PRNG’s) for generating the public key.
By the use of PRNG’s (for example AES in the OFB mode) we will get public keys with even
better statistical properties. Moreover, we hope that this will bring us closer to the ”provably
secure” UOV scheme of [BP10].
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