One-Pass HMQV and Asymmetric
Key-Wrapping

Shai Halevi and Hugo Krawczyk

IBM Research

Abstract. Consider the task of asymmetric key-wrapping, where a key-
management server encrypts a cryptographic key under the public key of
a client. When used in storage and access-control systems, it is often the
case that the server has no knowledge about the client (beyond its public
key) and no means of coordinating with it. For example, a wrapped
key used to encrypt a backup tape may be needed many years after
wrapping, when the server is no longer available, key-wrapping standards
have changed, and even the security requirements of the client might have
changed. Hence we need a flexible mechanism that seamlessly supports
different options depending on what the original server was using and
the current standards and requirements.

We show that one-pass HMQV (which we call HOMQV) is a perfect fit
for this type of applications in terms of security, efficiency and flexibility.
It offers server authentication if the server has its own public key, and
degenerates down to the standardized DHIES encryption scheme if the
server does not have a public key. The performance difference between the
unauthenticated DHIES and the authenticated HOMQV is very minimal
(essentially for free for the server and only 1/2 exponentiation for the
client). We provide a formal analysis of the protocol’s security showing
many desirable properties such as sender’s forward-secrecy and resilience
to compromise of ephemeral data. When adding a DEM part (as needed
for key-wrapping) it yields a secure signcryption scheme (equivalently a
UC-secure messaging protocol).

The combination of security, flexibility, and efficiency, makes HOMQV a
very desirable protocol for asymmetric key wrapping, one that we believe
should be incorporated into implementations and standards.

1 Introduction

Key management is an essential component of secure systems, it is used in many
systems both for confidentiality and for enforcing access-control policies. In this
work we deal with settings where we have a key-server that needs to securely send
a symmetric key to a client. The symmetric key could be a freshly generated one
(to be used later by Alice) or it could be a pre-set key (e.g., to let Alice decrypt
a previously encrypted file). We call the server Bob (or the sender) and call the
client Alice (or the receiver). We specifically focus on settings where the protocol
must be one-way, with the server sending a single message to the client.

For example, consider a typical tape-encryption setting, where backup tapes
are encrypted and then stored for future need by a potential client Alice who may
need them one day. To enable decryption, Bob “wraps” the encryption key under
some public key and stores the wrapped key to the tape itself. Note that Alice
is off-line (or perhaps does not even exist) when the encryption key is wrapped,
so no interaction can take place. Later, when Alice comes to need the backup
tape, she asks her key-management module for the private key corresponding
to the public key used by Bob, and then she can unwrap the decryption key
and decrypt the backup tape. Such one-way communication can be viewed as
one-pass key-exchange protocols with implicit client authentication (and in some
cases also server authentication). In the case that a pre-set key is transmitted
(as in the tape encryption example), the operation is referred to as key wrapping.

Key-wrapping (and key-management in general) is a topic of intensive ac-
tivity in the industry, with many competing services and many standardization
efforts (e.g., PKCS #11, FIPS SP 800-57 and 800-130, IETF KeyProv, OASIS
KMIP, IEEE 1619.3, IEEE P1363, etc.) Symmetric key-wrapping was addressed
in the work of Rogaway and Shrimpton [16] and later Gennaro and Halevi [8],
with a focus on using deterministic encryption for this purpose. In this work,
however, we focus on asymmetric key-wrapping, where Bob uses Alice’s public
key to wrap the symmetric key. In this context the added complexity of using
randomization is insignificant in comparison to the public-key operations that
are needed. Hence we just use standard encryption, and view key-wrapping as a
target application rather than a separate security goal.

Many real-world implementations of asymmetric key wrapping are based on
RSA, but the increase in the use of elliptic-curve cryptosystems suggest that they
will be useful for key wrapping as well. The leading mechanisms in this respect is
the “elliptic-curve integrated encryption scheme” (ECIES) [12], which is based on
the “Diffie-Hellman integrated encryption scheme” (DHIES) encryption scheme
of Abdalla et al. [1]. DHIES is an Elgamal-based encryption scheme, proven CCA
secure under the “hashed Diffie-Hellman” assumption. (Alternatively, under the
Gap Diffie-Hellman assumption in the random-oracle model.)

On a high level, in DHIES Alice has a secret exponent a, and the corre-
sponding public key is the group element A = g% (where g is a generator in a
prime-order group). To encrypt a message M, Bob chooses a random exponent y
and computes Y = ¢¥, then computes the Diffie-Hellman value ¢ = AY and uses
K = H(0,Y) as a key in a symmetric-key authenticated-encryption scheme to
encrypt M. Note that DHIES is an instance of the KEM/DEM paradigm [17].

When used for key-wrapping (i.e., when M is a cryptographic key), this
encryption scheme can also be viewed as a key-exchange protocol where only
the client is implicitly authenticated. However, there are applications where the
server too should be authenticated. For example, consider the tape-backup ap-
plication from above where Alice is a third party that provides backup/restore
services. When Alice gets a tape with a wrapped key on it, she wants to consult
the policy of the original server Bob to know if decryption is permitted. So in
particular Alice needs to be able to authenticate the source of the wrapped key.

A natural solution is for Bob to sign the ciphertext (e.g. with ECDSA signa-
ture if we want an elliptic-curve scheme), but this solution has some drawbacks.
For one thing, it adds non-trivial complexity. We need to implement the signa-
ture scheme and use additional bandwidth to communicate the signatures. Also,
in some cases this does not even provide adequate authentication, since it allows
an adversary Charlie to strip the original Bob signature from the wrapped key
and replace it with a signature by Charlie. (This may enable Charlie to later ask
Alice to unwrap the key and decrypt the tape for him.)

Instead, one would like a solution that (a) ensures that the identity of Bob
cannot be stripped from the key, and (b) remains as close as possible to the
base DHIES scheme. A good candidate to achieve this goal has been suggested
in [13], namely the one-pass HMQV protocol. However, while a main appeal
of HMQYV is its provable security, the one-pass variant of HMQV has not been
proven. Here we give a full specification of a one-pass HMQV protocol, with a full
proof of security. We call this protocol HOMQV (for Hashed-One-pass-MQV,
pronounced “Home-Queue-Vee”). We note that HOMQV is different than the
one-pass HMQV protocol in [13, Sec. 9] in that HOMQV hashes the session
identifier while deriving the session key (as suggested in [14]).

Roughly speaking, the only difference between HOMQV and (the KEM part
of) DHIES is the way the Diffie-Hellman value o is computed. Whereas in DHIES
we set 0 = AY = Y, here Bob also has public and secret keys (B = g°) so we use
them in the computation. Roughly, we compute a half-size exponent e = H(Y)
and then set 0 = (Y B®)* = AY** and K = H(0,Y). (In the actual protocol
we also add the identities of Alice and Bob inside the hashing and use cofactor
exponentiation, see Table 1 for an overview and Section 3 for a precise definition
of HOMQV.)

We also show that slight variations of the same base protocol can handle
a large variety of scenarios in the key transmission and key wrapping settings.
For example, a server Bob that does not have a public key can just use the
dummy public key B = 1, and then the protocol reverts to (the KEM part
of) the underlying DHIES. Other variants of the protocol offer increased se-
curity at a minimal cost in computation and communication. In all cases the
schemes provide forward secrecy for the server, namely the compromise of the
sender’s private key (if any) does not expose past transmissions.! This property
has particular importance for our setting, since in key-management and storage
applications some of the keys may have a very long lifetime. In some variants
this property is achieved in a weak sense, namely, as long as the attacker was
passive during these transmissions, but we also show inexpensive variants that
provide full sender forward secrecy, even against active attacks.

Remarkably, all the variants except the (degenerate) case of DHIES enjoy the
security property that leakage of the ephemeral Diffie-Hellman exponent y does
not compromise security; the function of this exponent is to provide forward-
secrecy capabilities. We call this property y-security. The significance of this

1 On the other hand, it is easy to see that one-pass protocols inherently cannot offer
PF'S for the receiver.

KEM modes|B sends to A| Key-derivation |impl.auth.|y-secure|Sender FS|#exp (s/r)
DHIES KEM Y SK=K A only No No 2/1
HOMQV Y SK =K B, A Yes weak 2/1.5
HOMQV Y, SK = PRFg(0)] B,A | Yes full 2/1.5
+ key-conf. | MACk, (1) | Ko = PRFk(1)
ENC. modes|B sends to A| Key-derivation DEM security |#exp (s/r)
DHIES Y,C,T |K.= PRFx(1)|C = ENcg, (M)| CCA 2/1
K. = PRFx(2)|T = MACk, (C)
HOMQV Y,C, T |K,=PRFk(1)|C =ENCk, (M) [signcryption| 2/1.5
+ DEM K. = PRFx(2)|T = MACk, (C)
Table 1. One-pass modes. In all Y = ¢¥ o = (YB)® = A¥*" e = H(A,Y),

K = H(o, B, A, Y), B, A represent the identities of sender and receiver. In DHIES we
use B =1,b=0. Last column counts number of exponentiations per sender/receiver.

property is that it allows pre-computing (y, g¥) pairs, even if they are stored in
less secure media.

We have three variants for the basic setting of a one-pass KEM-only proto-
col: From the “degenerate” DHIES (that offers only CCA security), via plain
HOMQV (that offers server-authentication and server-PFS against passive at-
tacks), to a variant with key-confirmation that adds server-PFS also against
active attacks. When adding the DEM part, we get two variants of encryption
(or key-wrapping): Without server authentication we only get the CCA-secure
DHIES encryption, and with server authentication we get a secure signcryption
scheme (equivalently, UC-secure replayable message transmission). These vari-
ants (with a slight simplification) are summarized in Table 1, detailed description
are found in Sections 3, 4, and 5.4.

We note that the precise connection between key-exchange and signcryption
was established in the work of Gorantla et al. [10], and a comprehensive theory
of KEM/DEM for signcryptions was developed by Dent [5, 7, 6]. See Section 4.

As all these schemes are one-pass protocols, they are all inherently open to
replay attacks. This can be addressed by having the sender and receiver maintain
synchronized state via counters or timestamps, or having the receiver store all
past communication (or a combination of both). Alternatively, in Section 6 we
show that HOMQV extends smoothly to the interactive setting, where we can
prevent replay and offer full PFS for both sides

In this paper we analyze all these variants and prove their security in the
Canetti-Krawczyk model of key exchange [3] (specialized to the case of one-
pass protocols). We prove both “basic security” of these variants as well as
the additional properties of forward security and y-security (i.e., resilience to
leakage of the ephemeral Diffie-Hellman exponents). Importantly, using these
additional features we can appeal to the connections proven in [10] to conclude
that HOMQV+DEM is a secure signcryption scheme (which is also a secure UC
realization of the functionality of replayable message transmission, see [9]).

We highlight some advantages of HOMQV that make it attractive for ap-
plications such as key-wrapping for storage. One advantage is its very minimal

overhead as compared to DHIES. For the sender Bob there is essentially no added
cost, the only change is that it computes the Diffie-Hellman value as o = AY*b¢
rather than o = AY. This only entails an additional hashing (to compute e) and
an addition and multiplication modulo the group order, but no additional expo-
nentiations. For the receiver there is an additional 1/2 exponentiation, since it
now computes the Diffie-Hellman value as o = (Y B®)® rather than o = Y*. We
mention that as described in Table 1, HOMQV and DHIES require a check that
the elements belong to a prime-order sub-group (which can be as costly as one
full exponentiation). In Section 3 we show how this check can often be avoided.

2 Security Model for One-Pass Key-Exchange Protocols

We specialize the Canetti-Krawczyk (CK) security model [3] to one-pass key-
exchange protocols. A key-exchange (KE) protocol is run in a network of con-
nected parties, where each party can be activated to run an instance of the
protocol called a session. During the session, a party creates and maintains a
session state, may send and receive messages, and eventually completes the ses-
sion by outputting a session key and erasing the session state. A session may also
be aborted without generating a session key. A KE session is associated with its
holder or owner (the party at which the session exists), a peer (the party with
which the session key is intended to be established), and a session identifier. In
one-pass protocols a peer to a session is either a sender or a receiver.

For simplicity we assume below that a session is always activated with the
name of the intended peer (this is called “pre-specified peer” in [4]) and the
session identifier is a triple (B,A,Y) where B is the sender identity, A the
receiver identity, and Y is the message sent in the protocol. Two sessions with
the same identifier are called matching. Matching sessions play a fundamental
role in the definition of security.

Each party owns a long-term pair of private and public keys, and other parties
can verify the binding between an identity and a public key (e.g., using a CA or
manually, the exact mechanism is outside the scope of this paper). A corrupted
party can choose at any point to “register” any public key of its choice, including
public keys equal or related to keys of other parties in the system (and there is no
requirement that it knows the corresponding private key). In this paper, a public
key will always be a group element, and the private key its secret exponent.

Notations and identities. A “hat” on top of a capital letter denotes an
identity; without the hat the letter denotes the public key of that party, and the
same letter in lower case denotes a private key. For example, Alice has identity
A and a public key A = g% with a as the private key.?

2 This notation assumes that there is a unique public key associated with each identity.
In the real world, where a party may have more than one public key, the symbol A
is assumed to include an indication of a unique public key.

Attacker Model. The attacker, denoted M, is an active “Man-in-the-Middle”
adversary with full control of the communication links between parties. M can
read, modify, inject, delete, or delay messages at will. (Formally, it is M to whom
parties hand their outgoing messages for delivery.) M also schedules all session
activations and session-message delivery. In addition, in order to model potential
disclosure of secret information, the attacker is allowed access to secret informa-
tion via session exposure attacks of three types: state-reveal queries, session-key
queries, and party corruption. A state-reveal query is directed at a single session
while still incomplete (i.e., before outputting the session key) and its result is
that the attacker learns the session state for that particular session (such as the
secret exponent of an ephemeral public DH value). A session-key query can be
performed against a single session after completion and the result is that the
attacker learns the corresponding session-key (this models leakage on the ses-
sion key either via usage of the key by applications, cryptanalysis, break-ins,
known-key attacks, etc.). Finally, party corruption means that the attacker learns
all information in the memory of that party (including the long-term private
key of the party as well all session states and session keys stored at the party);
in addition, from the moment a party is corrupted all its actions are controlled
by the attacker. Indeed, note that the knowledge of the private key allows the
attacker to impersonate the party at will.

Sessions against which any one of the above attacks is performed (including
sessions compromised via party corruption) are called exposed. In addition, a
session is also exposed if the matching session has been exposed (since matching
sessions must output the same session key, the compromise of one inevitably
implies the compromise of the other).

Note on state-reveal queries. “State-reveal queries” in the CK model is
meant to capture the distinction between secrets whose exposure will derail se-
curity “forever” (such as long-term keys, or the ephemeral exponent in a DSA
signature) and secrets whose exposure only compromises the current session.
Data that can be accessed via such state-reveal queries is thought of as “less se-
cret”, its exposure only compromises the current session (and thus is can perhaps
be stored in less secure memory in a real implementation). Data not accessible
via state-reveal is assumed to get the same protection of long-term secrets, such
data is revealed to the adversary only upon full compromise of a party.

Basic security. The security of session keys generated in unexposed sessions
is captured via the inability of the attacker M to distinguish the session key of
a test session (chosen by M) from a random value. When M chooses the test
session, a random bit b is tossed and M gets either the real value of the session
key (if b = 1), or an unrelated random value (if b = 0). The attacker can continue
with the regular actions against the protocol also after the test session; at the
end of its run M outputs a guess b’ for the value of b. The attacker succeeds in
its distinguishing attack if (1) the test session is not exposed, and (2) it guessed
correctly, b = b’. The protocol satisfies the basic notion of security if feasible
attackers cannot succeed with probability significantly better than 1/2.

Definition 1 ([3]). A polynomial-time attacker with the above capabilities is
called a KE-attacker. A key-exchange protocol 7 is called secure if for all KE-
attackers M running against m it holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol
m under attacker M then they output the same key (except for a negligible
probability).

2. M succeeds (in its test-session distinguishing attack) with probability not
more that 1/2 plus a negligible fraction.

Sender’s forward secrecy. An important property that is not captured by
basic security is perfect forward secrecy (PFS) [15], namely the assurance that
a session key which is erased from memory cannot be learned by the attacker
even if the long-term key of that party is later exposed. This is captured for-
mally in [3] via the notion of session-key expiration (which represents the erasure
of a session key from memory). A key-exchange protocol is secure with PFS if
Definition 1 holds even when the attacker is allowed to corrupt a peer to the
test session after the test-session key expired at that peer. In the case of one-
pass protocols, forward secrecy cannot be provided in general (since exposing
the receiver’s private key clearly lets the attacker decrypt all incoming traffic),
but the sender can still enjoy forward secrecy. As we will see, the basic HOMQV
protocol provides sender’s forward secrecy against passive attackers, and adding
key-confirmation provides forward secrecy also against active attackers.
Replay attacks. A one-pass key-exchange protocol where parties do not main-
tain evolving state between sessions is always open to replay attacks, where the
attacker forces the establishment of the same session at a receiver by replaying
old incoming messages to that party. The model deals with this issue by defining
all instances of such replayed sessions to be matching. This means that all these
sessions have the same session key and also that for the attacker to be consid-
ered successful in attacking a session it should have not exposed any one of the
session copies.

3 The Basic HOMQV Protocol

On groups and supergroups. The protocol uses a cyclic group G of prime
order q generated by a given generator g. There is no particular requirement from
the cyclic group G = (g) except for its prime order. However, in cases where G
is a subgroup of another group G’ and testing membership in G’ is easier than
testing membership in G, we will exploit this property in the protocol. For this
we define f as the “cofactor” f = |G’|/|G|. For example, if g is an element of Z
of prime order ¢, then G’ is Z and f = (p—1)/q. If g is an element in an elliptic
curve group E then f = |E|/q. We always assume that f, ¢ are co-primes.

Using the cofactor, we describe a protocol where one only needs to verify
that the various elements are in G’ (an efficient test in the above two examples).
Note that it can be the case that f = 1. The property of the cofactor f that we
use is that X/ € G for any X € G'.

Hash functions. The protocol uses two hash functions (which are viewed as two
independent random oracles): one, denoted H, hashes strings into {0, 1,..., Va}
and is used to compute exponents of size |q|/2, the other, denoted H, hashes
into {0,1}* where k is the length of the output key K.

Protocol HOMQV. Let A, B be two different parties with keys A =
B = g°, respectively. To exchange a key with A, sender B checks that A € G’
(if not it aborts), then chooses random y € Zg, and sends ¥ = g¢¥ to /l B
computes the key as H(c, B, A,Y) where 0 = A Wteb) and ¢ = H(Y, A). O
incoming value Y and peer’s identity B A checks that Y and B’s publ ic key B
are in G’ (if not, it aborts) and then computes the session key as H(o”, B, A Y
where ¢/ = (Y B¢)f*%. Both parties compute the same session key since ¢ = ¢”,
and the session-id is the triple (B, A, Y).

S

Performance. For the sender, the protocol requires just two exponentiations
and a membership test in G’ (the latter has negligible cost for the typical Z,
and elliptic curve cases). The exponentiations are for computing Y = g¥ and for
computing o = Af(¥+¢b) (In the latter case we first set t = f-(y+eb) mod ord(G’)
and then o is set to A’. If ord(G’) is not much larger than ¢ — as in the case
of elliptic curves — then the cofactor exponentiation is essentially for free.) The
group element Y can be computed offline, even before knowing the identity of
the peer.

The cost for the receiver A is 1.5 on-line exponentiations: a half exponen-
tiation when computing (Y B€¢), and a full exponentiation for raising it to the
power fa. (As before, computing ¢ = fa mod ord(G") is essentially for free when
ord(G') & q.) Comparing it with the cost of the unauthenticated DHIES, we see
that authentication is for free for the sender, and only costs 1/2 exponentiation
for the receiver!

Note, in particular, that there are no hidden costs in the protocol such as
the need to test group elements for membership in the prime order subgroup G,
only inexpensive G’-membership tests are needed. Also in contrast to some other
protocols, HOMQV does not need the CA to checks that parties know the secret
key for the public key that they want to register, thus avoiding complex proof-
of-possession protocols.

A variant without the cofactor. In cases where ord(G’) > ¢ (as typically
happens when working over Z; with g|p — 1), using the cofactor as above result
in having to compute long multiplications in G’, which could be much more
expensive than exponentiations in the subgroup G. In these cases it may be
better to use a variant without cofactor, and instead directly verify that the
different elements are in the subgroup G: The sender B must verify that the
receiver’s public key A is in the subgroup G while the receiver A needs to test
Y B¢ € G (there is no need to check Y and B separately). We also remark
that verification of the receiver’s public key A by the sender is only needed to
get y-security; if we assume that the y value is never exposed then one can
prove security even without that verification step, see more discussion in the full
version [11].

3.1 Notes on Security

Session-state exposure. For the HOMQV protocol, one can readily see that
disclosure of both the Diffie-Hellman value o as well as of the exponent y from
the same session leads to the exposure of the value A’ = B, which suffices for
impersonating B to A and vice versa. So clearly, these two pieces of session-
specific data should not be stored together in less secure memory.

How about disclosing any one of these values but not the other? For reasons

similar to the above, if one discloses o at the receiver then an attacker can do the
following: chooses y, sends Y = ¢¥ to A purporting to be B (an honest player),
then it finds o at A and derives from it A® which as said allows to impersonate
A and B to each other. As for the secret exponent y, we show in Section 5.3 that
its disclosure does not even compromise the session in which it is used. To have
a negative effect, the attacker needs to find either the o value of that session or
the private key of the party that generated this exponent. This is an important
property of HOMQV, since it means that the pair (y,Y = ¢g¥) can be generated
in an off-line phase (even before knowing the identity of A) and stored for later
use. An exposure of such pair does not cause any real damage as long as the
long-term key is not disclosed.
Replay. Being a one-pass protocol, HOMQYV is obviously open to replay. This
can be prevented by including synchronized timestamps (or a shared increasing
counter). The timestamp or counter becomes part of the session-id together
with (B,A,Y) and hence included under H when computing the session key
K. Another option is to use an interactive protocol in which A sends to B a
nonce, which is then included in the computation of e. Note that the resulting
interactive protocol is weaker than HMQV (e.g., it does not provide receiver
PFS), but it is cheaper and prevents replay. See Section 6.

On Forward Secrecy. The protocol HOMQV as above provides forward se-
curity for the sender, namely, the guarantee that the disclosure of the private
key of the sender B does not expose past sessions created by B. However, an
active attacker can choose Y = ¢¥ and send it to a receiver fl, purporting to be
B. Later, if the attacker find B’s private key then it can compute the session.
Hence forward secrecy is only ensured against passive attackers. We can get full
sender’s forward secrecy by adding a key confirmation field in B’s message, see
Section 5.4. Receiver’s forward secrecy is impossible in one-pass key exchange,
since the receiver does not contribute any session-specific values.

KCI attacks. In a Key Compromise Impersonation attack (KCI), knowing the

private key of a party A allows the attacker to impersonate other parties to A.
This is obviously possible in HOMQV.

4 Using HOMQYV for Encryption and Key-Wrapping

On its own, HOMQYV is used to establish a new secret key between the client and
server. To get encryption or key-wrapping we need to add a “data encapsulation
module” (DEM), where the new key is used in a symmetric encryption mode

in order to encrypt (or wrap) the transmitted message/key. Specifically, we use
the DEM part of DHIES, where the new key from HOMQV is expanded into
encryption and authentication keys, which are then used in an Encrypt-then-
Authenticate mode to send the message.

Namely, after computing K = H(o, B, A,Y) we set K, = PRFy(1) and
K. = PRFk(2) (where 1,2 can be replaced by any two different fixed mes-
sages that are publicly determined by the protocol flow). Then to encrypt a
message M we compute C = ENCk_ (M) where ENC is a CPA-secure sym-
metric encryption scheme and then T = MACk, (C) where MAC is a secure
message-authentication code. The DEM part (C, T') — which is an authenticated
encryption of M under the shared key (K., K,) — is then added to the HOMQV
flow to make the composite ciphertext (Y,C,T).

Regarding security, if we use the “degenerate case” of HOMQV where the
public key B is set to 1 then we get exactly the DHIES encryption scheme,
which was proven CCA secure by Abdalla et al. [1]. When adding the DEM part
to the HOMQV scheme from Section 3 (with server authentication) we get a
signeryption scheme [18], whose security can be argued as follows:

Step 1: signcryption-KEM. Gorantla et al. proved in [10, Thm 3] that a one-
pass key-exchange protocol II which is secure in the Canetti-Krawczyk model
and offers sender forward secrecy, is also a signcryption-KEM scheme secure in
the sense of insider confidentiality and outsider unforgeability in the multi-user
setting. See [10] for the definitions of these notions of security. Roughly speaking
this means that CCA-security of the encryption part holds even against an at-
tacker that knows the sender’s private key, while unforgeability of the signature
holds only against an attacker that does not know the receiver’s private key.
Moreover, one can verify that the proof from [10] works even if the pro-
tocol IT offers sender forward secrecy only against passive attackers. (Roughly
speaking, this is because this property is only used with respect to the challenge
ciphertext in the KEM-CCA game, which is generated honestly according to
the signeryption algorithm.) Since we prove in Theorem 2 and Lemma 3 that
HOMQYV is secure in the Canetti-Krawczyk model and it offers sender forward
secrecy against passive attackers, it follows that it is also a signcryption-KEM
scheme secure in the sense of insider confidentiality and outsider unforgeability.?

Step 2: adding the DEM. A signcryption-KEM secure as above can be
transformed into regular signcryption (secure in the same sense) by adding an
authenticated-encryption DEM. Such results were proven by Dent [5] in slightly
different models, and the same proofs work for our case as well. Namely, we have:

Lemma 1. The combination of a signcryption KEM with insider confidentiality
and outsider unforgeability in the multi-user setting, together with an authenticated-
encryption DEM, yields a signcryption scheme with insider confidentiality and
outsider unforgeability in the multi-user setting.

3 Gorantla et al. already suggested using one-pass HMQV to get a secure signcryption
KEM, but did not prove security for the variant of one-pass HMQV that they used.

Proof. (sketch) The confidentiality part against insider attacks is identical to the
case of standard hybrid encryption. The integrity part against outsider attacks
follows roughly from these arguments: (i) An outside attacker cannot generate
a valid KEM for any symmetric key except those that were included in one
of the ciphertexts that the attacker obtained from its oracle, due to the KEM
integrity against outside attackers; (ii) The KEM confidentiality implies that
the keys included in the ciphertext from the oracle are indistinguishable from
random; and (iii) The integrity-of-ciphertext property of the DEM implies that
the attacker cannot generate new valid DEM ciphertexts under these pseudo-
random keys.

It therefore follows that augmenting HOMQV with DEM as above gives a
signcryption scheme secure in the sense of insider confidentiality and outsider
unforgeability in the multi-user setting. These arguments can be made formal
via a standard sequence-of-games proof. O

Gjosteen and Krakmo proved in [9] that a signeryption scheme secure as
above can be used in conjunction with PKI to realize a secure messaging function-
ality in the UC framework. (The messaging functionality is similar to Canetti’s
secure-message-transmission functionality from [2], except that signcryption does
not prevent replay.) We thus conclude that when used in conjunction with PKI,
the protocol HOMQV with the DEM part can UC-realize secure messaging.
This UC-secure-messaging, in turn, can be used to transport keys from server to
client, providing as much security as can be obtained from a one-pass protocol.
Why use HOMQYV for Key-Wrapping? The main advantage of HOMQV
over the underlying DHIES is server authentication: We let the client verify
that wrapped keys indeed arrive from the correct server without adding much
complexity or making any changes in the data path. Another advantage is
the “y-security” of HOMQV. Recall that HOMQV remains secure even if the
ephemeral secret exponent y is exposed, as long as the long-term secret key of
B is protected. On the other hand, DHIES is clearly broken in this case. This
provides a significant line of defense in settings where exposure of y is a real
concern, such as when pairs (y,Y = ¢¥) are precomputed and stored in less
secure memory.

At the same time, the fact that HOMQV degenerates back to DHIES by using
server public key B = 1 means that a HOMQV client can be used to unwrap
legacy DHIES-wrapped keys with very little added complexity (if at all). In this
case of course we would have to fall back to out-of-band authentication, but
otherwise the legacy support is nearly transparent.

5 Security Analysis of HOMQV

5.1 XCR Signatures and Gap-DH

XCR signatures are challenge-response signature where only the challenger can
verify the signature. Specifically, the signer B has a private key b €; Z, and a
public key B = ¢g°. On input a message m and “challenge” X = g%, the signature

of B on m and challenge X is a pair (Y = ¢¥, o) where y is chosen by B at random
in Z,; and o is defined as X F(y+Hm)b) The challenger, who knows x, verifies
the signature by checking that Y is in G’ and that ¢ = (Y BH(Y:m) /=,
Security of XCR signatures. XCR is called secure if it is secure under a
chosen-message (and chosen-challenge) attack in the following game between a
forger F and a signing oracle B. The input to F is B’s public key B € G
and a challenge Xy €z G. F provides queries (X, m) to B which responds with
a valid XCR signature (Y, o). After polynomially many adaptive queries the
forger wins if it outputs a valid signature (Y, 09) on any message mg using the
(input) challenge Xg. The only requirement is “strong” existential unforgeability,
namely, that either B was not queried for a signature on message mg or, if it
was queried on mg it output a signature different than the pair (Yp, o).

Theorem 1 ([13]). Under the CDH assumption, XCR signatures are secure in
the random oracle model.

The Gap-DH Assumption. The security of XCR is proved under the Compu-
tational Diffie-Hellman (CDH) Assumption over G, namely, given U,V €, G = (g)
it is infeasible to compute DH,(U, V) (the Diffie-Hellman function, with gener-
ator g, applied to U and V). To prove HOMQV we need the stronger Gap-DH
assumption. We say that a decision algorithm O is a Decisional Diffie-Hellman
(DDH) Oracle for a group G and generator g if on input a triple (U, V, W), for
U,V € G, oracle O outputs 1 if and only if W = DH,(U, V). We say that G sat-
isfies the Gap-Diffie-Hellman (GDH) assumption if no feasible algorithm exists to
solve the CDH problem, even when the algorithm is provided with a DDH-oracle
for G.

5.2 Proof of Basic Security

Theorem 2. In the random oracle model and under the Gap-DH assumption,
HOMQYV is a secure one-pass key-exchange protocol as per Definition 1.

Proof. We need to prove that (1) Any two matching sessions with honest peers
output the same session key; and (2) A KE-attacker has negligible advantage in
winning a test-session experiment. Since sessions are matching if and only if they
have the same session id (B, A,Y), condition (1) follows from the fact that these
three values determine a unique value for o and hence for the session key. The
proof of (2) works by reduction to the security of XCR signatures, assuming a
decisional Diffie-Hellman oracle as in the Gap-DH assumption. That is, given an
assumed KE-attacker M against HOMQV and a decisional DH oracle we build
a (0-message) forger F against XCR.

Let N be such that the adversary M has non-negligible advantage in attack-
ing the KE-security of HOMQV when used with N honest parties. F gets as
input a public key B and challenge X, (both random elements in G). It starts
by simulating a run of HOMQYV with N honest parties, and selects two different
parties at random among these IV honest parties which we denote by A and B;

this is F’s guess for the receiver and sender, respectively, of the test session to be
chosen by M. Using its inputs B and Xy, F sets A’s public key to A = X and
B’s public key to B (note that F does not know the private keys corresponding
to these public keys). For all other honest parties, F chooses their private and
public keys. (Corrupted parties have their PKs chosen by the attacker M who
also manages all their actions.) M controls all activations, traffic and delivery
of messages. Invocations of the random oracle (H and H) are usually answered
by F by choosing a random response from the appropriate range, except as de-
scribed in the special cases below. (If the same query is made more then once,
then it gets the same answer every time.) In any case in which a corruption
query is issued by M against A or B, or if M chooses a test session with peers
other than A as receiver and B as 5ender F aborts its run (in both cases F
failed to guess correctly the peers to the test session).

Any query (activation) of an honest party other than A or B is answered by
F just as in the protocol, which F can do since it knows the secret keys of all
these honest parties. Similarly, corruption of honest parties other than Aor B
are answered by F using the secret keys that it knows. It is left to show how to
simulate queries to A and B.

Send-query (potentlally followed later by a session-key reveal query). Assume
that the sender is B, the case where the sender is A is handled in exactly the
symmetric way. Denote the session’s receiver by C and its public key by C. If
C =BofifC ¢ G’ then F aborts the session. Otherwise F chooses y at random
and sets Y = ¢g¥ as the outgoing value to be sent.

If the receiver C' is an honest party other than Athen F computes the session
key using C’s secret key (as done in the protocol) and uses that value to answer
secret-key reveal query against this session of B (if any). Otherwise (i.e., C'is
either A or a corrupted party), F chooses at random K e {0, l}k and uses
this K for future secret-key reveal queries against this session of B. From this
point on, F will use its DDH oracle to check for each new H-query of the form
(Q, B,C, Y') (for some @), whether Q = DHg(YBH(Y’C), Cf). If so, F responds
to that random-oracle query with the value K.

Note that due to the hashing of the session id in the computation of a session
key, the value K is independent of any other session key except for the possible
matching session held in this case by a corrupted party or A. Thus, F’s responses
to other session-key queries (or corruption querles) are independent of K except
if C = A in which case the matching session at A is set to K as well.*
Receive-query (potentially followed later by a session-key reveal query). As-
sume that the receiver is A, the case where the receiver is B is handled in exactly
the symmetric way. Denote the session’s sender by C and its public key by C,
and denote the incoming value in this session by Z.

If C = A orif C or Z are not in G’ then F aborts the session. If (C, Z)
was used before to activate A as receiver (because replay is possible), F sets the
session key to its previous value. If C' is an honest party other than B, and Z was

4 Without hashing the session id, a UKS attack is possible where different, non-
matching, sessions have the same key.

previously generated by an instance of this honest ' in the role of a sender (so
F knows z s.t. Z = ¢g#), then F computes the session key using this z together
with C’s secret key as done in the protocol, and uses that session key to answer
secret-key reveal query against this session of A (if any).

Otherwise, we know that C' is either B or a corrupted party, or C is honest
but Z was never generated by an instance of C in the role of a sender. Then for
each H-query of the form (@, C, A, Z) (for some Q) ever issued by M, F uses
its DDH oracle to check whether Q = DH,((ZCH(Z4)f A). If such @ is found
then F sets the session key to K = H(Q,C’,A,Z). Else, if C = B and Z was
indeed sent by a simulated session of B then F sets the session key to be the
same value K that it chose when processing that previous Send query at B. Else
F sets the session key K as a new random /¢-bit string. Thereafter, each time
a session key reveal query is performed at a session (C’, /1, Z), F responds with
K. (As said, there may be more than one because of replay.) From now on, F
uses its DDH oracle to check for any H-query of the form (Q, C, A, Z) (for any
Q) whether Q = DH,((ZCH(Z4)f A) and if so it answers that query with K.

Test session. In any case where the test session is chosen with peers other than
A as receiver and B as sender, F aborts its run. When the test session is chosen
with A as receiver and B as sender, F returns to M with probability 1/2 the
same answer K that it would have returned in a session-key reveal query (say,
against the session in B), and with probability 1/2 F returns just an independent
random value K.

As long as M does not query H (o, B, A, Y) with the values o, Y correspond-
ing to the test session, it has only probability 1/2 to answer correctly. This is
because no session (B, fl, Y) was compromised and all other sessions have keys
that are independent of K (since they were generated via H calls with different
inputs). Therefore both K and K’ are random values independent of M’s view.
By assumption M succeeds with non-negligible advantage, thus implying that
M computes the correct o with non-negligible probability.

Finally, whenever F guesses correctly the peers to the test session and M
successfully generates the o value corresponding to the test session (F identifies
it via the decisional oracle), F stops its run and outputs the pair (Y, o) where
Y is the test session’s outgoing value and o = AVTe with e = H(Y, /1) But this
pair (Y, o) is a valid XCR signature of B on message A and challenge A = X;
since F has never queried B for any signature, F wins the forgery game. Since
this happens with non-negligible probability, we obtain a contradiction to the
security of XCR signatures, thus proving the theorem. a

Note regarding the Gap-DH queries. A valid query to a decisional oracle
is one where the two inputs are elements of GG. In the above proof, this is indeed

the case for the Q = L DH (YBH(YC) Cf) query since Y, B and C7 are all in G
(Y by F’s choice, B as an input to F, and C7 since F checks that C € G’).

The same is the case for the query @ < DHg((ZCH(Z>A))f, A) since both Z and

C' are checked to be in G’ thus the value (ZCH(Z’A))f is necessarily in G. Note
that if the cofactor f is not used in the protocol then the sender needs to check

explicitly that the receiver’s public key C is in G (i.e., an element of G’ of order
q) and the receiver needs to check that the value ZC*(%4) is in G.

Beyond basic security. Below we show that HOMQV is strongly resilient
to the disclosure of ephemeral DH exponents and also that it provides sender’s
forward secrecy in case of the disclosure of the private key of a party.

5.3 Resilience of HOMQYV to Disclosure of Ephemeral Exponents

We prove that HOMQV has maximal resilience to the leakage of the ephemeral
DH exponents y used by a sender to produce outgoing DH values Y = g¥ (we
referred to this property as y-security). Indeed knowledge of these y’s by an
attacker (even ahead of their use) does not even compromise the security of the
sessions where they are used, except of course if the attacker also learns the
private key of the sender. The practical meaning is that it is as safe as possible
to compute pairs (y,Y = ¢¥) offline and store them for later use even if this
storage is less protected than the more sensitive long-term private key.

Lemma 2. Protocol HOMQV remains secure even when making the ephemeral
DH exponents y available to the attacker via state reveal queries. Moreover, even
sessions for which y is known remain secure (formally, the attacker is allowed
to choose a test session for which it knows y).

Proof. We show an even stronger property: Let B be an honest party and assume
that M gets to see all pairs {(y:,Y; = ¢¥')} to be used by B for all its sessions
at the onset of the protocol run. We claim that all of B’s unexposed sessions
(where learning the y; exponent is not considered exposure) are still secure. In
other words, even if the test session chosen by M is one of these outgoing sessions
of B (or one of the matching sessions at the peer) the attacker cannot win the
distinguishing game with non-negligible advantage. The proof is essentially the
same as the one for Theorem 2; all we need to observe is that in the simulation in
that proof the forger F chooses (and hence knows) all exponents y corresponding
to outgoing DH values Y at B. Hence, F can provide these values to M, even
before they are used.

For this, the description of F when simulating a Send query to A or B needs
to be slightly changed. Specifically, it needs to use its DDH oracle to test all
previous query to H, just as it is done for a Receive query. This is needed here
since M, knowing y from the start, could have made a query that depends on
this value even before it was used by B. a

5.4 Sender’s Forward Secrecy

We show that HOMQV ensures sender’s forward secrecy against passive attack-
ers. Specifically, we show that the exposure of the private key of a party does not
compromise any of the past sessions where that party acted as sender. More-
over, this is the case even for sessions established after the disclosure of the
private key, provided that the attacker does not control the session’s Y or knows

its exponent y. This property, however, does not guarantee forward secrecy for
sessions where the attacker actively chose the value Y prior to the private key
exposure. For example, an attacker can choose y, set Y = ¢g¥, and activate party
A as receiver with incoming Y and sender’s identity B. Later, if the attacker
finds B’s private key, it can compute the value of the session key generated by
A using Y. In other words, the protocol provides weak forward secrecy against
passive attackers, but not full PFS against active attacks. Fortunately, we will
see below that one can slightly change HOMQV by adding a (key confirmation)
field to the message from B to A and then achieve full sender’s forward secrecy.

Lemma 3. HOMQYV enjoys sender’s forward secrecy against passive attackers.

Proof. (sketch) Let B be an honest party and assume that at some point M
learns B’s private key b. We claim that even in this case M cannot win the
test session experiment for any session in which B acted as sender provided that
the outgoing value Y for the session was indeed generated by B and that the
session was not exposed via a session-key query or via a state-reveal query. We
informally outline the proof of this property.

For contradiction we assume an attacker M that wins the test-session ex-
periment with non-negligible advantage in a session as above after learning the
sender’s private key. We use M to build an algorithm S that solves CDH given a
decisional oracle as in the Gap-DH setting. Let X,Y € G be an instance of the
CDH problem. § will run a simulation similar to the one F runs in the proof of
Theorem 2; in particular, it will try to guess the peers to the test session (call B
the guess for sender and A the guess for receiver) as well as which of the sessions
between B and A will be chosen as the test. S chooses public keys for all honest
parties including B but excluding A. For A it sets the public key to X. The rest
of the simulation is similar except that B’s private key is known (chosen by S)
so B is treated as any other uncorrupted party. The simulation of A for whom
the private key is unknown is same as in the proof of Theorem 2 (in particular,
it uses the decisional oracles). When the guessed test session is activated at B,
S will use the value Y from the CDH input as the outgoing value from B. When
M corrupts B, S provides it with B’s private key b which & knows. As before,
to win the test experiment M needs to be able to compute with non-negligible
probability the value o = (Y B®)* which S learns from the H-queries. From o, S
computes Z = Y (where A = g%) by setting Z = 0/A. Since Z = DH,(X,Y),
S solved the CDH challenge contradicting the Gap-DH assumption. ad

Full Sender’s Forward Secrecy As said, HOMQV does not achieve forward
secrecy for sessions activated at a receiver A where the incoming value Y was
chosen by the attacker M. To fix this we need to assure that A will not accept an
incoming Y that has not been generated by the purported sender. For this, add
to the protocol’s message key confirmation field. First, we define a key derivation
step that from the key K, as defined in HOMQYV, derives two keys K*, K,. The
former is output as the session key while K, is used as a key to a MAC functlon
The key confirmation field (included in the message sent from B to A) is a

tag MACk, (1) (where 1 can be replaced by any fixed message that is publicly
determined by the protocol flows). It is not hard to see that in this way a session
at a honest receiver will only be established if the MAC was successful hence
proving that Y was generated by the claimed sender. (Formally, one shows that
if a MAC verification succeeds for a value not generated by the claimed sender
then the security of the original HOMQYV protocol is broken, or more specifically,
that a successful XCR forgery occurs.) We have:

Lemma 4. The modified HOMQV protocol with B’s key confirmation provides
full sender’s forward secrecy (against active attacks).

6 Extensions in the Interactive Setting

In settings where interaction between server and client is possible, the HOMQV
protocol smoothly “extends up” to provide better security at a very low cost.
Replay attacks can be prevented simply by having A send a nonce to B in the
first flow, and then incorporate that nonce in the final hash calculation, setting
K = H(U,é,A,Y, n) (with n the nonce sent by /1) This simple variant does
not offer receiver forward secrecy or protection against KCI attacks, but it does
prevent replay attacks without incurring any additional computational cost. Note
also that by making the nonce n default to null in an implementation of this
variant, we get “transparent” support also for the non-interactive HOMQV.

To get also receiver forward secrecy and protection against KCI attacks, we
can move up to two- or three-pass HMQV, where A sends X = g to B and
o is computed as ¢ = (XA wtet) — (ype)fletda) — gf(ztda)(yted) ith
d = H(X,B) and e = H(Y, A). The price we pay for this added security over
the previous variant is another 1/2 exponentiation for the sender (to compute
(X A%)) and another full exponentiation for the receiver (to compute X = ¢®).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Topics in Cryptology - CT-RSA ’01. Lecture Notes
in Computer Science, vol. 2020, pp. 143-158. Springer (2001)

2. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science -
FOCS’01. pp. 136-145. IEEE (2001)

3. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Advances in Cryptology - EUROCRYPT’01. Lecture
Notes in Computer Science, vol. 2045, pp. 453-474. Springer (2001)

4. Canetti, R., Krawczyk, H.: Security analysis of ike’s signature-based key-exchange
protocol. In: Advances in Cryptology - CRYPTO’02. Lecture Notes in Computer
Science, vol. 2442, pp. 143-161 (2002)

5. Dent, A.W.: Hybrid cryptography. Cryptology ePrint Archive, Report 2004/210
(2004), http://eprint.iacr.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

Dent, A.W.: Hybrid signcryption schemes with insider security. In: Information
Security and Privacy - ACISP’05. Lecture Notes in Computer Science, vol. 3574,
pp. 253—-266. Springer (2005)

Dent, A.W.: Hybrid signcryption schemes with outsider security. In: Information
Security - ISC’05. Lecture Notes in Computer Science, vol. 3650, pp. 203-217.
Springer (2005)

Gennaro, R., Halevi, S.: More on key wrapping. In: Selected Areas in Cryptography
- SAC’09. Lecture Notes in Computer Science, vol. 5867, pp. 53-70. Springer (2009)
Gjosteen, K., Krakmo, L.: Universally composable signcryption. In: Lopez, J.,
Samarati, P., Ferrer, J. (eds.) Public Key Infrastructure. Lecture Notes in Com-
puter Science, vol. 4582, pp. 346-353. Springer (2007)

Gorantla, M., Boyd, C., Gonzlez Nieto, J.: On the connection between signcryption
and one-pass key establishment. In: Galbraith, S. (ed.) Cryptography and Coding,
11th IMA International Conference. Lecture Notes in Computer Science, vol. 4887,
pp. 277-301. Springer (2007)

Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. Cryp-
tology ePrint Archive, Report 2010/638 (2010), http://eprint.iacr.org/

IEEE 1363a-2004: IEEE standard specifications for public-key cryptography -
amendment 1: Additional techniques

Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In: Ad-
vances in Cryptology - CRYPTO’05. Lecture Notes in Computer Science, vol. 3621,
pp. 546-566. Springer (2005)

Menezes, A.: Another look at HMQV. http://eprint.iacr.org/2005/205 (2005)
Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1996)

Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Advances in Cryptology - EUROCRYPT’06. Lecture Notes in Computer
Science, vol. 4004, pp. 373-390. Springer (2006)

Shoup, V.: ISO 18033-2: An emerging standard for public-key encryption. Available
at http://shoup.net/iso/

Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
& cost(signature) + cost(encryption). In: Advances in Cryptology - CRYPTO’97.
Lecture Notes in Computer Science, vol. 1294, pp. 165-179. Springer (1997)

