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Abstract. In ACM CCS 2007, Canetti and Hohenberger left an inter-
esting open problem of how to construct a chosen-ciphertext secure proxy
re-encryption (PRE) scheme without bilinear maps. This is a rather in-
teresting problem and has attracted great interest in recent years. In
PKC 2010, Matsuda, Nishimaki and Tanaka introduced a novel prim-
itive named re-applicable lossy trapdoor function, and then used it to
construct a PRE scheme without bilinear maps. Their scheme is claimed
to be chosen-ciphertext secure in the standard model. In this paper, we
make a careful observation on their PRE scheme, and indicate that their
scheme does not satisfy chosen-ciphertext security. The purpose of this
paper is to clarify the fact that, it is still an open problem to come up
with a chosen-ciphertext secure PRE scheme without bilinear maps in
the standard model.

Keywords: bilinear map, proxy re-encryption, chosen-ciphertext secu-
rity, standard model.

1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss [3] in Eu-
rocrypt’98, allows a semi-trust proxy to translate a ciphertext intended for Alice
into another ciphertext intended for Bob. The proxy, however, can not learn
anything about the underlying messages. According to the direction of trans-
formation, PRE can be categorized into bidirectional PRE, in which the proxy
can transform ciphertexts from Alice to Bob and vice versa, and unidirectional
PRE, in which the proxy cannot transform ciphertexts in the opposite direction.
PRE can also be categorized into multi-hop PRE, in which the ciphertexts can
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be transformed from Alice to Bob and then to Charlie and so on, and single-hop
PRE, in which the ciphertexts can only be transformed once.

In their seminal paper, Blaze et al. [3] proposed the first bidirectional PRE
scheme. Ateniese et al. [1, 2] presented unidirectional PRE schemes from bilin-
ear maps. All of these schemes are only secure against chosen-plaintext attacks
(CPA). However, applications often require security against chosen-ciphertext
attacks (CCA).

To fill this gap, Canetti and Hohenberger [7] presented the first CCA-secure
bidirectional multi-hop PRE scheme in the standard model. Libert and Vergnaud
[13, 14] proposed a unidirectional single-hop PRE scheme, which is replayable
CCA-secure [8] in the standard model. Recently, Weng et al. [18] presented a
unidirectional single-hop PRE scheme, which is CCA-secure against adaptive
corruption of users in the standard model. These schemes rely on bilinear maps.
In spite of the recent advances in implementation technique, compared with
standard operations such as modular exponentiation in finite fields, the bilinear
map computation is still considered as a rather expensive operation. It would be
desirable for cryptosystems to be constructed without relying on pairings, espe-
cially in computation resource limited settings. Thus, in ACM CCS’07, Canetti
and Hohenberger [7] left an open problem of how to construct a CCA-secure
PRE scheme without bilinear maps.

Deng et al. [10,19] presented a bidirectional single-hop PRE scheme without
bilinear maps, and proved its CCA-security in the random oracle model. Shao et
al. [17] presented a unidirectional single-hop PRE scheme without bilinear maps
in the random oracle model, but their scheme was later identified a security
flaw in [9]. Sherman et al. [9] presented a CCA-secure unidirectional single-hop
PRE scheme without bilinear maps, again in the random oracle model. It is
well-known [5, 6] that a proof in the random oracle model can only serve as an
argument, which does not imply the security for real implementations. Thus, it
is more desirable to come up with a CCA-secure PRE scheme without bilinear
maps in the standard model.

In PKC 2010, Matsuda, Nishimaki and Tanaka made an important step and
tried to construct such a scheme. They first introduced a new cryptographic
primitive named re-applicable lossy trapdoor functions (re-applicable LTDFs),
which are specialized lossy trapdoor functions [4, 11, 12, 16], and then used this
primitive to construct a PRE scheme without bilinear maps. They claimed that
their scheme is CCA-secure in the standard model. However, in this paper, we
present a concrete attack, and indicate that their PRE scheme does not achieve
the CCA-security. However, we stress that Matsuda et al.’s work is still consid-
ered as an important step in this research area. Namely, due to their scheme, we
can figure out one of main difficulties for constructing CCA-secure PRE without
using bilinear maps, and this would enable us to further design novel schemes
which overcome the same problem.



2 Preliminaries

The Matsuda-Nishimaki-Tanaka PRE scheme involves the primitives of all-but-
one trapdoor function and re-applicable (n, k) lossy trapdoor functions (LTDFs).
Thus in this section, we shall review the definitions of these two primitives (for
more details, the reader is referred to [15] and [16]). We shall also review the
definition and security notion for bidirectional multi-hop PRE.

2.1 All-But-One Trapdoor Function

Let B = {Bλ}λ∈N be a collection of sets whose elements represents the branches.
A collection of (n, k)-all-but-one trapdoor functions is a tuple of probabilistic
polynomial time (PPT) algorithms (Gabo,Fabo,F

−1
abo) having the following prop-

erties:

– All-but-one property: Given a lossy branch b∗ ∈ Bλ, algorithm Gabo(1
λ, b∗)

outputs a pair (s, td), where s is a function index and td is its trapdoor. For
any b ∈ Bλ\{b∗}, the algorithm Fabo(s, b, ·) computes an injective function
fs,b(·) over {0, 1}n, and F−1

abo(td, b, ·) computes f−1
s,b (·). For the lossy branch

b∗, Fabo(s, b
∗, ·) computes a lossy function fs,b∗(·) over the domain {0, 1}n,

where |fs,b∗({0, 1}n)| ≤ 2n−k.
– Indistinguishability: For every b∗1 and b∗2 ∈ Bλ, the first output s0 of

Gabo(1
λ, b∗0) and the first output s1 of Gabo(1

λ, b∗1) are computationally in-
distinguishable.

2.2 Re-Applicable (n, k)-Lossy Trapdoor Functions

A collection of re-applicable (n, k)-lossy trapdoor functions (LTDFs) with re-
spect to function indices is a tuple of PPT algorithms (ParGen, LossyGen, LossyEval,
LossyInv,ReIndex,ReEval, PrivReEval,Trans,FakeKey) such that:

Injectivity: For every public parameter par ← ParGen(1λ) and every tag τ ∈
T \{τlos}, LossyGen(τ) outputs a pair of a function index and its trapdoor
(s, td), LossyEval(s, ·) computes an injective function fs,τ (·) over {0, 1}n, and
LossyInv(td, τ, ·) computes f−1

s,τ (·). (We represent the function fs,τ , not fs, in
order to clarify a tag τ . If we do not need to clarify a tag, we represent a
function as fs,⋆.)

Lossiness: For every public parameter par ← ParGen(1λ), LossyGen(τlos) out-
puts (s,⊥) and LossyEval(s, ·) computes a function fs,τlos(·) over {0, 1}n,
where |fs,τlos({0, 1}n)| ≤ 2n−k.

Indistinguishability between injective and lossy indices: Let Xλ denote
the distribution of (par, sinj, τ), and Yλ denote the distribution of (par, slos, τ

′),
where par is a public parameter from ParGen(1λ), τ and τ ′ are random ele-
ments in T , and the function indices sinj and slos are the first element output
from LossyGen(τ) and LossyGen(τlos) respectively. Then, {Xλ} and {Yλ} are
computationally indistinguishable.



Re-applying with respect to function indices: Let τi and τj be any tags
with τi ̸= τlos and τj ̸= τlos. The algorithm ReIndex(tdi, tdj) outputs si↔j ,
where tdi and tdj are the second elements of LossyGen(τi) and LossyGen(τj).
Then, for any x ∈ {0, 1}n, x = LossyInv(tdj , τi,ReEval(si↔j , LossyEval(si, x))).
Note that LossyInv takes τi as one of the inputs, not τj .

Generating proper outputs: Let c be an output from ReEval(si↔j , LossyEval(si,
x)), where si↔j and si have the same meaning as that in the above para-
graph. Then, PrivReEval(x, τi, τj , sj) outputs the same c, where x, τi, τj ,
and sj have the same meaning as that in the above paragraph. That is,
ReEval(si↔j , LossyEval(si, ·)) and PrivReEval(·, τi, τj , sj) are equivalent as a
function (i.e. any output of ReEval(si↔j , LossyEval(si, ·)) is independent of
si).

Transitivity: Let (si, tdi), (sj , tdj) and (sk, tdk) be outputs from LossyGen(τi),
LossyGen(τj), and LossyGen(τk), and let si↔j and si↔k be the outputs from
ReIndex(tdi, tdj) and ReIndex(tdi, tdk), respectively. Then, Trans(si↔j , si↔k)
outputs sj↔k which is the same output from ReIndex(tdj , tdk).

Fake key statistical indistinguishability: The algorithm FakeKey(si, τi) out-
puts (s′j , s

′
i↔j , τ

′
j), where si is the first element of an output from LossyGen(τi).

Let Xλ denote the distribution of (par, si, sj , si↔j , τi, τj), and let Yλ denote
the distribution of (par, si, s

′
j , s

′
i↔j , τi, τ

′
j), where each par, sj , si↔j , and τj

has the same meaning as that in the above paragraph. Then, {Xλ} and
{Yλ} are statistically indistinguishable.

Generation of injective functions from lossy functions: Let s be the first
element of an output from FakeKey(slos, τ), where τ is a tag and slos is the
first element of an output from LossyGen(τlos). Then, for every τ , LossyEval(s, ·)
represents an injective function fs,⋆ with overwhelming probability, where a
random variable is the randomness of FakeKey(slos, τ). (We do not require
other properties of index s if fs,⋆ is injective. The function fs,⋆ cannot have
any trapdoor information.)

2.3 Realization of Re-applicable LTDFs

Based on Peikert and Waters’ LTDFs [16], Matsuda, Nishimaki and Tanaka [15]
gave a realization of re-applicable LTDFs, which is specified as below (for more
details, the reader is referred to [15]):

ParGen: This algorithm first generates a cyclic group G with prime order p, and
then chooses a random generator g ∈ G. Next, it selects random numbers
r1, · · · , rn ∈R Zp, and outputs the public parameters C1 as

C1 =

 c1
...
cn

 =

 gr1

...
grn

 .

LossyGen: Taking as input the public parameter C1 and a tag τ ∈ G (note
that if τ is the identity element e of G, it means execution of the lossy



mode; otherwise, execution of the injective mode), this algorithm first selects
random elements z1, z2, · · · , zn ∈R Zp, and then computes a function index
as

C2 =

 c1,1 · · · c1,n
...

. . .
...

cn,1 · · · cn,n

 =

 cz11 · τ · · · czn1
...

. . .
...

cz1n · · · cznn · τ

 =

{
ci,j = c

zj
i · τ, if i = j;

ci,j = c
zj
i , otherwise.

Finally, it outputs the function index s = (C1,C2) and the trapdoor td =
z = (z1, · · · , zn).

LossyEval: Taking as input a function index s = (C1, C2) and an n-bit input
x = (x1, · · · , xn) ∈ {0, 1}n, this algorithm outputs (y1,y2) such that

y1=xC1 =
n∏

i=1

cxi
i ,

y2=xC2 =

(
n∏

i=1

cxi
i,1, · · · ,

n∏
i=1

cxi
i,n

)
=

(
(

n∏
i=1

cz1xi
i )τx1 , · · · , (

n∏
i=1

cznxi
i )τxn

)
.

LossyInv: Taking as input (td, τ, (y1,y2)), where the trapdoor information td
consists of z = (z1, · · · , zn), the tag τ is an element in G\{e}, and y2 =
(y2,1, · · · , y2,n) ∈ G1×n, this algorithm computes w = (y2,1 · y−z1

1 , y2,2 ·
y−z2
1 , · · · , y2,n · y−zn

1 ). Then, if j-th element of w is the identity element of
G, then it sets xj = 0; else if the j-th element of w is τ then it sets xj = 1;
otherwise, it outputs ⊥. Finally, it outputs x = (x1, · · · , xn).

ReIndex: Taking as input trapdoors tdi = (z1, · · · , zn) and tdj = (z′1, · · · , z′n),
this algorithm outputs si↔j = tdj−tdi = (z′1−z1, · · · , z′n−zn) = (z1,i↔j , · · · ,
zn,i↔j).

ReEval: On input (si↔j , (y1,y2)), where si↔j = (z1,i↔j , z2,i↔j , · · · , zn,i↔j) and
(y1,y2) = (y1, (y2,1, y2,2, · · · , y2,n)), this algorithm computes y′

2 = (y′2,1, y
′
2,2,

· · · , y′2,n) = (y2,1 · y
z1,i↔j

1 , y2,2 · y
z2,i↔j

1 , · · · , y2,n · y
zn,i↔j

1 ). Then it outputs
(y1,y

′
2).

PrivReEval: Taking as input x, τi, τj and sj , where x = (x1, · · · , xn) is n-bit
input, this algorithm first computes (ŷ1, ŷ2) ← LossyEval(sj ,x). Next, it
makes ŷ′

2 from ŷ2 in the following process: for each i ∈ [1, n], if xi = 1 then
ŷ′2,i = ŷ2,iτ

−1
j τi; else ŷ′2,i = ŷ2,i, where ŷ2,i and ŷ′2,i are the i-th elements of

ŷ2 and ŷ′
2 respectively. Finally, it outputs (ŷ1, ŷ

′
2).

Trans: Taking as input si↔j and si↔k, this algorithm outputs si↔k − si↔j =
(tdk − tdi)− (tdj − tdi) = tdk − tdj = si↔k.

FakeKey: Taking as input a function index si = (C1,C2) and a tag τi ∈ G, this
algorithm first chooses a random element t ∈ G. Next, it chooses random
numbers si↔j = (z1,i↔j , · · · , zn,i↔j) ∈R Zn

p . Then it makes a new matrix
C′

2 as follows:

C′
2 =

 c1,1 · c
z1,i↔j

1 · t · · · c1,n · c
zn,i↔j

1
...

. . .
...

cn,1 · c
z1,i↔j
n · · · cn,n · c

zn,i↔j
n · t

 =

{
c′k,ℓ = ck,ℓ · c

zℓ,i↔j

k · t, if k = ℓ;

c′k,ℓ = ck,ℓ · c
zℓ,i↔j

k , otherwise,



where ck is the k entry of C1, and ck,ℓ is the (k, ℓ) entry of C2. Finally, it
outputs sj = (C1,C

′
2), si↔j = (z1,i↔j , · · · , zn,i↔j) and τj = τi · t.

3 Bidirectional Multi-Hop PRE

A bidirectional PRE scheme Π = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec)
consists of the following six algorithms:

– Setup(1λ): Given a security parameter 1λ, this setup algorithm outputs a
public parameter PP . Denote this by PP ← Setup(1λ).

– KeyGen(PP ): Given the public parameter PP , this key generation algorithm
outputs a public key pk and a secret key sk. Denote this by (pk, sk) ←
KeyGen(PP ).

– Enc(PP, pk,m): Given the public parameter PP , a public key pk and a
message m in the message space M, this encryption algorithm outputs a
ciphertext C. Denote this by C ← Enc(PP, pk,m).

– ReKeyGen(PP, ski, skj): Given the public parameter PP , a pair of secret keys
ski and skj where i ̸= j, this re-encryption key generation algorithm outputs
a re-encryption key rki↔j . Denote this by rki↔j ← ReKeyGen(PP, ski, skj).

– ReEnc(PP, rki↔j , Ci): Given the public parameter PP , a re-encryption key
rki↔j and a ciphertext Ci intended for user i, this re-encryption algorithm
outputs another ciphertext Cj for user j or the error symbol ⊥. Denote this
by Cj ← ReEnc(PP, rki↔j , Ci).

– Dec(PP, sk, C): Given the public parameter PP , a public key sk and a ci-
phertext C, this decryption algorithm outputs a message m or the error
symbol ⊥.

Next, we review the definition of chosen-ciphertext security for bidirectional
multi-hop PRE scheme as defined in [7, 15]. Let λ be the security parameter,
A be an oracle TM, representing the adversary, and ΓU and ΓC be two lists
which are initially empty. The game consists of an execution of A with the
following oracles, which can be invoked multiple times in any order, subject to
the constraints specified as below:

Setup Oracle: This oracle can be queried first in the game only once. This
oracle generates the public parameters PP ← Setup(1λ), and gives PP to
A.

Uncorrupted key generation: This oracle first generates a new key pair by
running (pk, sk)← KeyGen(PP ). Next, it adds pk in ΓU , and gives pk to A.

Corrupted key generation: This oracle generates a new key pair by running
(pk, sk)← KeyGen(PP ). Next, it adds pk in ΓC , and gives (pk, sk) to A.

Challenge oracle: This oracle can be queried only once. On input (pki∗ ,m0,m1),
this oracle randomly chooses a bit b ∈ {0, 1} and gives Ci∗ = Enc(PP, pki∗ ,mb)
to A. Here it is required that pki∗ ∈ ΓU . We call pki∗ the challenge key and
Ci∗ the challenge ciphertext.



Re-encryption key generation: On input (pki, pkj) from the adversary, this
oracle gives the re-encryption key rki↔j = ReKeyGen(PP, ski, skj) to A,
where ski and skj are the secret keys corresponding to pki and pkj , respec-
tively. Here it is required that pki and pkj are both in ΓC , or alternatively
are both in ΓU .

Re-encryption oracle: On input (pki, pkj , Ci), if pkj ∈ ΓC and (pki, Ci) is a
derivative of (pki∗ , Ci∗), this oracle give A a special symbol ⊥, which is not
in the domain of messages or ciphertext. Otherwise, it gives the re-encrypted
ciphertext Cj = ReEnc(PP,ReKeyGen(PP, ski, skj), Ci) to A. Derivatives of
(pki∗ , Ci∗) are defined inductively as follows:
– (pki∗ , Ci∗) is a derivative of itself.
– If (pk, C) is a derivative of (pki∗ , Ci∗), and (pk′, C ′) is a derivative of

(pk, C), then (pk′, C ′) is a derivative of (pki∗ , Ci∗).
– If A has queried the re-encryption oracle on input (pk, pk′, C) and ob-

tained the response C ′, then (pk′, C ′) is a derivative of (pk,C).
– IfA has queried the re-encryption key generation oracle on input (pk, pk′)

or (pk′, pk), and C ′ = ReEnc(PP,ReKeyGen(PP, sk, sk′), C), then (pk′, C ′)
is a derivative of (pk,C), where sk and sk′ are the secret keys correspond-
ing to pk and pk′, respectively.

Decryption oracle: On input (pk,C), if the pair (pk,C) is a derivative of
the challenge key and ciphertext (pki∗ , Ci∗), or pk is not in ΓU ∪ ΓC , this
oracle returns the special symbol ⊥ to A. Otherwise, it returns the result of
Dec(PP, sk, C) to A, where sk is the secret key with respect to pk.

Decision oracle: This oracle can be queried at the end of the game. On input
b′, if b′ = b and the challenge key pki∗ ∈ ΓU , this algorithm output 1; else
output 0.

We describe the output of the decision oracle in the above CCA-security
definitional game as Exptbid-PRE-CCA

Π,A (λ) = b for an adversary A and a scheme
Π. We define the advantage of adversary A as

Advbid-PRE-CCA
Π,A (λ)

def
=

∣∣∣∣Pr[Exptbid-PRE-CCA
Π,A (λ) = 1]− 1

2

∣∣∣∣ ,
where the probability is over the random choices of A and oracles. We say that
the scheme Π is secure under the bidirectional PRE-CCA attack, if for any
PPT adversary A, his advantage Advbid-PRE-CCA

Π,A (λ) is negligible in the security
parameter λ (for sufficiently large λ).

4 Review of the Matsuda-Nishimaki-Tanaka PRE Scheme

In this section, we shall review the Matsuda-Nishimaki-Tanaka bidirectional
multi-hop PRE scheme.

Let λ be the security parameter, and let n, k, k′, k′′ and v be parameters de-
pended on λ. Let (SigGen,SigSign,SigVer) be a strongly unforgeable one-time sig-
nature scheme where the verification keys are in {0, 1}v. Let (ParGen, LossyGen,



LossyEval, LossyInv,ReEval,PrivReEval, Trans,FakeKey) be a collection of reappli-
cable (n, k)-LTDFs and T be a set of tags. Let (Gabo,Fabo,F

−1
abo) be a collection

of (n, k′)-ABO trapdoor functions with branches Bλ = {0, 1}v, which contains
the set of signature verification keys. Let H be a family of pairwise independent
hash functions from {0, 1}n to {0, 1}k′′

. It is required that the above parameters
satisfy (k+k′)−(k′′+n) ≥ δ = δ1+δ2 for some δ1 = ω(log λ) and δ2 = ω(log λ).
The message space of the system is {0, 1}k′′

. The Matsuda-Nishimaki-Tanaka
PRE scheme [15] is specified by the following algorithms:

Setup(1λ): This algorithm first generates an index of all-but-one trapdoor func-
tions with lossy branch 0v: (sabo, tdabo) ← Gabo(1

λ, 0v). Then, it generates
a public parameter of re-applicable LTDFs: par ← ParGen(1λ). Next, it
chooses a hash function h from H. Finally, it outputs a public parameter
as PP = (sabo, par, h).

Note that the algorithm Setup erases the trapdoor tdabo because the following
algorithms do not use tdabo.

KeyGen(PP ): Taking as input the pubic parameters PP = (sabo, par, h), this
algorithm first chooses a tag τ ∈ T \{τlos} and generates an injective index of
re-applicable LTDFs: (srltdf, tdrltdf) ← LossyGen(τ). Finally, it outputs the
public key pk = (srltdf, τ) and the secret key sk = (tdrltdf, srltdf, τ).

Enc(PP, pk,m): Taking as input the public parameters PP = (sabo, par, h),
public key pk = (srltdf, τ) and a message m ∈ {0, 1}k′′

, this encryption
algorithm first chooses x ∈ {0, 1}n uniformly at random. Next it generates
a key-pair for the one-time signature scheme: (vk, skσ) ← SigGen(1λ), and
computes

c1 = LossyEval(srltdf, x), c2 = Fabo(sabo, vk, x), c3 = h(x)⊕m.

Then it signs a tuple (c2, c3, τ) as σ ← SigSign(skσ, (c2, c3, τ)). Finally, it
outputs the ciphertext C = (vk, c1, c2, c3, τ, σ).

ReKeyGen(PP, ski, skj): On public parameter PP = (sabo, par, h), the secret
keys ski = (tdi, si, τi) and skj = (tdj , sj , τj), this algorithm computes si↔j ←
ReIndex(tdi, tdj), and then outputs a re-encryption key rki↔j = si↔j .

ReEnc(PP, rki↔j , Ci): Taking as input the public parameter PP = (sabo, par, h),
the re-encryption key rki↔j = si↔j and a ciphertext Ci = (vk, c1,i, c2, c3, τ, σ),
this algorithm computes c1,j ← ReEval(si↔j , c1,i). It then outputs Cj =
(vk, c1,j , c2, c3, τ, σ) as a new ciphertext for the user with skj .

Dec(PP, sk, C): Taking as input the public parameter PP = (sabo, par, h), a
secret key sk = (tdrltdf, srltdf, τ) and a ciphertext C = (vk, c1, c2, c3, τ

′, σ),
this decryption algorithm acts as follows:

1. Check whether SigVer(vk, (c2, c3, τ
′), σ) = 1 holds. If not, output ⊥.

2. Compute x = LossyInv(tdrltdf, τ
′, c1). If τ = τ ′, it checks LossyEval(srltdf, x)

= c1; else it checks PrivReEval(x, τ ′, τ, srltdf) = c1. If not, it outputs ⊥.
It also checks Fabo(sabo, vk, x) = c2. If not, it outputs ⊥.

3. Finally, output m = c3 ⊕ h(x).



5 Security Analysis

In this section, we shall present a concrete attack against the Matsuda-Nishimaki-
Tanaka PRE scheme. Before presenting its details, we first identify the poten-
tial weakness in their scheme: for a ciphertext Ci = (vk, c1,i, c2, c3, τ, σ), their
ReEnc algorithm simply transforms the ciphertext component c1,i into c1,j , with-
out verifying the validity of c1,i. Then there might exist an adversary who can
break the CCA-security of their scheme as follows: Given the challenge cipher-
text Ci∗ = (vk, c1,i∗ , c2, c3, τ, σ), the adversary can first modify the ciphertext
component c1,i∗ to obtain a new (ill-formed) ciphertext C ′

i∗ and then ask the
re-encryption oracle to re-encrypt C ′

i∗ into another ciphertext C ′
j for a corrupted

user j (note that according to the security model, it is legal for the adversary
to issue such a query); next, the adversary can modify C ′

j to obtain the right
re-encrypted ciphertext Cj of the challenge ciphertext, and thus he can derive
the underlying plaintext by decrypting Cj with user j’s secret key.

Below we give the attack details. For an easy explanation of how the adver-
sary can modify C ′

j to obtain the right transformed ciphertext Cj , when describ-
ing the underlying re-applicable LTDFs we shall take Matsuda et al.’s concrete
realization (recalled in Section 2.3) as the example. Concretely, the adversary
works as follows:

1. The adversary first obtains the public parameters PP from the setup oracle.

2. The adversary obtains a public key pki∗ from the uncorrupted key generation
oracle. Note that pki∗ will be added in ΓU by the oracle.

3. The adversary obtains a public/secret key pair (pkj , skj) from the corrupted
key generation oracle. Note that pkj will be added in ΓC by the oracle.

4. The adversary submits (pki∗ ,m0,m1) to the challenge oracle, and then is
given the challenge ciphertext Ci∗ = (vk∗, c1,i∗ , c

∗
2, c

∗
3, τ

∗, σ∗), where c1,i∗

is the output of function LossyEval. Here we use Matsuda et al.’s concrete
realization of LossyEval as an example. Wlog, suppose c1,i∗ = (y1,y2) =
(y1, (y2,1, · · · , y2,n)).

5. The adversary first randomly picks ỹ2,1, · · · , ỹ2,n from G, and modifies the
challenge ciphertext to obtain a new (ill-formed) ciphertext C ′

i∗ = (vk∗, c′1,i∗ ,
c∗2, c

∗
3, τ

∗, σ∗), where c′1,i∗ = (y1, (ỹ2,1, · · · , ỹ2,n)). Then, the adversary sub-
mits (pki∗ , pkj , C

′
i∗) to the re-encryption oracle. Note that, although pkj ∈

ΓC , it is legal for the adversary to issue this query, since (pki∗ , C
′
i∗) is not a

derivative of (pki∗ , Ci∗). Note that the re-encryption algorithm ReEnc can-
not check the validity of the ciphertext component c′1,i∗ . So, it will return
the re-encrypted ciphertext C ′

j = ReEnc(PP,ReKeyGen(PP, ski∗ , skj), C
′
i∗)

to the adversary.

According to the re-encryption algorithm, we get C ′
j = (vk∗, c′1,j , c

∗
2, c

∗
3, τ

∗, σ∗),
where c′1,j = ReEval(si∗↔j , c

′
1,i∗). According to Matsuda et al.’s concrete re-

alization of ReEval, we have

c′1,j = (y1, (ỹ
′
2,1, · · · , ỹ′2,n)) =

(
y1,
(
ỹ2,1 · y

z1,i∗↔j

1 , · · · , ỹ2,n · y
zn,i∗↔j

1

))
.



Now, from c′1,j = (y1, (ỹ
′
2,1, · · · , ỹ′2,n)), the adversary can compute the fol-

lowing

c1,j=

(
y1, (

ỹ′2,1y2,1

ỹ2,1
, · · · ,

ỹ′2,ny2,n

ỹ2,n
)

)
=

(
y1, (

ỹ2,1 · y
z1,i∗↔j

1 y2,1
ỹ2,1

, · · · , ỹ2,n · y
zn,i∗↔j

1 y2,n
ỹ2,n

)

)
=
(
y1, (y2,1 · y

z1,i∗↔j

1 , · · · , y2,n · y
zn,i∗↔j

1 )
)
.

Observe that c1,j is indeed equivalent to the result of ReEval(si∗↔j , c1,i∗).
Thus, we have Cj = (vk∗, c1,j , c

∗
2, c

∗
3, τ

∗, σ∗) is indeed the result of ReEnc(PP,
ReKeyGen(PP, ski∗ , skj), Ci∗), which is an encryption ofmb. Now, the adver-
sary can obtain the underlying plaintext mb by decrypting the re-encrypted
ciphertext Cj using the secret key skj , and obviously can break CCA-security
of the Matsuda-Nishimaki-Tanaka PRE scheme.

The above attack can also be simply extended to the case that the user j
is uncorrupted. In this case, the adversary A directly request (pkj , Cj) to the
decryption oracle, which will return the plaintext mb to A.

6 Discussions and Conclusion

The authors constructed 11 games, Game-0 to Game-10, to prove the CCA-
security of the PRE scheme developed in [15], where Game-0 is just the CCA
definitional game of PRE (recalled in Section 3) and Game-10 is a game which
any adversary can win with only probability 1/2. They also discussed that dif-
ference of advantage between any two successive games is negligible, and hence
any adversary cannot win Game-0 with a better probability than 1/2 plus a
negligible value. However, as we observed in the previous section, there exists an
adversary which can always win Game-0, and this implies that for at least one
of pairs of two successive games, difference of advantage between them is non-
negligible. If we correctly understand the security proof in [15], such two games
seem Game-7 and 8. This is basically due to the fact that until Game-7, the chal-
lenger generates all re-encryption keys for all users (including both uncorrupted
and corrupted users), and by using these re-encryption keys, the challenger sim-
ulates both the re-encryption key generation oracle and the re-encryption oracle.
In contrast, in Game-8, the challenger generates re-encryption keys among un-
corrupted users in a specific manner without knowing these users’ secret keys
(see [15] for detail), and therefore, the same strategy for simulating these two or-
acles as in Game-7 cannot be immediately applied to this game. Namely, we see
that in Game-8, it is still straightforward to generate re-encryption keys among
uncorrupted users or those among corrupted users, but it seems hard to generate
any re-encryption key between an uncorrupted user and a corrupted user. This
also implies that the re-encryption key generation oracle can be still simulated,
but the re-encryption oracle can not as long as the same simulation technique
as in Game-7 is used.



The PRE scheme developed in [15] is based upon the CCA-secure public-
key encryption (PKE) scheme of Peikert and Waters (that is in turn based
upon LTDFs) [16], which can be viewed as an extension of the Peikert-Waters
PKE scheme into the proxy re-encryption setting. One key difference between
the Peikert-Waters PKE construction and the PRE construction of [15] is that:
all components in the ciphertext of the Peikert-Waters PKE are signed by the
one-time signature (under the verification key vk), but the key component c1
is not signed in the ciphertext of the PRE of [15]. Of course, signing c1 can
prevent our concrete attack, but the resultant scheme is not a PRE scheme
any longer (particularly, the proxy cannot translate ciphertexts among players,
as the underlying signing key w.r.t. vk is unknown to the proxy). From our
view, constructing CCA-secure proxy re-encryption without bilinear maps in
the standard model may need significantly new ideas and techniques. It is still
an open problem to come up with a (bidirectional or unidirectional) proxy re-
encryption scheme without bilinear maps in the standard model.
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