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Abstract. Whether it is possible to construct a chosen ciphertext se-
cure (CCA secure) public key encryption (PKE) scheme only from a
chosen plaintext secure (CPA secure) one is a fundamental open prob-
lem, and the best known positive results regarding this problem are the
constructions of so-called bounded CCA secure schemes. Since we can
achieve the best possible security in the bounded CCA security notions,
in order to further tackle the problem, we would need other new secu-
rity notions that capture intermediate security notions that lie between
CPA and CCA security. Motivated by this situation, we focus on “paral-
lel” decryption queries (originally introduced by Bellare and Sahai) for
the extension of bounded CCA security, and introduce a new security
notion which we call mixed CCA security. It captures security against
adversaries that make single and parallel decryption queries in a prede-
termined order, where each parallel query can contain unboundedly many
ciphertexts. Moreover, how the decryption oracle is available before and
after the challenge is also taken into account in this new security defi-
nition, which enables us to capture existing major security notions that
lie between CPA and CCA security in a unified security notion. We in-
vestigate the relations among mixed CCA security notions, and show a
necessary and sufficient condition of implications/separations between
any two notions in mixed CCA security. We also show two black-box
constructions of PKE schemes with improved security only using CPA
secure schemes as building blocks.

Keywords: public key encryption, bounded CCA security, parallel de-
cryption query, relations among security notions, black-box construction.

1 Introduction

Background. Studies on constructing and understanding public key encryption
(PKE) schemes that satisfy security against chosen ciphertext attacks (CCA)
[22, 27], which is nowadays considered as a standard security notion needed in
most practical applications/situations where PKE schemes are used, are impor-
tant research topics in the area of cryptography. We can roughly categorize the
approaches for constructing CCA secure PKE schemes into two types: Construc-
tions from specific number-theoretic assumptions and constructions from gen-
eral assumptions. (In the following, we write IND-CCA1 to denote non-adaptive
CCA security [22] and IND-CCA2 to denote adaptive CCA security [27].)
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The approaches of the first type have been successful so far from both theo-
retical and practical points of view. After the first novel practical scheme based
on the decisional Diffie-Hellman (DDH) assumption by Cramer and Shoup [10],
many practical IND-CCA2 secure PKE schemes that pursue smaller ciphertext
size and/or base security on weaker assumptions have been constructed so far,
e.g. [20, 6, 17, 7, 14, 18, 15, 30].

The approaches of the second type have also been successful, mainly from a
theoretical point of view. Especially, it is known that if there exists an (enhanced)
trapdoor permutation, which is one of the most fundamental primitives, then
we can construct an IND-CCA2 secure PKE schemes generically [22, 4, 11]. There
are also several elegant generic constructions of IND-CCA2 secure PKE schemes
from primitives with some “stronger” functionality and/or security, such as con-
structions from identity-based encryption [5], and from special types of injective
trapdoor functions and trapdoor relations [25, 29, 19, 30].

However, one of the most fundamental problems still remains open: Is it
possible to generically construct a CCA ( IND-CCA1 or IND-CCA2) secure PKE
scheme from any semantically secure [13] (i.e. IND-CPA secure) one?

So far, there are several negative and positive results related to this problem.
Gertner et al. [12] showed that constructing an IND-CCA1 secure PKE scheme
only from IND-CPA secure PKE schemes in a black-box manner is impossible,
if the construction satisfies the property called shielding, where a PKE-to-PKE
construction is said to be shielding if the decryption algorithm of the construction
does not call the encryption algorithm of the building block PKE scheme.

Pass et al. [23] showed how to construct a PKE scheme that is non-malleable
against chosen plaintext attacks (NM-CPA) from any IND-CPA secure PKE scheme.
Their construction uses a certain class of NIZK proofs and was non-black-box.

Cramer et al. [9] introduced the notion of bounded CCA security which is
defined in exactly the same way as ordinary IND-CCA2 security, except that the
number of decryption oracle queries that an adversary can ask is bounded by
some predetermined value (say, q) that is known a priori (we denote this no-
tion by q-CCA2). Then they showed that for any polynomial q it is possible to
construct an IND-q-CCA2 secure PKE scheme from any IND-CPA secure one in a
black-box and shielding manner. They furthermore showed that for any polyno-
mial q it is possible to construct a PKE scheme that satisfies non-malleability
against q-bounded CCA (NM-q-CCA2) in a non-black-box manner.

Recently, Choi et al. [8] showed the constructions of PKE schemes from any
IND-CPA secure scheme both in a black-box and shielding manner. Their first
construction achieves NM-CPA security, and their second construction, which is
essentially the same as the first construction but needs larger parameters, can
achieve NM-q-CCA2 security.

These previous results show that we can achieve the best possible security
notion (NM-q-CCA2) in the bounded CCA framework. This suggests that in or-
der to proceed from the current situation, we would need new security notions
which are intermediate between CPA and CCA security in a different sense from
bounded CCA security. The motivation of this paper is to introduce and study



such intermediate security notions as an extension of the bounded CCA security
as a foundation for tackling the above fundamental problem.

Extending Bounded CCA Security with Parallel Decryption Queries. For the pur-
pose mentioned above, we focus on and use the concept of the parallel chosen
ciphertext attacks which is originally introduced by Bellare and Sahai [3] in the
context of non-malleability [11] for PKE schemes, and consider parallel queries
in the bounded CCA security framework. More specifically, as an extension of
bounded CCA security, we introduce a new security notion, which we call mixed
CCA security, that captures security against adversaries that make single (i.e.
ordinary) decryption queries and parallel decryption queries in a predetermined
order, where each parallel query can contain unboundedly many ciphertexts.
(The name “mixed” is because we consider a mix of single and parallel queries.)
Moreover, the difference among decryption queries that are only allowed to make
before/after the challenge and those that are allowed to make both before and
after the challenge (an adversary can decide “flexibly” how to issue queries as
long as it follows the predetermined order of queries and types) is also taken into
account in our definition, which enables us to capture existing major security
notions that lie between CPA and CCA security, including slightly complex no-
tions such as non-malleability against bounded CCA (NM-q-CCA2) that considers
“stage-specific” decryption queries, in a unified security notion. As a natural and
interesting special class of mixed CCA security, we also introduce the notion of
bounded parallel CCA security. For more details, see Section 3. We believe that
the mixed CCA security provides a theoretical foundation for discussion of the
problem of whether constructing (unbounded) CCA secure PKE schemes from
any CPA secure PKE schemes is possible or not, and for intermediate results
towards the problem.

1.1 Our Contributions

Relations among Mixed CCA Security Notions. We investigate the relations
among mixed CCA security notions for PKE schemes and for key encapsulation
mechanisms (KEMs) in Section 4. As one of the main results, we show necessary
and sufficient conditions for implications/separations between any two notions
in mixed CCA security. Interestingly and perhaps somewhat surprisingly, the
relations for PKE schemes differ depending on its plaintext space size. More
specifically, the relations among security notions for PKE schemes with super-
polynomially large plaintext space size and those with polynomially bounded
plaintext space size are different. Therefore, this difference suggests that when
we consider the relations among security notions for PKE schemes, we have to
be also careful about the plaintext space size, though seemingly unrelated. The
relations for KEMs are the same as those of PKE schemes with polynomially
bounded plaintext space size.

Black-Box Feasibility Results from CPA-Security. Using the notion of mixed
CCA security, in Section 5, we show two new black-box constructions of PKE



schemes (which can encrypt plaintexts of polynomial length, and thus have ex-
ponentially large plaintext space size) from an IND-CPA secure PKE scheme.
The first one is constructed based on the construction by Choi et al. [8] which
is NM-q-CCA2 secure, and achieves slightly but strictly stronger security notion
than NM-q-CCA2. Our approach for the first construction is to use the Choi et al.
scheme as a KEM and combine it with an IND-CCA2 secure data encapsulation
mechanism (DEM), and thus is a very simple extension. In order for this sim-
ple approach to work, we show some implication result for mixed CCA security
of KEMs (and PKE schemes with polynomially bounded plaintext space size).
The second one is constructed based on the above result and the construction
of PKE scheme by Cramer et al. [9], and achieves yet another security notion
which cannot be directly compared with the security notion achieved by our
other constructions and with NM-q-CCA2 security.

As will be explained later, one of the important and interesting observations
that our results suggests, combined with previously known results, is that the
difficulty of constructing an IND-CCA1 secure PKE scheme only from IND-CPA

secure one lies not in whether the number of decryption results that an adver-
sary can see is bounded or not, but in whether the number of the adversary’s
“adaptive” decryption queries is bounded. To the best of our knowledge, this
observation has not been explicitly stated before.

2 Preliminaries

In this section, we review the basic notations and definitions of primitives used
in this paper. Due to space limitation, the definitions for key encapsulation
mechanism (KEM) and data encapsulation mechanism (DEM) are omitted and
are provided in the full version. (They can also be found in [10, 16], for example.)

Basic Notations. If q is a natural number, then [q] = {1, . . . , q}. “x← y” denotes
that x is chosen uniformly at random from y if y is a finite set, x is output from
y if y is a function or an algorithm, or y is assigned to x otherwise. “|x|” denotes
the size of the set if x is a finite set or bit length of x if x is an element of some
set. “PPTA” denotes a probabilistic polynomial time algorithm. AO denotes an
algorithm A with oracle access to O. Unless otherwise stated, k denotes the
security parameter. A function f : N → [0, 1] is said to be negligible if for any
positive polynomial p(k) and for all sufficiently large k, we have f(k) < 1

p(k) .

Public Key Encryption. A PKE scheme Π consists of the following three PPTAs
(PKG,PEnc,PDec): A key generation algorithm PKG takes 1k (security param-
eter k) as input, and outputs a public/private key pair (pk, sk); An encryp-
tion algorithm PEnc takes pk and a plaintext m ∈ MΠ (the plaintext space
of Π) as input, and outputs a ciphertext c; A deterministic decryption algo-
rithm PDec takes sk and c as input, and outputs a plaintext m (or a sym-
bol ⊥ meaning “decryption error”). As a correctness requirement, we require
PDec(sk,PEnc(pk,m)) = m for all (pk, sk) output from PKG and all m ∈MΠ .



Conventional Security Notions. The security notions for PKE schemes are ex-
pressed by a combination of a GOAL and an attack type (ATK) of an adversary. For
conventional security notions for PKE schemes, we consider indistinguishability
(IND) and non-malleability (NM) for security goals and chosen plaintext attacks
(CPA), non-adaptive chosen ciphertext attacks (CCA1), adaptive chosen ciphertext
attacks (CCA2), and q-bounded chosen ciphertext attacks (q-CCA2) [9] for attack
types of an adversary. Non-malleability for PKE schemes we treat in this pa-
per is the so-called parallel chosen-ciphertext attack based definition [3], which
is equivalent to the indistinguishability based definition used in [23, 24]1. Since
these conventional GOAL-ATK security notions can be expressed as special cases
of mixed CCA security defined in Section 3, here we omit the definitions.

Implications and Separations of Security Notions. We will show several impli-
cations and separations of security notions, and thus we recall here. Though we
write only the definition for PKE schemes, the same is defined for KEMs.

Definition 1. Let X and Y be security notions for PKE schemes. We say that
X security implies Y security if any X secure PKE scheme is also Y secure. We
say that X security does not imply Y security if, under the assumption that X

secure PKE schemes exist, there exists a PKE scheme which is X secure but is
not Y secure. We say that X security and Y security are equivalent if we have
implications for both directions (i.e. from X to Y and from Y to X).

Shielding Black-Box Constructions. We briefly recall the definition of a shielding
black-box construction of an X secure PKE scheme from a Y secure scheme. The
notion of black-box constructions we mention in this paper is classified as fully-
black-box ones [28], but specified for PKE-to-PKE constructions. (for details, see
[28]). The notion of the shielding constructions is from [12].

Definition 2. Let X and Y be security notions for PKE schemes. We say that
there exists a shielding black-box construction of an X secure PKE scheme from
a Y secure one, if there exist oracle PPTAs Π = (PKG,PEnc,PDec) and B with
the following properties. For all algorithms π = (G, E, D) and A (each algorithm
can be of arbitrary complexity), the following two conditions are satisfied:

(Correctness:) If π = (G,E,D) satisfies correctness as a PKE scheme, so does
ΠG,E,D = (PKGG,E,D, PEncG,E,D, PDecG,D).

(Security:) If A breaks X security of ΠG,E,D = (PKGG,E,D, PEncG,E,D, PDecG,D)
then BA,G,E,D breaks Y security of π.

(Note that PDec does not have access to E.)

1 Pass et al. [24] prove that many-message (indistinguishability-based) non-
malleability, which considers multiple challenge messages, and single-message non-
malleability, considered in this paper, are equivalent.



3 Extending Bounded CCA: Mixed CCA Security

In order to deal with and discuss existing security notions for PKE schemes
and KEMs that lie between IND-CPA and IND-CCA2 security in a unified way, in
this section we introduce an extension of conventional bounded CCA security
[9], which we call security against mixed chosen ciphertext attacks (mixed CCA
security), where the decryption oracle in the security experiment accepts both
single decryption queries and parallel decryption queries in a predetermined
order, and “how” the decryption oracle is available before/after the challenge is
also taken into account.

Preliminary Definitions. We first formally define the notion of a parallel query
to an oracle.

Definition 3. Let O : {0, 1}∗ → {0, 1}∗ be an oracle. A parallel query to O is
a vector −→x = (x1, x2, . . . ) of inputs for O, where the size of the vector −→x is not
predetermined, and a response to the parallel query −→x is a vector of the output
values −→y = (y1, y2, . . . ) where yi = O(xi) for every 1 ≤ i ≤ |−→x |.

We stress that the number of inputs in each parallel query −→x is unbounded and
can be dependent only on an algorithm that uses the oracle.

To define mixed CCA security, we need to introduce several notations. The
symbols “s” and “p” denote one single query and one parallel query, respectively.
Let q ≥ 0 be an integer. “sq” and “pq” denote q single queries and q parallel
queries, respectively. We define s0 = p0 = ∅.

If we write “(sq1pq2 . . . )” with some integers q1, q2, ... ≥ 0, then it denotes
a query sequence. This query sequence will define how the decryption oracle in
the mixed CCA experiment accepts the queries. For example, (s2p3) denotes
two single decryption queries followed by three parallel decryption queries. We
denote by “unbound” a special sequence that indicates “unboundedly” many
single queries, i.e. unbound = s∞.

“QS” denotes a set consisting of all possible query sequences with the restric-
tion that the total number of queries in each sequence is bounded to be polyno-
mial (in the security parameter). We furthermore define QS∗ = QS∪{unbound}.
We refer to queries following the query sequence seq ∈ QS∗ as “seq-queries”.

If seq ∈ QS, then we denote by “|seq|” the length of the query sequence. For
example, if seq = (s2p) then |seq| = 3. We define |unbound| =∞.

We define a concatenation operation “||” for query sequences naturally. For
example, if seq1 = (s2p) and seq2 = (p2s3), then (seq1||seq2) = (s2pp2s3) =
(s2p3s3). For any seq ∈ QS∗, we define (seq||∅) = (∅||seq) = seq and (seq||unbound) =
(unbound||seq) = unbound.

3.1 Definition of Mixed CCA Security

Now we define mixed CCA security for a PKE scheme Π = (PKG,PEnc,PDec)
as IND-ATK-like security parameterized by three query sequences B, F, A ∈ QS∗,



denoted by ⟨B : F : A⟩-mCCA security, via the ⟨B : F : A⟩-mCCA experiment

Expt
⟨B:F:A⟩-mCCA
Π,A (k) that an adversary A = (A1,A2) runs in:

Expt
⟨B:F:A⟩-mCCA
Π,A (k) : [(pk, sk)← PKG(1k); (m0,m1, st)← AO

1 (pk); b← {0, 1};

c∗ ← PEnc(pk,mb); b
′ ← AO

2 (c
∗, st) : If b′ = b then return 1 else return 0]

where O(·) = PDec(sk, ·) is a decryption oracle. However, how the decryption
oracle is available is determined depending on the query sequences B,F,A in
the following way: A1 can issue decryption queries following the sequence B,
and after all B-queries are completed, A1 can further issue decryption queries
following the sequence F. However, A1 need not complete all F-queries, and the
ability to issue F-queries can be “shared” with A2. That is, as long as the order,
the types, and the number of queries are maintained, the F-queries that A1 has
not been completed can be taken over by A2. A2 can issue the remaining F-
queries that A1 has left for A2, and after all F-queries are completed, A2 can
further issue decryption queries following the sequence A.2 Moreover, as usual,
A2’s queries must not contain the challenge ciphertext c∗.

We refer to B, F, and A as “Before-challenge” queries, “Flexible” queries (in
the sense that A can “flexibly” decide how it issues queries before/after the chal-
lenge), and “After-challenge” queries, respectively. For notational convenience,
if F = ∅ then we write ⟨B :: A⟩-mCCA, instead of ⟨B : ∅ : A⟩-mCCA.

Definition 4. Let B,F,A ∈ QS∗. We say that a PKE scheme Π is ⟨B : F :

A⟩-mCCA secure if Adv
⟨B:F:A⟩-mCCA
Π,A (k) = |Pr[Expt⟨B:F:A⟩-mCCAΠ,A (k) = 1] − 1

2 | is negli-
gible for any PPTA A.

We define mixed CCA security for KEMs in exactly the same way as above.
With the mixed CCA security notions, we can express all the security notions

mentioned in Section 2. These are summarized in Table 1. As noted earlier, for
non-malleability, we adopt the characterization using a parallel query by Bellare
and Sahai [3]. (In the table, we also include the bounded parallel CCA security
notions defined below.)

We remark that we can also define a parallel decryption query in mixed
CCA security experiment (i.e. the ⟨B : F : A⟩-mCCA experiment) so that the
number of ciphertexts contained in each parallel query is also bounded to be
some predetermined value (say, t). However, such security definition is implied
by (|(B||F||A)| · t)-Bounded CCA security, which is already achieved by the ex-
isting PKE schemes that are constructed only from IND-CPA secure schemes by
the previous results [9, 8]. Therefore, we think that studying security with such
limitation is less interesting than studying mixed CCA security defined in this
section, and is not treated in this paper.

2 In other words, in the ⟨B : F : A⟩-mCCA experiment, A1 can issue (B||F1)-queries,
and A2 can issue (F2||A)-queries, for any pair of query sequences (F1,F2) satisfying
(F1||F2) = F, and how F is split into F1 and F2 can be decided adaptively by A in
the experiment.



Table 1. Compatibility with Existing Security Notions.

Existing Notions Notation in Mixed CCA Security

IND-CPA ⟨∅ :: ∅⟩-mCCA
NM-CPA ⟨∅ :: p⟩-mCCA
IND-q-CCA2 ⟨∅ : sq : ∅⟩-mCCA
NM-q-CCA2 ⟨∅ : sq : p⟩-mCCA
IND-q-pCCA1 ⟨pq :: ∅⟩-mCCA
NM-q-pCCA1 ⟨pq :: p⟩-mCCA
IND-q-pCCA2 ⟨∅ : pq : ∅⟩-mCCA
NM-q-pCCA2 ⟨∅ : pq : p⟩-mCCA
IND-CCA1 ⟨unbound :: ∅⟩-mCCA
NM-CCA1 ⟨unbound :: p⟩-mCCA
IND-CCA2 ⟨unbound :: unbound⟩-mCCA

Previously to this paper, Phan and Pointcheval [26] defined a similar notion
which they call (i, j)-IND security and (i, j)-NM security, which are equivalent to
⟨si :: sj⟩-mCCA security and ⟨si :: sjp⟩-mCCA security in our definition, respectively
(for NM, we interpret it with parallel CCA-based characterization in [3]). They
did not consider the “flexible” F-queries.

Bounded Parallel CCA Security. Here, we define a natural and interesting spe-
cial class of mixed CCA security which we call bounded parallel CCA security.
This captures security against adversaries whose decryption queries are always
parallel, and is a natural extension from the original bounded CCA security [9].

Depending on how the decryption oracle is available for an adversary, we
define pCCA1 and pCCA2 as natural analogue of CCA1 and CCA2, respectively.
Moreover, as is similar to the existing security notions, we define indistinguisha-
bility (IND) and non-malleability (NM).

Definition 5. Let q ≥ 0 be an integer. We say that a PKE scheme is IND-q-pCCA1
(resp. IND-q-pCCA2, NM-q-pCCA1, and NM-q-pCCA2) secure if it is ⟨pq :: ∅⟩-mCCA
(resp. ⟨∅ : pq : ∅⟩-mCCA, ⟨pq :: p⟩-mCCA, and ⟨∅ : pq : p⟩-mCCA) secure.

We define the bounded parallel CCA security notions for KEMs in the same way.

3.2 General Properties of Mixed CCA Security

Here, we show two general implication results about the mixed CCA security
notions. (In this section, we always assume B,F,A ∈ QS∗, and do not write it
explicitly.)

Firstly, by noticing the property of the “flexible” queries F, we obtain the
following.

Theorem 1. For both PKE schemes and KEMs, ⟨B : F : A⟩-mCCA security and
“the combination of all security notions of the form ⟨(B||F1) :: (F2||A)⟩-mCCA
satisfying (F1||F2) = F” are equivalent.



The implication from the former to the latter is immediate by definition. Since
the proof for the other direction is almost trivial, we omit the proof and only
mention the intuition using the simplest case F = s. It is easy to see that ⟨B :
s : A⟩-mCCA adversary can be divided into two types: The first type that makes
(B||s)-queries before the challenge, and A-queries after the challenge, and the
second type that makes B-queries before, and (s||A)-queries after the challenge.
Then, the experiment for the first type can be simulated by a ⟨(B||s) :: A⟩-
mCCA adversary while that for the second type can be simulated by a ⟨B ::
(s||A)⟩-mCCA adversary. This is easily extended to any F ∈ QS case. Note that
if F = unbound, then the statement is again trivial because we can have F1 =
F2 = unbound (since unbound = (unbound||unbound)), and thus in this case
⟨(B||F1) :: (F2||A)⟩-mCCA security is equivalent to ⟨unbound :: unbound⟩-mCCA =
IND-CCA2 security, which implies all the mixed CCA security notions.

Next, we show that for PKE schemes with polynomially bounded plaintext
space size and for KEMs, the A-queries, which is intended to be only available
after the challenge, can actually be issued “flexibly” without destroying security.

Theorem 2. For PKE schemes with polynomially bounded plaintext space size
and for KEMs, ⟨B : F : A⟩-mCCA security and ⟨B : (F||A) : ∅⟩-mCCA security are
equivalent.

The implication from the latter notion to the former is immediate by definition.
The proof for the other direction is given in the full version. Very roughly, show-
ing the implication from the former notion to the latter is possible because the
challenge ciphertext can be made “in advance” for PKE schemes with polyno-
mially bounded plaintext space size and for KEMs. (In particular, for the PKE
case, since the plaintext space size is polynomially bounded, the adversary’s
two challenge plaintexts can be guessed correctly with probability 1/poly(k).)
Therefore, we can construct a reduction algorithm B that can successfully at-
tack ⟨B : F : A⟩-mCCA security using a successful ⟨B : (F||A) : ∅⟩-mCCA adversary
A. Actually, in showing the proof, we have to be careful about the situation
in which some of A’s flexible decryption queries (i.e. (F||A)-queries) issued by
A before “A’s” challenge contains B’s challenge ciphertext (which will be later
used as A’s challenge). However, the statistical property of PKE schemes and
KEMs called smoothness, formalized in [2], guarantees that the probability of
such a problematic situation occurring is negligible. For more details, we refer
the reader to the full version.

4 Relations among Mixed CCA Security Notions

Due to its stage-specific queries and the difference between single and parallel
queries, given two mixed CCA security notions, it is not always easy to tell if
one notion implies the other. Therefore, a natural and yet non-trivial question
is: given two mixed CCA security notions ⟨B : F : A⟩-mCCA and ⟨B̃ : F̃ : Ã⟩-mCCA,
under what conditions on B,F,A, B̃, F̃, Ã are there implications/separations?



In this section, we fully answer this question and show a necessary and suf-
ficient condition for implications/separations between any two mixed CCA se-
curity notions. Interestingly, it turns out that for PKE schemes, the relations
among security notions are different depending on its plaintext space size. The re-
lations among mixed CCA security notions for PKE schemes with polynomially
bounded plaintext space size and those for KEMs are always the same.

The rest of this section is organized as follows: In Section 4.1 we introduce
a relation over query sequences which plays a key role for our results. Then in
Sections 4.2 and 4.3 we show separation results and implication results, respec-
tively. Finally in Section 4.4, we summarize the results by showing the necessary
and sufficient conditions. For notational convenience, throughout this section we
always assume B,F,A, B̃, F̃, Ã ∈ QS∗. Due to space limitation, most of the proofs
in this section are omitted and are given in the full version, and for theorems
whose proofs are omitted, we provide some ideas for the proofs.

4.1 “is-Simulatable-by” Relation for Query Sequences

We first introduce the following relation over symbols.

Definition 6. We define a partial order “⊆1” over symbols {s, p} by s ⊆1 s,
s ⊆1 p, and p ⊆1 p.

Intuitively, the meaning of “⊆1” is that the former type oracle query “is-simulatable-
by” the latter type of oracle query. The subscript “1” of “⊆1” denotes that it is
a relation for one symbol, and it should not be mixed up with the relation for
query sequences below (although the meaning is essentially the same).

Now, we extend the “is-simulatable-by” relation to query sequences:

Definition 7. Let seq, s̃eq ∈ QS∗. We define a binary relation “⊆qs” over QS∗
as follows. “s̃eq ⊆qs seq” if and only if one of the following is satisfied:

– seq = unbound or s̃eq = ∅
– seq = (a1 . . . am), s̃eq = (b1 . . . bn) ∈ QS\{∅} where ai, bj ∈ {s, p} for each

i ∈ [m], j ∈ [n], and there exists a strictly increasing function f : [n]→ [m]
such that bj ⊆1 af(j) holds for all j ∈ [n].

If seq and s̃eq do not satisfy the above, we write “s̃eq ̸̸⊆qs seq”.

The subscript “qs” of ⊆qs stands for query sequence. It is easy to see that the
above relation “⊆qs” is a natural extension from ⊆1. Suppose s̃eq ⊆qs seq. Con-
sider two PPTA adversaries A and B attacking a same PKE scheme, where A
makes seq-queries and B makes s̃eq-queries, and a situation in which A simu-
lates the experiment for B. If s̃eq = ∅, then B makes no query. If seq = unbound,
then A can use unbounded oracle access, and thus B’s decryption oracle can
be simulated. Otherwise, (i.e. seq, s̃eq ∈ QS\{∅}), then i-th query from B can
be simulated by A’s f(i)-th query (where f is a strictly increasing function
guaranteed to exist by definition) for all i ∈ [n].



Now, given two sequences seq, s̃eq ∈ QS∗ we can tell if s̃eq ⊆qs seq or s̃eq ̸⊆qs

seq.3 For example, (s2p) ⊆qs (psps); (sp
2) ̸⊆qs (s

2ps2); sr ⊆qs s
q iff q ≥ r.

4.2 Separation Results

A common approach for showing a separation of a security notion X from a
security notion Y for PKE schemes is to construct a “separating” PKE scheme
from a building block X-secure PKE scheme: the decryption algorithm of the
separating scheme typically has some “backdoor” mechanism, which leads to
some “critical information” v (e.g. secret key for the building block PKE scheme)
for breaking Y security so that Y-adversary can, by using a decryption oracle,
reach for v and break Y-security of the separating PKE scheme while an X-
adversary cannot reach for v or simply v is useless for breaking X-security of the
scheme. We also follow this approach.

Useful Tool for Separation: Backdoor-Sequence Scheme. In order for the above
approach to work, what to use as the critical information and how to implement
such backdoor mechanism are the main issues. We wish to implement a backdoor
mechanism so that given two sequences seq, s̃eq ∈ QS∗, if s̃eq ̸⊆qs seq,4. then
an adversary making s̃eq-queries can finally reach for a critical information (and
break some security of a separating PKE scheme) while an adversary making
seq-queries cannot. This is indeed possible. We can implement such backdoor
mechanism as a sequence of backdoor information (u1, . . . , u|s̃eq|+1) and a strategy
for “how to release next backdoor information”, based on seq, s̃eq, and the critical
information v. Specifically, let s̃eq = (b1 . . . bn) such that bi ∈ {s, p} for i ∈ [n].

– The sequence of backdoor information (u1, . . . , un+1) is set up so that u1 =
1k (any publicly known value will do), u2, . . . , un are random values (which
must be hard to guess), and un+1 is the critical information v.

– The strategy for “how to release next backdoor information”, depending on
s̃eq = (b1 . . . bn), is set up so that: If bi = s, this “release strategy” on input ui

outputs ui+1 directly; If bi = p, this “release strategy” on input ui (together
with some index j) outputs a (j-th) “secret-share” of ui+1, so that if we
collect the shares more than a threshold which is set to be a value greater
than |seq|, we can reconstruct ui+1.

(Intuitively, such a release strategy is implemented into a decryption algorithm
of a separating PKE scheme so that if the decryption algorithm takes some spe-
cial information indicating “backdoor mode” as input, the output of the release
strategy is used instead of decrypting as a ciphertext.) Constructed as above, an
adversary making s̃eq-queries to the release strategy can finally obtain un+1 = v.
In particular, if bi = p then an adversary can make a parallel query to the release

3 Note that “⊆qs” forms a partial order over QS∗. However, it is not a total order.
For example, we have both (sp) ̸⊆qs (ps) and (ps) ̸⊆qs (sp).

4 As we have seen in Section 4.1, if s̃eq ⊆qs seq, then any information available for
adversaries making s̃eq-queries is also available for those making seq-queries.



strategy to obtain all the share of ui+1 at once, and thus can reconstruct ui+1.
It is actually possible to show that if s̃eq ̸⊆qs seq, then no adversary who is
only allowed to make seq-queries to the release strategy can reach for un+1 = v,
and thus we can make a difference in the information available for an adversary
making s̃eq-queries and that making seq-queries.

In order to make it easier to analyze PKE schemes used to show separations,
in the full version we formalize this “backdoor mechanism” as a “stand alone”
primitive. We call it a backdoor-sequence scheme, and use it as one of main
building blocks for constructing the separating schemes that are used to establish
the separations in the following paragraphs in this subsection.

Separation by Total Query Sequence.

Theorem 3. For both PKE schemes and KEMs, if (B̃||F̃||Ã) ̸⊆qs (B||F||A), then
⟨B : F : A⟩-mCCA security does not imply ⟨B̃ : F̃ : Ã⟩-mCCA security.

The idea for building the separating PKE scheme for showing Theorem 3 is
straightforward. We use the secret key sk for the building block scheme of
the separating PKE scheme as a critical information, and setup the backdoor-
sequence scheme appropriately. That is, a ⟨B̃ : F̃ : Ã⟩-mCCA adversary who can

(in total) make (B̃||F̃||Ã)-queries can finally reach for sk and decrypt the chal-

lenge ciphertext. However, since (B̃||F̃||Ã) ̸⊆qs (B||F||A), the property of the
backdoor-sequence scheme guarantees that a ⟨B : F : A⟩-mCCA adversary who
is only allowed to make (B||F||A)-queries in total cannot reach for it, and thus
the separating PKE scheme remains ⟨B : F : A⟩-mCCA secure. The same proof
strategy works for the KEM case.

Separation by After-challenge Queries.

Theorem 4. For both PKE schemes and KEMs, if (F̃||Ã) ̸⊆qs (F||A), then ⟨B :

F : A⟩-mCCA security does not imply ⟨B̃ : F̃ : Ã⟩-mCCA security.

For an explanation here, consider the extreme case: the separation of ⟨∅ :: Ã⟩-
mCCA security from ⟨unbound :: A⟩-mCCA security under the condition Ã ̸⊆qs A.
Note that a ⟨unbound :: A⟩-mCCA adversary can make unbounded single queries

before the challenge while a ⟨∅ :: Ã⟩-mCCA adversary can make no query. There-

fore, the critical information for breaking ⟨∅ :: Ã⟩-mCCA security must be some-
thing that is useful and available only after the challenge. We set the critical
information to be the decryption result of a ciphertext (which can be a chal-
lenge ciphertext) that is input together with the backdoor information into the
decryption algorithm of the separating scheme, and use a pseudorandom func-
tion F to realize the separating PKE scheme that has a “ciphertext-dependent”
backdoor sequence. More specifically, a seedK for F is picked as a part of a secret
key of the separating PKE scheme. The decryption algorithm of the separating
scheme, on input a ciphertext c together with backdoor and some information
that indicates “backdoor mode”, derives a pseudorandom value R = FK(c) and
use this R as a randomness for deriving the sequence of backdoors, and then
outputs a corresponding “next backdoor”. Since the backdoor-sequence scheme



is set up so that an adversary that can make Ã-queries can finally reach for the
critical information (decryption of any ciphertext), a ⟨∅ :: Ã⟩-mCCA adversary can
finally reach for the decryption result of the challenge ciphertext by appropri-
ately making decryption queries after the challenge. However, since Ã ̸⊆qs A,
the same does not apply to a ⟨unbound :: A⟩-mCCA adversary that can make only
A-queries after the challenge. Therefore, to break ⟨unbound :: A⟩-mCCA security
of the separating scheme, the adversary has to essentially break ⟨unbound :: A⟩-
mCCA security of the building block scheme (unless it breaks security of the
pseudorandom function or the backdoor-sequence scheme). Essentially the same
proof strategy works for proving the KEM case. Using a pseudorandom function
to set up “ciphertext-dependent” backdoor information was previously used in
[1] to separate NM-CCA2 = IND-CCA2 security from NM-CCA1 security.

Separation by Before-challenge Queries.

Theorem 5. For PKE schemes with superpolynomially large plaintext space
size, if (B̃||F̃) ̸⊆qs (B||F), then ⟨B : F : A⟩-mCCA security does not imply ⟨B̃ : F̃ : Ã⟩-
mCCA security.

Note that this theorem is only true for PKE schemes with superpolynomially
large plaintext space size. For an explanation here, consider the extreme case:
the separation of ⟨B̃ :: ∅⟩-mCCA security from ⟨B :: unbound⟩-mCCA security under

the condition B̃ ̸⊆qs B. This time, the critical information for breaking ⟨B̃ :: ∅⟩-
mCCA security must be something that is useful only before the challenge, because
⟨B̃ :: ∅⟩-mCCA adversary can make no query after the challenge. We use a one-
way function f to construct the separating PKE scheme so that it has “weak”
plaintexts, which are not encrypted at all by the encryption algorithm of the
separating PKE scheme. (Similar ideas are used in [26, 24, 2].) A public key
of the separating PKE scheme contains V = f(m∗) for some random element
m∗ chosen from the plaintext space of the underlying PKE scheme, and weak
plaintexts m are the ones satisfying f(m) = V . We set the critical information
to be m∗ itself, where the backdoor-sequence scheme will finally release m∗ if
B̃-queries are appropriately performed, and thus m∗ can be used as one of two
challenge plaintexts to break ⟨B̃ :: ∅⟩-mCCA security. However, since B̃ ̸⊆qs B,
the property of the backdoor-sequence scheme guarantees that a ⟨B :: unbound⟩-
mCCA adversary cannot reach for m∗ before the challenge (unless it break one-
wayness of f). Moreover, the weak plaintext m∗ is useless even if it is found
after the challenge. Therefore, in order to break ⟨B :: unbound⟩-mCCA security of
the separating scheme, the adversary essentially has to attack ⟨B :: unbound⟩-
mCCA security of the building block scheme.

4.3 Implication Results

A combination of Theorems 3, 4, and 5 shows that given two mixed CCA security
notions ⟨B : F : A⟩-mCCA and ⟨B̃ : F̃ : Ã⟩-mCCA, the latter notion is separated from

the former if (B̃||F̃||Ã) ̸⊆qs (B||F||A), (B̃||F̃) ̸⊆qs (B||F), or (F̃||Ã) ̸⊆qs (F||A) holds
for PKE schemes with superpolynomially large plaintext space. We show that if



none of the above conditions are satisfied, then we actually have an implication
from the former notion to the latter, where this implication is also true for all
PKE schemes and KEMs.

Theorem 6. For both PKE schemes and KEMs, if (B̃||F̃||Ã) ⊆qs (B||F||A),
(B̃||F̃) ⊆qs (B||F), and (F̃||Ã) ⊆qs (F||A) hold simultaneously, then ⟨B : F : A⟩-
mCCA security implies ⟨B̃ : F̃ : Ã⟩-mCCA security.

This theorem holds because it can be shown that if the three conditions regarding
query sequences are satisfied, then whatever strategy regarding the “flexible”
queries an ⟨B̃ : F̃ : Ã⟩-mCCA adversary may take, the ⟨B̃ : F̃ : Ã⟩-mCCA experiment
can be perfectly simulated by an ⟨B : F : A⟩-mCCA adversary.

Combining Theorem 6 with Theorem 2, we obtain the following corollary.

Corollary 1. For PKE schemes with polynomially bounded plaintext space size
and for KEMs, if (B̃||F̃||Ã) ⊆qs (B||F||A) and (F̃||Ã) ⊆qs (F||A) hold simultane-

ously, then ⟨B : F : A⟩-mCCA security implies ⟨B̃ : F̃ : Ã⟩-mCCA security.

Proof. By Theorem 2, we know that for PKE schemes with polynomially
bounded plaintext space size and for KEMs, ⟨B : F : A⟩-mCCA security implies

⟨B̃ : F̃ : Ã⟩-mCCA security if and only if ⟨B : (F||A) : ∅⟩-mCCA security implies ⟨B̃ :

(F̃||Ã) : ∅⟩-mCCA security. Then, Theorem 6 tells us that the sufficient condition

of the implication from the former notion to the latter is: “(B̃||(F̃||Ã)||∅) ⊆qs

(B||(F||A)||∅), (B̃||(F̃||Ã)) ⊆qs (B||(F||A)), and ((F̃||Ã)||∅) ⊆qs ((F||A)||∅) hold
simultaneously.” Simplifying this condition yields Corollary 1. ⊓⊔

4.4 Necessary and Sufficient Conditions for Implication/Separation

As a summarization of the results in this section, we show the following necessary
and sufficient conditions for implication/separation among mixed CCA security.

Theorem 7. For PKE schemes with superpolynomially large plaintext space
size, ⟨B : F : A⟩-mCCA security implies ⟨B̃ : F̃ : Ã⟩-mCCA security if and only

if (B̃||F̃||Ã) ⊆qs (B||F||A), (B̃||F̃) ⊆qs (B||F), and (F̃||Ã) ⊆qs (F||A) hold simulta-
neously.

Proof. This follows from a combination of Theorems 3, 4, 5, and 6. ⊓⊔

Theorem 8. For PKE schemes with polynomially bounded plaintext space size
and for KEMs, ⟨B : F : A⟩-mCCA security implies ⟨B̃ : F̃ : Ã⟩-mCCA security if and

only if (B̃||F̃||Ã) ⊆qs (B||F||A) and (F̃||Ã) ⊆qs (F||A) hold simultaneously.

Proof. This follows from a combination of Theorems 3, 4, and Corollary 1. ⊓⊔

We believe the relations among security notions shown in this section are
useful for future studies on PKE schemes and KEMs whose security notions
can be expressed in mixed CCA security notions. For example, by utilizing the
above theorems, we can fully establish the relations among bounded parallel



CCA security and other existing security notions in Table 1. We also note that
the previously established relations among security notions [1, 9, 16] can be re-
proved as corollaries from the above theorems.

Importance of Plaintext Space Size in Relations among Security Notions for PKE
Schemes. As our results in this section have clarified, it is important to care
about the size of the plaintext space size for relations among security notions
for PKE schemes. Specifically, Theorems 7 and 8 tell us that given ⟨B : F : A⟩-
mCCA and ⟨B̃ : F̃ : Ã⟩-mCCA security notions, the implication/separation from the

former notion to the latter notion differs if (B̃||F̃||Ã) ⊆qs (B||F||A), (F̃||Ã) ⊆qs

(F||A), and (B̃||F̃) ̸⊆qs (B||F) hold simultaneously.

5 Feasibility Results from IND-CPA Secure PKE Schemes

By adopting the notion of mixed CCA security, in this section we show two black-
box constructions of PKE schemes, which can encrypt plaintexts of polynomial
length (thus, exponentially large plaintext space), from IND-CPA secure schemes.

The first result is the following.

Theorem 9. For any polynomial q ≥ 0, there exists a shielding black-box con-
struction of a ⟨∅ : sqp : ∅⟩-mCCA secure PKE scheme which can encrypt plaintexts
of polynomial length from an IND-CPA secure PKE scheme.

Proof. This theorem is proved by combining the existing results and Theorem 2
in Section 3.2. The following statement is due to the result by Choi et al. [8].

Lemma 1. [8] For any polynomial q ≥ 0, there exists a shielding black-box
construction of an NM-q-CCA2 secure PKE scheme which can encrypt plaintexts
of polynomial length from an IND-CPA secure PKE scheme.

Recall that NM-q-CCA2 = ⟨∅ : sq : p⟩-mCCA (see Table 1). Since any ⟨B :
F : A⟩-mCCA secure PKE scheme can be trivially used as a KEM with the same
security by encrypting a uniformly random string K and using it as a session-
key, Lemma 1 implies that we can construct a ⟨∅ : sq : p⟩-mCCA secure KEM (we
call it the CDMW KEM ) from any IND-CPA secure PKE scheme in a black-box
and shielding manner. Then, by Theorem 2 for KEMs, we can immediately say
that the CDMW KEM is ⟨∅ : sqp : ∅⟩-mCCA secure. Finally, by combining the
CDMW KEM with an IND-CCA2 secure DEM, we obtain the desired result. (It
is implicit from the works by Cramer and Shoup [10] and by Herranz et al. [16]
that if we combine a ⟨B : F : A⟩-mCCA secure KEM and an IND-CCA2 secure
DEM in a straightforward manner, we can obtain a ⟨B : F : A⟩-mCCA secure PKE
scheme.) Note that we can construct an IND-CCA2 secure DEM even without any
computational assumption (see e.g. [10, Section 7.2.2]). Moreover, the “shielding”
and “black-box” properties are trivially preserved by our construction. This
completes the proof of Theorem 9. ⊓⊔
⟨∅ : sqp : ∅⟩-mCCA security implies NM-q-CCA2 = ⟨∅ : sq : p⟩-mCCA security

by definition, while by Theorem 7 we know that for PKE schemes with su-
perpolynomially large plaintext space size, ⟨∅ : sq : p⟩-mCCA security does not



imply ⟨∅ : sqp : ∅⟩-mCCA security. Therefore, for these types of PKE schemes,
⟨∅ : sqp : ∅⟩-mCCA security is strictly stronger than NM-q-CCA2 security.

We remark that Theorem 2 actually implies that the original CDMW PKE
scheme [8] already achieves the shielding black-box construction of ⟨∅ : sqp : ∅⟩-
mCCA secure PKE schemes if it is used with short plaintexts (so that the plaintext
space size is bounded to be polynomial). However, the Choi et al. result itself does
not imply Theorem 9, because it is not obvious how to construct ⟨∅ : sqp : ∅⟩-
mCCA secure PKE schemes which can encrypt plaintexts of polynomially length
from PKE schemes that satisfies the same security but has only polynomially
bounded plaintext space size, in a black-box and shielding manner5.

We also remark that the original CDMW PKE scheme [8] might be shown to
be ⟨∅ : sqp : ∅⟩-mCCA secure as it is for large plaintext space size, using the same
assumptions used to show its NM-q-CCA2 security. However, our main purpose
here is to show the improved feasibility rather than the concrete construction
and efficiency, and thus we did not try proving directly that the CDMW PKE
is ⟨∅ : sqp : ∅⟩-mCCA secure.

Theorem 9 implies the following corollary.

Corollary 2. There exists a shielding black-box construction of an IND-1-pCCA2
secure PKE scheme which can encrypt plaintexts of polynomial length from an
IND-CPA secure PKE scheme.

Our second result on black-box constructions is the following.

Theorem 10. For any polynomials q, q′ ≥ 0, there exists a shielding black-box
construction of a ⟨sqp : sq

′
: ∅⟩-mCCA secure PKE scheme which can encrypt

plaintexts of polynomial length from an IND-CPA secure PKE scheme.

Proof. To prove this theorem, we will use the following result which is implicit
from [9, Lemma 1]6:

Lemma 2. (Implicit from [9].) For any B ∈ QS∗ and any polynomial q′ ≥ 0,
there exists a shielding black-box construction of a ⟨B : sq

′
: ∅⟩-mCCA secure PKE

scheme from a ⟨B :: ∅⟩-mCCA secure PKE scheme.

We call the construction by Cramer et al. [9] the CHH+ PKE scheme. Due
to Theorem 9 above, for any polynomial q ≥ 0, we can construct a ⟨∅ : sqp :
∅⟩-mCCA secure PKE scheme, which is also ⟨sqp :: ∅⟩-mCCA secure, from any
IND-CPA secure PKE scheme. Then, by using this PKE scheme as a building
block of the CHH+ PKE scheme, due to Lemma 2, we have a PKE scheme
which satisfies the claimed security. The CHH+ PKE construction is shielding

5 Recently, Myers and Shelat [21] showed a black-box construction of multi-bit
IND-CCA2 secure PKE schemes from 1-bit IND-CCA2 secure PKE schemes. Though
it seems that their result can be extended (with some modification) to any mixed
CCA security, we remark that their construction is non-shielding.

6 The original statement of Lemma 1 in [9] shows a special case of Lemma 2 in which
B = ∅. Moreover, the special case of Lemma 2 in which B = unbound is also men-
tioned in [9]. See Remark 2 after the proof of Lemma 1 in [9].



and black-box. Since the construction of the PKE scheme in Theorem 9 is also
shielding and black-box, so is the construction as a whole. The size of the plain-
text space is maintained as well. This completes the proof of Theorem 10. ⊓⊔

We note that by Theorem 7, for PKE schemes with superpolynomially large
plaintext space size, ⟨sqp : sq

′
: ∅⟩-mCCA security achieved in Theorem 10 cannot

be directly compared with the notion achieved in Theorem 9 (actually even with
NM-CPA= ⟨∅ :: p⟩-mCCA security). However, the security achieved in Theorem 10
allows the bounded number of “flexible” single queries before and after the chal-
lenge, after the parallel query in the first stage, while the security achieved by
Theorem 9 does not allow any query after one parallel query for an adversary.
Thus we believe that Theorem 10 is also interesting as a feasibility result.

Handling Decryption of Unboundedly Many Ciphertexts before the Challenge. Pre-
vious to our work, none of the constructions of PKE schemes that use only
IND-CPA secure ones have achieved security against adversaries that can observe
unboundedly many decryption results (via the decryption oracle) in the first
stage, i.e., before choosing two challenge plaintexts, regardless of whether the
construction is black-box or non-black-box. On the other hand, the construc-
tions in Theorems 9 and 10 (and also the combination of [8] and Theorem 2)
achieve security against adversaries that can observe unboundedly many decryp-
tion results by one parallel decryption query before the challenge.

Thus, due to the results in this section, it has been clarified that the diffi-
culty of constructing an IND-CCA1 secure PKE scheme only from IND-CPA secure
ones lies not in whether the number of decryption results that the adversary can
see before the challenge is bounded or not, but in whether the number of the
adversary’s “adaptive” decryption queries is bounded.

6 Open Problems

Constructions Secure against Two or More Parallel Queries. None of our fea-
sibility results achieves mixed CCA security in which we can handle more than
one parallel decryption query, and whether we can construct a PKE scheme
with such security only using IND-CPA secure schemes is still unclear. Therefore,
we would like to leave it as an open problem. Since any (unbounded) CCA se-
cure PKE construction from IND-CPA secure ones must first be secure against
adversaries who make two or more parallel decryption queries, we believe that
overcoming this barrier of “two parallel queries” is worth tackling.

We notice that if we can, by only using an IND-CPA secure PKE scheme as a
building block, construct a (strong) designated verifier (DV) NIZK proof system
[23, 9] for any NP language with q-bounded “parallel” strong soundness, which is
a natural extension of a (strong) DV-NIZK with q-bounded strong soundness [9]
in the soundness experiment of which an adversary can ask verification of many
theorem/proof pairs in a parallel manner, then by using the DV-NIZK proof
system in the Dolev-Dwork-Naor construction [11, 23, 9] (resp. the Naor-Yung
construction [22]) we will be able to construct an IND-(q + 1)-pCCA2 (resp.



IND-(q+1)-pCCA1) secure PKE scheme. However, how to construct such a DV-
NIZK proof system only from IND-CPA secure PKE schemes is not known so far.
This might be worth looking at towards the next step from our results.

Stronger Black-Box Impossibility Results. Since the constructions in Theorems 9
and 10 are shielding and black-box, according to the impossibility result of [12]
and the transitivity of black-box constructions, we have that there exists no
shielding black-box construction of an IND-CCA1 secure PKE scheme from PKE
schemes which satisfy any security notion achieved in Theorems 9 and 10.

It would also be interesting to clarify if we can show a stronger impossibility
result than [12] such that constructing IND-q-pCCA1 secure PKE schemes from
IND-CPA secure one in a shielding and black-box manner for some q > 1 is
impossible. (Or more generally, we can also consider the impossibility of some of
mixed CCA security notion.) Note that this strengthening of the impossibility
result of [12] can make sense only if we consider parallel decryption queries,
because the result by Choi et al. [8] already shows that it is possible to achieve
the strongest form of (ordinary) bounded CCA security, namely, NM-q-CCA2, in
a black-box and shielding manner.
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