
Sub-Linear, Secure Comparison With Two
Non-Colluding Parties

Tomas Toft

Dept. of CS, Aarhus University, Denmark
ttoft@cs.au.dk

Abstract. The classic problem in the field of secure computation is
Yao’s millionaires’ problem; we consider two new protocols solving a
variation of this: a number of parties, P1, . . . , Pn, securely hold two `-
bit values, x and y – e.g. x and y could be encrypted or secret shared.
They wish to obtain a bit stating whether x is greater than y using only
secure arithmetic; this should be done without revealing any information,
even the output should remain secret. The present setting is special in
the sense that it is assumed that two specific parties, referred to as
Alice and Bob, are non-colluding. Though this assumption is not satisfied
in general, it clearly is for the main example of this work: two-party
computation based on Paillier encryption.
The first solution requires O(log(`)(κ+ loglog(`))) secure arithmetic op-
erations in O(log(`)) rounds, where κ is a correctness parameter. The
second solution requires only a constant number of rounds, but increases
complexity to O(

√
`(κ+ log(`))) arithmetic operations.

For the motivating setting, each arithmetic operation requires a constant
number of Paillier encryptions to be exchanged between Alice and Bob.
This implies that both solutions require only a sub-linear number of
invocations (in the bit-length, `) of the cryptographic primitives. This
does not imply sub-linear communication, though, as the size of each
encryption transmitted is more than ` bits.

Key words: Secure computation, Yao’s Millionaires’ problem.

1 Introduction

The concept of secure multiparty computation was introduced by Yao with the
now classic millionaires’ problem, [Yao82]: two millionaires meet in the street
and wish to determine who is richer without revealing their net worths. Since
then, this problem – along with variations of it – has received much interest in
the research community. Not only is it the original problem, it is also a quite
fundamental primitive for secure computation. Auctions are an immediate appli-
cation, e.g. as considered in [NPS99]. Indeed, they are the motivating examples
of many of the papers on secure comparison mentioned below. The problem –
and extensions such as determining the minimal of multiple inputs – also plays
an important role elsewhere, e.g. in secure data mining such as [LP00] or [JW05]
and secure optimization such as [Tof09].

Secure arithmetic modulo some integer M can be seen as secure integer
computation when no overflows modulo M occur. Augmenting such primitives
with a protocol for secure comparison provides a setting which allows general
integer computation. This approach is often used, when considering applications
as those mentioned above. Thus, improving comparison – as the present work –
implies improvement of a whole range of applications. These are the first such
protocols which invoke the cryptographic primitives o(`) times, where ` is the
bit-length of the inputs.

1.1 Related Work

As the problem of secure comparison has received so much interest, there is a
large body of related work, which solves the problem in various settings and with
focus on different properties. Some solutions focus on theoretical efficiency – low
round complexity (constant or even single round), as well as low communication
or computation complexity. Others consider practice, attempting to obtain a fast,
real-world solution by balancing the different resources. There are also many
variations of the problem. For example: where do the inputs come from; are
they known to any of the parties or are they the result of previous computation?
Should the result be public, should simple actions be performed based on the
outcome, or should the result be private to allow it to be used in arbitrary further
computation?

There are essentially two different settings. The two-party case contains Yao
circuits, [Yao86], but also includes [Fis01,BK06,DGK07,GSV07,LL07]. The lat-
ter are generally not limited to known inputs and public output. The multiparty
setting can be split into the cryptographic and the information theoretic (i.t.)
settings. [DFK+06,NO07] consider constant rounds solutions in the i.t. setting,
while [ST06] considers computationally efficient solutions based on Paillier en-
cryption [Pai99], i.e. the cryptographic setting. Hybrids such as [BCD+09], are
also possible: their protocol is based on secret sharing, but the focus is entirely
on practice, and primitives guaranteeing only computational security are applied
to improve efficiency.

Though radically different, the comparison protocol of Feige et al., [FKN94],
is in a sense the closest related work as it uses quadratic residues at its core.
However, the basic protocol only allows comparison of integers between zero and
two. Though it can be generalized, comparing anything but very small values
appears highly impractical.

1.2 Contribution

This paper considers a novel approach at secure comparison. The setting consists
of n players, P1, . . . , Pn that jointly hold two secret, `-bit inputs x, y ∈ ZM to be
compared – ordering is obtained by viewing the inputs as `-bit integers. Two of
the parties, Alice and Bob, are guaranteed by assumption to be non-colluding.
I.e. the adversary cannot corrupt both simultaneously. The desired outcome is for
the parties to hold (in a secure fashion) a bit stating whether or not x > y. The

motivating setting is the two-party setting; for threshold schemes the protocols
are limited to the case when the threshold is 1. When there are few parties
(say three or four), this is completely acceptable, however, the protocols are not
generally applicable.

This clearly solves the “standard” millionaires’ problem: the millionaires sim-
ply provide their inputs (e.g. encrypt and send them to the relevant parties).
Once the result has been determined, it can be revealed (e.g. decrypted). How-
ever, having such a comparison protocol realizes the secure integer computation
setting from above – the outcome of a comparison could equally well be used in
subsequent computation.

Two protocols are presented here, both based on arbitrary secure arithmetic
modulo M , where M is either an RSA-modulus (e.g. Paillier encryption) or a
prime (e.g. secret sharing over FM where M is prime). The first solution requires
O(log(`)(κ + loglog(`))) arithmetic operations in O(log(`)) rounds, where κ is
a correctness parameter. The second solution is constant-rounds, but increases
complexity to O(

√
`(κ + log(`))). With the exception of [FKN94], all previous

solutions known to the author utilize access to the binary representation of the
inputs (or the binary representation of random values related to the inputs).
Hence, this is the first solution that requires less than a linear number of invo-
cations of the primitives in the bit-length of the inputs.

Security against passive adversaries follows almost entirely from the security
of the underlying arithmetic. However, this is not the case with respect to active
adversaries. The problem is that the protocol specifies Alice and Bob to provide
inputs of bounded size, which cannot be verified efficiently using only arithmetic.
Fortunately such a primitive exists in many settings including Paillier based ones
as well as based on Shamir sharing over a prime field, FM .

1.3 An Overview of this Paper

Section 2 introduces the setting and primitives in the form of an ideal function-
ality; Sect. 3 then explains how this can be realized. Secure equality testing is
then presented in Sect. 4; this is needed for both solutions. The two contribu-
tions are then presented in Sect. 5 and Sect. 6. Finally, two variations are noted
in Sect. 7, before the concluding remarks of Sect. 8.

2 Primitives and Notation

The basic setting will consist of an ideal functionality providing the underlying
primitives, the main one being secure ZM arithmetic, i.e. it is an arithmetic
black-box (ABB), [DN03]. This approach ensures that it is possible to ignore the
details of the underlying primitives; focus is on the required properties rather
than on specific solutions.

2.1 The Arithmetic Black-box

The arithmetic black-box allows n parties, P1, . . . , Pn, to securely store and
retrieve elements of a ring ZM . Here, M will be either a prime or an RSA-
modulus, i.e. the product of two odd primes.

The secure storage (input/output) can be thought of as secret sharing, and
we borrow that notation, writing stored values in square brackets, [x]. However,
as noted other solutions are also possible, and the notation could equally well
represent encryption: secure storage could be obtained by having one or more
parties store encryptions under some public key. Input then means “encrypt and
send to these parties,” while output means “decrypt and broadcast.” Naturally
the decryption key itself must not be held by anyone also holding the encryptions,
however, it could be secret shared or held by a different party. The ABB can
also provide an output to only a single party. This is always achievable, e.g. by
additively masking the output with a random value provided by the receiving
party. For specific primitives, other solutions may be preferable, though.

In addition to secure storage, the ideal functionality allows arithmetic com-
putation on the stored values. Such computation is written using infix notation
in the “plaintext” space, e.g.

[x · y + z]← [x] · [y] + [z] .

The actual operations to be performed depend on the details of the realiza-
tion. Presently it does not matter whether an operation is a protocol invoca-
tion (e.g. the multiplication protocol of Ben-Or et al. [BGW88]) or simply local
computation by one or more parties (e.g. multiplying two Paillier encryptions
provides an encryption of the sum of the two plaintexts).

Complexity of a protocol based on the ABB is found by simply counting the
number of operations (input/output or arithmetic1) performed. It is assumed
that the ABB allows operations to be performed concurrently (representing
e.g. executing multiple multiplication protocols in parallel), thus, round com-
plexity will be the number of sequential operations performed.

2.2 Required Extensions of the ABB

The ABB-setting considers n parties, P1, . . . , Pn. The present work requires two
of these – denoted Alice and Bob – to be mutually incorruptible, i.e. at least
one of them will remain honest. We do not specify the corruption sets further.
Indeed, the remaining n − 2 parties are ignored. The ideas are best explained
by focusing on Alice, Bob, and the ABB. Including the “helper parties”2 would
complicate the explanation unnecessarily.

1 Similarly to other work, we focus on communication complexity and assume that
the underlying primitives are additively homomorphic. Thus, only multiplications
are counted.

2 Denoting the remaining n− 2 parties as “helpers” is not completely fair. They may
only be assisting during the present comparison protocols, but could have an equal
stake in the overall computation.

As noted above, the present protocols do not provide active security based
only on the arithmetic black-box. Even when actively secure arithmetic is given,
malicious parties can still deviate. Two extensions to the ABB are therefore
needed in order to eliminate these issues. First, given an input, it must be ver-
ifiable (using only constant work) that it is less than some public bound. This
allows the protocol to specify that an input must come from a small, specified
range. Second, it must be verifiable that two held values are indeed equal.

Finally, to improve readability we introduce a bit of syntactic sugar, writing

[b] ? [x] : [y]

to denote conditional selection between two secret values, [x] and [y], based on
an secret bit, [b]. This can be achieved using arithmetic only, and the expression
is simply shorthand for

[b] ([x]− [y]) + [y]

which clearly equals either x or y depending on b ∈ {0, 1}.

3 Realizing the Arithmetic Black-box

The arithmetic black-box can be realized in different settings and be based on
various primitives. However, as the present setting requires two of the parties to
be mutually incorruptible, our prime example is two-party computation based on
Paillier encryption [Pai99]. The realization is sketched in Sect. 3.1. It is stressed
that realizations with more than two parties are also relevant. Two possibili-
ties are presented in Sect. 3.2; both provide security against active adversaries.
The realizations of the extensions needed to provide active security below are
provided in Sect. 3.3.

3.1 Passively Secure, Two-party Paillier-based Arithmetic

Paillier’s encryption scheme [Pai99] is a semantically secure, additively homo-
morphic, public-key cryptosystem over ZN , where N = pq is an RSA-modulus.
In the simple, two-party setting, Bob holds a copy of Alice’s public key. To pro-
vide an input means to hand Bob a fresh encryption of it. Output is realized
by sending the relevant encryption to Alice (rerandomizing it first); she then
decrypts and returns the plaintext to Bob. At this point both parties know the
value in question.

Regarding the realization of the secure arithmetic, the homomorphic prop-
erty allows Bob to compute linear combinations of encryptions that he holds.
However, he is unable to obtain encryptions of products without the help of
Alice. For this he uses the standard protocol seen in Fig. 1, where subtraction
simply means “invert and add.” (In the ciphertext domain this means “multiply
by the multiplicative inverse.”) Correctness follows from

xy = (xy + ryx+ rxy + rxry)− ryx− rxy − rxry
= (x+ rx)(y + ry)− ryx− rxy − rxry
= x′y′ − ryx− rxy − rxry.

Alice: sk pk = N Bob: [x],[y]

rx∈RZN

ry∈RZN

[x′]← [x] + rx
[y′]← [y] + ry

[x′] , [y′]
←−−−−−−−−−−−−−−−−−−−−−

x′ ← decr ([x′])
y′ ← decr ([y′])

[x′y′]
−−−−−−−−−−−−−−−−−−−−−→

[σ]← rx [y] + ry [x] + rxry
[xy]← [x′y′]− [σ]

Fig. 1. Multiplication of two encryptions.

On the intuitive level, this clearly realizes the arithmetic black-box. For in-
put/output Alice’s view consists only of the encryptions of outputs she receives,
while Bob only sees the outputs and encryptions under Alice’s key. For the
multiplication protocol, Alice receives two encryptions of masked (i.e. uniformly
random) values, while Bob simply receives two additional encryptions. Neither
provides any information.

Formally simulating these views is simple. Sketching the ideas, Alice must be
handed fresh encryptions, either of the output to be received (which the simulator
knows) or a random value in the case of the multiplication protocol. Bob on the
other hand expects to see encryptions of the values in question. The simulator
cannot generate these, but from Bob’s point of view they are indistinguishable
from arbitrary encryptions, as the scheme is semantically secure. Hence any fresh
encryptions under Alice’s (simulated) key will do.

3.2 The Multiparty Case

The arithmetic black-box can also be realized in a multiparty setting. Note that
both of the options mentioned are secure against active adversaries, but may be
simplified, if it is assumed that the adversary is honest-but-curious only, i.e. if
the corrupt parties follow the protocol as specified.

The first candidate consists of using Shamir’s secret sharing scheme over the
prime field FM along with the protocols of Ben-Or et al. [Sha79,BGW88]. This
results in a threshold scheme, which is not applicable in general. However, if
the threshold is 1, then at most one party will be corrupt. In that case any two
parties can take the role of Alice and Bob.

A multiparty solution based on Paillier encryption is also possible using the
techniques of Cramer et al. [CDN01]. In that setting, all parties hold all cipher-
texts, while the key is secret shared among them. Again, a threshold solution
allowing at most one corrupt party is a possible setting. Note that though not
presented so, it is possible to use the protocols of [CDN01] with a threshold

t ≥ n/2; this provides an alternative, two-party setting, which is more suited
when considering active adversaries.

3.3 Active Security

Both solutions of the previous section realize the arithmetic black-box in the
presence of active adversaries. It remains to provide the required extensions,
i.e. to describe how to verify that two values are equal, and how to demonstrate
that an input is of bounded size.

Equality of two values is easily verified using only arithmetic by outputting
their difference. This is of course not secure in general, however, in the present
setting, one of the secret values depends only on inputs from one party (who of
course knows the actual value). It can therefore be viewed as coming directly
from that party. For an honest party, the output is always 0, while for a corrupt
party, the adversary will know the output in advance. Hence no new information
can be obtained. It is noted that for specific primitives, more direct solutions
may be more efficient.

The second problem is to verify that an input provided by some party is
indeed of bounded size. This can be done by taking a detour over the integers,
as any non-negative integer can be written as the sum of the squares of four
integers. For a Paillier based setting, Schoenmakers and Tuyls [ST06] note that
this can be achieved using integer commitments [Bou00,Lip03,DJ02]. For the
setting based on Shamir sharing, a similar proof that a value is of bounded size
can be obtained using linear integer secret sharing, [Tho09]. Sketching the latter
solution, the key idea is to first verify that a value (shared over the integers) is
of the desired size (i.e. provide the four integers). This sharing is then converted
to a Shamir sharing over FM .

4 Secure Equality Testing

An additional primitive is needed before the comparison protocols can be pre-
sented: securely determining a secret bit stating if two values, [x] and [y], are
equal. The protocol is a variation of the secure equality testing of secret shared
values, [NO07,Tof07]; the latter work notes that the ideas generalize to the case
of multiparty computation based on Paillier encryption. Note that in specific set-
tings, specialized variations of the present protocols will most likely be preferable
to the general solution presented here.

The main idea is seen in Fig. 2. To test equality of two values, it suffices
to test if their difference, [d], is 0. If this is the case, then adding a random

square, [r]
2
, results in a value with Jacobi symbol jd+r2 =

(
d+r2

M

)
= 1. If

[d] 6= 0, however, then the Jacobi symbol is −1 with probability roughly 1/2,
[Per52,Tof07]. The Jacobi symbol can therefore be used as a test of equality.3

3 As M is either the product of large primes or a large prime itself, jd+r2 = 0 occurs
with negligible probability. In some settings, the issue can be eliminated using arith-

As the Jacobi symbol of a product is the product of the Jacobi symbols of the
factors, and the multiplicative inverse of ±1 is itself, [jd+r2] is correctly computed
when [js] and [jt] are the Jacobi symbols of [s] and [t] respectively. The final
computation simply maps −1 to 0 while preserving a 1.

Alice ABB: [x],[y] Bob

[d]← [x]− [y]
rA∈RZ∗M rB∈RZ∗M

[rA]
−−−−→

[rB]
←−−−−

[r]← [rA] [rB]
s∈RZ∗M

[s]
←−−−−

[t]← ([d] + [r]2) [s]
t←−−−−

jt ←
(

t
M

)
js ←

(
s
M

)
[jt]−−−−→

[js]
←−−−−

[jd+r2]← [jt] · [js][
j̃
]
← [jd+r2] + 1[

x
?
= y
]
← 2−1

[
j̃
]

Fig. 2. Testing equality (with error probability ≈ 1/2).

A false positive – an incorrect 1 – occurs with a probability of roughly 1/2.
However, if the protocol is repeated κ times on the same input, the probability
that all executions provide false positives is negligible. Determining if all invo-
cations have returned 1 can be done by computing the κ-ary fan-in AND of the
test results. This can be done in O(1) rounds using O(κ) arithmetic operations
as described in [DFK+06]. The basic idea is to compute the sum of the bits
plus one, [σ], and use this as input to the known, (κ + 1)-degree polynomial
mapping 1, . . . , κ to 0 and κ+ 1 to 1. The powers of [σ] – [σ] ,

[
σ2
]
, . . . ,

[
σκ+1

]
– can be computed in constant rounds using O(κ) multiplications by utilizing
(a simple variation of) the unbounded fan-in multiplication protocol of Bar-Ilan
and Beaver, [BB89].

Correctness. Correctness follows by the intuition above: each test always returns
an encryption of 1 when x = y, and the logical AND of these bits is therefore 1
as well. When x 6= y, then except with negligible probability in κ, at least one
of the tests will successfully determine this, i.e. return 0. In this case the logical
AND is also 0.

metic, e.g. by considering
(

d2+r2

M

)
when M ≡ 3 mod 4 is prime. There the additive

inverse of a quadratic residue will never be a quadratic residue itself.

Passive security. In Fig. 2, Alice receives t. This is the only potential information
leak, as the arithmetic black-box is secure by definition. As M only has large
prime factors, d + r2 is in Z∗M , except with negligible probability. This implies
that [s] completely blinds it, hence Alice learns nothing. More generally, Alice
and Bob are mutually incorruptible and s and t are known only to them, so no
adversary will learn both s and t.

Active security. To ensure security against active adversaries, the actions of
the parties must be verified. The only issues are the inputs, as security of the
arithmetic is immediate. I.e. the parties must verify that the values provided by
Alice and Bob are as specified. There are two issues:

1. Demonstrate that an input is in Z∗M .
2. Verify that an input is the Jacobi symbol of a stored, inputter-known value.

Note that this suffices; [r] is uniformly random as either Alice or Bob is honest.
For Alice or Bob to demonstrate that an input is invertible, it suffices to

provide an additional uniformly random invertible value, and have the product
of the two revealed. All parties can then verify that that the product is invertible,
which implies the same of both factors. This reveals no other information, as the
second element masks the real value.

The second issue is slightly more difficult. For Alice to demonstrate that [jt]
is the Jacobi symbol of [t] she provides uniformly random pairs, ([ji] , [ti]) for
1 ≤ i ≤ k, such that ji =

(
ti
M

)
. Bob then flips k coins, b1, . . . , bk; the ABB is then

asked to compute and reveal either the pair ([ji]·[jt] , [ti]·[t]) if bi is 1 or ([ji] , [ti])
otherwise. All parties then verify that the Jacobi symbol of each revealed pair
matches the element. To cheat, Alice would have to guess all of Bob’s coin flips
– this can only occur with probability negligible in k. Note that no information
is revealed when Alice is honest: the parties merely see random pairs, ([ji] , [ti]),
or maskings of [t] and its Jacobi symbol. For Bob to demonstrate the same, the
roles are simply reversed.

It is often possible to do better than the general solution. When, for example,
M is prime, elements with known Jacobi symbol can be efficiently constructed
using only arithmetic:

[x]← [x′]
2 ·
(
2−1([jx] + 1) ? 1 : ω

)
,

where ω is a fixed element with Jacobi symbol −1, [NO07,Tof07].
A similar calculation is possible when M is the product of two primes both

congruent to 3 modulo 4. In this case −1 is a non-residue with Jacobi symbol 1,
hence any element [x] can be written as

([b] ? 1 : −1) [x′]
2 ·
(
2−1([jx] + 1) ? 1 : ω

)
where [b] is a bit. (If Alice cannot compute b, i.e. distinguish quadratic residue
from non-residues, she can instead provide a uniformly random value with the
same Jacobi symbol. The parties can then reveal the product of this and the
actual value to Bob, who verifies that its Jacobi symbol is 1.)

Complexity. For passive security, when M is prime, or when M is the product of
two primes both congruent to 3 modulo 4, executing κ copies of Fig. 2 in parallel
and performing the κ-ary fan-in AND requires O(κ) ABB-operations executed in
O(1) rounds. In other settings – i.e. when it is not possible to efficiently verify a
Jacobi symbol – arithmetic complexity increases by a factor of k. For simplicity
we can view this as being incorporated into κ – say k =

√
κ – though strictly

speaking it should be treated separately.

5 The log-Rounds Protocol

Based on the arithmetic black-box presented in Sect. 2 – including extensions
such as the equality test – the log-rounds protocol can now be explained. In a
sense, this paper follows the same overall strategy as many of the previous solu-
tions: transform the problem to a comparison of “known” values and determine
their most significant differing bit-position; this provides the result. What differs
are the means to achieve this goal.

On the intuitive level, the approach can be viewed as a binary search, though
strictly speaking, this is not the case. The full protocol is seen in Fig. 3 and is
explained during the argument of correctness. Assume for simplicity that ` is
a power of two. This can always be ensured by viewing x and y as numbers of
larger (but less than double) size. Further, assume that the modulus of the ABB
is much larger than than the input size, M�2`+κ

′
for security parameter κ′.

Correctness. Correctness of the protocol is quite simple, once the intuition is
understood. Therefore, rather than presenting the protocol from beginning to
end, we present the ideas. This requires starting at both the end and the be-
ginning at the same time, and working our way towards the middle. It explains
why a given computation is performed by showing how it helps solve the original
problem.

Initially the arithmetic black-box is used to compute the value [z]. As x ≥
y ⇔ z ≥ 2`, we find that if [z`] really is an encryption of the `’th bit of z,
then the result is correct. This is the case if z̄ = z mod 2`: z − (z mod 2`) sets
all the ` least significant bits of the (` + 1)-bit z to 0 leaving only the top bit.
The multiplication by 2−` (modulo M) simply shifts this down to the desired
position.

To perform the modulo reduction of [z], Bob provides a (2`+κ
′
)-bit mask,

[r], which is added to [z]. The outcome, [c], is then revealed to Alice. As it was
assumed that M�2κ

′+`, the computation of c can be viewed as occurring over
the integers. Therefore

z ≡ c− r mod 2`.

Both c and r are easily reduced modulo 2`. Alice knows the former and Bob the
latter, so they may simply supply these values, [c̄] and [r̄]. Subtracting the latter
from the former provides the desired result, however, this subtraction must occur
modulo 2`, not modulo M .

Alice ABB: [x],[y] Bob

r∈RZ2`+κ
′

[r]
←−−−−

[z]← 2` + [x]− [y]
[c]← [z] + [r]

c←−−−−
c̄← c mod 2` r̄ ← r mod 2`

c⊥ ← c mod 2`/2 r⊥ ← r mod 2`/2

c> ← bc/2`/2c mod 2`/2 r> ← br/2`/2c mod 2`/2

[c̄]
−−−−→

[r̄]
←−−−−

[c⊥]
−−−−→

[r⊥]
←−−−−

[c>]
−−−−→

[r>]
←−−−−

[b]← [r>]
?
= [c>]

[c̃]← [b] ? [c⊥] : [c>]
[r̃]← [b] ? [r⊥] : [r>]

[u]← 1−
(

[c̃]
?

≥ [r̃]

)
// Note: recursion

[z̄]← ([c̄]−[r̄])+2` [u]

[z`]← 2−`([z]− [z̄])
[x ≥ y]← [z`]

Fig. 3. The log(`)-rounds comparison protocol.

However, by considering two cases, the desired operation can be simulated
with ZM arithmetic:

1. If c̄ ≥ r̄, then subtraction modulo M provides the correct result.
2. If c̄ < r̄, then subtracting r̄ results in an underflow modulo M . Adding 2` at

this point provides the correct result.

Unfortunately the parties do not know which case they are in – nor should they
learn it – and therefore do not know if they should instruct the ABB to add 2`.

This leaves us with the problem of comparing [c̄] and [r̄], and while it seems
as if we are back at the initial problem, this is not the case, as Alice and Bob
each know one of these values. Thus, they can be decomposed into the top and
bottom halves – the `/2 least significant and most significant bits – by having
the parties input them. These are denoted [c>], [c⊥], [r>], and [r⊥].

Again there are two cases to consider, and again the parties do not know
which is the case:

1. If c> = r>, i.e. if the most significant half of the bits are equal, then it
suffices to compare the values representing the least significant bits.

2. If c> 6= r>, i.e. if the top halves differ, then the least significant bits can be
ignored, and it suffices to compare c> and r>.

Using the equality test, the parties can determine a secret bit stating which is
the case. Based on this, they obliviously choose between the top and bottom
halves of [c̄] and [r̄] – i.e. [r>], [c>] and [r⊥], [c⊥] – storing the results as [r̃] and
[c̃].

The concluding computation consists of determining which of [r̃] and [c̃]
contains the larger value. This is the original problem, however, the bit-length of
the numbers is now only `/2. If `/2 > 1, then the protocol calls itself recursively.
Otherwise – i.e. if the values to be compared are single-bit – it is straightforward
to compute an encryption of r̃ > c̃ using only secure arithmetic:

(c̃⊕ r̃)r̃ = r̃ − c̃r̃.

To see that this is the correct result, note that it is 1 exactly when the bits differ
and r̃ is set.

Security. As the arithmetic black-box is secure by definition, an adversary can
only obtain information or affect the computation through the input/output.
Leakage can only occur through the value, c, received by a corrupt Alice. How-
ever, this is statistically indistinguishable (in κ′) from a uniformly random
(`+ κ′)-bit value, as [z] is masked by [r] provided by the honest Bob.

Similarly, an adversary can only affect the computation through incorrect
inputs. Hence, if it is verified that [c̄], [c>], [c⊥], [r̄], [r>], and [r⊥] are indeed
the correct “sub-strings” of [c] and [r] (and that [r] is indeed ` + κ′ bits long),
then no adversarial behavior is possible.

This verification can be performed by having Alice and Bob provide [cI] and
[rI], the (ignored) top κ′ bits of [c] and [r], as well. Initially it is verified that
[c>], [c⊥], [r>], and [r⊥] are all `/2 bits, and that [cI] and [rI] are κ′ bits. Then,
the parties check that [c̄] = 2`/2 [c>]+[c⊥], [r̄] = 2`/2 [r>]+[r⊥], [c] = 2` [cI]+[c̄],
and [r] = 2` [rI]+[r̄]. At this point it has been ensured that the decomposition of
[c] and [r] are correct. Note that there is no need to explicitly verify that [c̄] and
[r̄] are ` bits, nor that [r] is `+κ′ bits. This has already been verified implicitly.

Complexity. For a reduction of the problem to one of half size – Fig. 3 except
for the recursive invocation – one invocation of the equality test and a constant
amount of input/output and arithmetic is required. Overall this means O(κ)
arithmetic and input/output operations are needed, where κ is the correctness
parameter for the equality test. These can be performed in O(1) rounds. Each
iteration reduces the problem to one of half size, thus only log(`) steps are
required until the bit-length reaches 1, at which point the remaining work is
constant. This implies that the overall complexity is O(κ log(`)) operations in
O(log(`)) rounds.

Note that to ensure correctness of the full protocol, all invocations of the
equality test must succeed. As the number of tests depends on `, so must κ.
Adding loglog(`) provides the desired error probability, as (1 − 2−κ)log(`) ≈

1 − log(`)2−κ (since 2−κ is negligible).4 This implies O(log(`)(κ + loglog(`)))
operations overall, to ensure correctness except with probability negligible in κ.

Theorem 1. Given two mutually incorruptible parties, Alice and Bob, and two
`-bit values, [x] and [y], stored within an arithmetic black-box providing secure
arithmetic in ZM (where M > 2`+κ

′+loglog(`) is prime or an RSA-modulus and
κ′ is a security parameter), the parties may obtain a bit, [b], such that b is 1 iff
x ≥ y (except with probability negligible in the correctness parameter κ) using
O(log(`)(κ+ loglog(`))) ABB-operations in O(log(`)) rounds.

6 The Constant-Rounds Protocol

Decreasing the round complexity to constant without considering the individ-
ual bits is achieved by combining the ideas of the previous section with earlier
approaches. Rather than going over all details, we present the overall protocol
in Fig. 4, and only reference existing sub-protocols in the analysis. This avoids
muddling the presentation with details of existing protocols.

Correctness. The protocol starts and ends exactly as the log-rounds solution,
hence if [u] correctly states if an underflow occurs in the subtraction, then the
correct result is determined. In difference to above, [c̄] and [r̄] are split into√
` blocks rather than two (the bit-length can be padded to ensure that it is

a square). This can be viewed as writing the numbers in 2
√
`-ary notation. As

in the previous section, it suffices to only compare the most significant differing
block. There are more of them, but the goal remains the same: the parties must
obliviously find and select the block in question using only the ABB.

To do this, an equality test is performed for each block: [bi] states if the i’th

block of the numbers are equal.
[
b̃i

]
is the logical AND of the top blocks, i.e.

from the most significant one down to the i’th. It is 1 exactly when all these
blocks are equal. Thus, the most significant differing block will be the first one

containing a 0 (starting with the most significant one). The
[
b̃i

]
of the less

significant blocks will of course also be 0, as there is a more significant, differing

position. The value [b′i] =
[
b̃i+1

]
−
[
b̃i

]
states if the i’th block is the desired one.

For the most significant, differing block it will be 1 = 1− 0, while the rest have
b′i = 0, either from 1 − 1 or 0 − 0. Thus, the [b′i] that is set can be viewed as a
pointer to the correct block position, i, and

[
r(i)
]

and
[
c(i)
]

are selected by the
sums.5

Concluding, the
√
`-bit [c̃] and [r̃] must be compared. This time, we cannot

proceed recursively, as this would not result in a constant-rounds protocol. In-
stead, the parties transform the problem to one where Alice holds one input and

4 A similar increase is needed for the security parameter, κ′. This does not change
complexity though.

5 If the inputs are equal this is not true, but as we get c̃ = r̃ = 0 which provides the
same result, it is acceptable.

Alice ABB: [x],[y] Bob

r∈RZ2`+κ
′

[r]
←−−−−

[z]← 2` + [x]− [y]
[c]← [z] + [r]

c←−−−−
c̄← c mod 2` r̄ ← r mod 2`

[c̄]
−−−−→

[r̄]
←−−−−

for i = 0..
√
`− 1 do for i = 0..

√
`− 1 do

ĉ(i) ← bc/2i
√

`c r̂(i) ← br/2i
√
`c

c(i) ← ĉ(i) mod 2
√
` r(i) ← r̂(i) mod 2

√
`[

c(i)
]

−−−−→

[
r(i)
]

←−−−−
od od

for i = 0..
√
`− 1 do

[bi]← [r(i)]
?
= [c(i)]

od[
b̃√`

]
← 1

for i =
√
`− 1..0 do[

b̃i
]
←
∧√`−1

j=i [bj]

[b′i]←
[
b̃i+1

]
−
[
b̃i
]

od

[c̃]←
√
`−1∑
i=0

[b′i]
[
c(i)
]

[r̃]←
√

`−1∑
i=0

[b′i]
[
r(i)
]

[u]← 1−
(

[c̃]
?

≥ [r̃]

)
[z̄]← ([c̄]−[r̄])+2` [u]

[z`]← 2−`([z]− [z̄])
[x ≥ y]← [z`]

Fig. 4. The constant-rounds comparison protocol.

Bob the other – the initial step of the present protocols. Then, these numbers
are bit-decomposed – Alice and Bob provide the binary representation of the
numbers – and the problem is brute-forced, e.g. using [DFK+06]. As there are
only

√
` bits, linear work is acceptable at this point.

Security. Privacy of the protocol follows by the exact same argument as above:
leakage can only happen through c, which is statistically indistinguishable from

a uniformly random (` + κ′)-bit value. Further, as above, an active adversary
can only affect the protocol through inputs. To avoid malicious behavior, it must
merely be verified that [r] is indeed of the proper bit-length; that [r] and [c] are
decomposed properly into the

[
c(i)
]

and
[
r(i)
]
; and that [c̄] and [r̄] are correct.

In addition to this, it must be verified that the bit-decomposition needed in the
comparison of [c̃] and [r̃] is correct. All this can be performed analogously to the

constructions of the previous section – the difference is that a 2
√
`-ary or binary

representation is considered rather than a 2`/2-ary one.

Complexity. Initially, Bob provides the mask, [r], after which Alice obtains c,

the masking of [z]. They decompose these to their 2
√
`-ary representations and

provide these as inputs to the ABB. Complexity of this is clearly O(
√
`) in-

put/output operations. Moreover, only three rounds are needed as all elements
of the decompositions may be input concurrently.

Regarding the work performed by the ABB, clearly the computation of [z]
and [c] is constant. Following this,

√
` equality tests are performed; each of

these requires O(κ) operations implying O(
√
` · κ) operations overall. Round

complexity remains constant, though: no test depends on the output of another,
so they may be executed in parallel. The next step is to compute the “pointer,”
[b′i]. The most expensive part of this is the

√
`
√
`-ary logical AND’s. The naive

solution requires Ω(`) operations which is too expensive. However, the AND-
gates share the same inputs – overall it is simply a prefix-AND of the bi. Thus,
the computation can be performed with linear work in a constant number of
rounds by applying the techniques of [DFK+06]. Concluding the computation
are the selection of [r̃] and [c̃] each requiring O(

√
`) arithmetic operations. This is

followed by the brute-force (linear in
√
`) comparison and the final, constant-size

computation.
The dominating term of all of this is the equality tests, due to their factor of κ.

Thus, the overall complexity is O(
√
`(κ+log(`))), where the log(`)-term is needed

to ensure that the error probability remains negligible in κ when performing all√
` tests.

Theorem 2. Given two mutually incorruptible parties, Alice and Bob, and two
`-bit values, [x] and [y], stored within an arithmetic black-box providing secure
arithmetic in ZM (where M > 2`+κ

′
is prime or an RSA-modulus and κ′ is a

security parameter), the parties may obtain a bit, [b], such that b is 1 iff x ≥ y
(except with probability negligible in the correctness parameter κ) using O(

√
`(κ+

log(`))) ABB-operations in O(1) rounds.

7 Variations

Handling arbitrary inputs of ZM . Protocols allowing arbitrary inputs in ZM
are also possible. This involves comparing both inputs, [x] and [y], as well as
[x− y] to bM/2c, [NO07]. The answer can be determined using a small arithmetic
circuit. Comparison with bM/2c is equivalent to doubling and extracting the

least significant bit, which translates to a comparison of values held by Alice
and Bob. At this point the present ideas may be applied.

Improved complexity in the constant-rounds case. Complexity of the constant-
rounds protocol can be improved slightly. The idea is to split the numbers into√
`/κ blocks of size

√
`κ. Determining and selecting the relevant block requires

only O(
√
`κ) arithmetic operations, and while the new comparison problem

grows to size
√
`κ, it is still acceptable to brute-force this.

A second approach allows complexity to be reduced further at the cost of
extra rounds. Splitting the numbers into 3

√
` blocks results in a new problem

of size (3
√
`)2, which may be solved with O(3

√
` · κ) work. This amount is also

needed to reduce the size of the problem, thus, it is also the overall complexity.
The idea generalizes to O(c)-round O(c

√
` · κ) solutions for any c.

Hybrid protocols for practice. Due to the blowup of κ in the complexity, theo-
retically worse solutions may be preferable to the log-rounds protocol for small
inputs. This suggests that a hybrid approach will be best in practice: Initially the
log-rounds solution can be applied repeatedly to reduce the size of the problem,
but at some point (when the problem is small enough) another solution will be
better. At this point, that solution may be applied instead of continuing with
the recursive approach.

8 Concluding Remarks

The protocols presented demonstrate that in order to perform secure compari-
son, the explicit binary representation does not have to be considered. Rather,
by testing equality of “sub-strings” of the full problem (where this test occurs
on elements of the ring or field), the size of the problem can be reduced with-
out having to consider each bit-position individually. This implies an improved
theoretic complexity over all previous solution (regarding the number of crypto-
graphic invoked).

A sub-linear comparison protocol for the general multiparty setting is left
as an open problem. One obvious possibility would be to generate encryptions
or sharings of uniformly random values of bounded size, say k-bit, which are
unknown to all. It is not clear how to do this without also generating the binary
representation as well, though.

The author would like to thank Ivan Damg̊ard, Martin Geisler, and the
anonymous referees for their many remarks and suggestions.

References

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
a constant number of rounds of interaction. In Piotr Rudnicki, editor, Pro-
ceedings of the eighth annual ACM Symposium on Principles of distributed
computing, pages 201–209, New York, 1989. ACM Press.

[BCD+09] P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøi-
gaard, J. Nielsen, J. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and
T. Toft. Secure multiparty computation goes live. In Roger Dingledine
and Philippe Golle, editors, Financial Cryptography 2009, volume 5628 of
Lecture Notes in Computer Science, pages 325–343, 2009.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
noncryptographic fault-tolerant distributed computations. In 20th Annual
ACM Symposium on Theory of Computing, pages 1–10. ACM Press, 1988.

[BK06] I. Blake and V. Kolesnikov. Conditional encrypted mapping and compar-
ing encrypted numbers. In Giovanni Di Crescenzo and Avi Rubin, editors,
Financial Cryptography 2006, volume 4107, pages 206–220, 2006.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807, pages 431–444, 2000.

[CDN01] R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from
threshold homomorphic encryption. In Birgit Pfitzmann, editor, Advances
in Cryptology – EUROCRYPT 2001, volume 2045, pages 280–300, 2001.

[DFK+06] I. Damg̊ard, M. Fitzi, E. Kiltz, J. Nielsen, and T. Toft. Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In Shai Halevi and Tal Rabin, editors, TCC 2006:
3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in
Computer Science, pages 285–304, 2006.

[DGK07] I. Damg̊ard, M. Geisler, and M. Krøigaard. Efficient and Secure Comparison
for On-Line Auctions. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors,
ACISP 07: 12th Australasian Conference on Information Security and Pri-
vacy, volume 4586 of Lecture Notes in Computer Science, pages 416–430,
2007.

[DJ02] I. Damg̊ard and M. Jurik. Client/server tradeoffs for online elections. In
David Naccache and Pascal Paillier, editors, PKC 2002: 5th International
Workshop on Theory and Practice in Public Key Cryptography, volume 2274,
pages 125–140, 2002.

[DN03] I. Damg̊ard and J. Nielsen. Universally composable efficient multiparty com-
putation from threshold homomorphic encryption. In Dan Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 247–264, 2003.

[Fis01] M. Fischlin. A cost-effective pay-per-multiplication comparison method
for millionaires. In David Naccache, editor, Topics in Cryptology – CT-
RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 457–
471. Springer-Verlag, Berlin, Germany, 2001.

[FKN94] U. Feige, J. Killian, and M. Naor. A minimal model for secure computation
(extended abstract). In STOC ’94: Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pages 554–563, New York, NY,
USA, 1994. ACM Press.

[GSV07] J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solutions
for integer comparison. In Tatsuaki Okamoto and Xiaoyun Wang, editors,
PKC 2007: 10th International Workshop on Theory and Practice in Public
Key Cryptography, volume 4450 of Lecture Notes in Computer Science, pages
330–342, 2007.

[JW05] G. Jagannathan and R. Wright. Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data. In KDD, pages 593–599, 2005.

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge
arguments. In Chi-Sung Laih, editor, Advances in Cryptology – ASI-
ACRYPT 2003, volume 2894, pages 398–415, 2003.

[LL07] S. Laur and H. Lipmaa. A new protocol for conditional disclosure of secrets
and its applications. In ACNS, pages 207–225, 2007.

[LP00] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Journal of
Cryptology, pages 36–54. Springer-Verlag, 2000.

[NO07] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, PKC 2007: 10th International Workshop on Theory
and Practice in Public Key Cryptography, volume 4450 of Lecture Notes in
Computer Science, pages 343–360, 2007.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mech-
anism design. In In Proceedings of the 1st ACM Conference on Electronic
Commerce, pages 129–139. ACM Press, 1999.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 223–
238, 1999.

[Per52] O. Perron. Bemerkungen über die Verteilung der quadratischen Reste.
Mathematische Zeitschrift, 56(2):122–130, 1952.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[ST06] B. Schoenmakers and P. Tuyls. Efficient binary conversion for paillier en-
crypted values. In Advances in Cryptology – EUROCRYPT 2006, pages
522–537, 2006.

[Tho09] R. Thorbek. Linear Integer Secret Sharing. PhD thesis, Aarhus University,
2009.

[Tof07] T. Toft. Primitives and Applications for Multi-party Computation. PhD
thesis, Aarhus University, March 2007. Available for download from
http://www.daimi.au.dk/˜ttoft/publications/dissertation.pdf.

[Tof09] T. Toft. Solving linear programs using multiparty computation. In Roger
Dingledine and Philippe Golle, editors, Financial Cryptography 2009, vol-
ume 5628 of Lecture Notes in Computer Science, pages 90–107, 2009.

[Yao82] A. Yao. Protocols for secure computations (extended abstract). In 23th
Annual Symposium on Foundations of Computer Science (FOCS ’82), pages
160–164. IEEE Computer Society Press, 1982.

[Yao86] A. Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167.
IEEE Computer Society Press, 1986.

