
Faster and Lower Memory Scalar Multiplication
on Supersingular Curves in Characteristic Three

Roberto Avanzi1 ⋆ and Clemens Heuberger2 ⋆⋆

1 Faculty of Mathematics and Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

roberto.avanzi AT ruhr-uni-bochum.de
2 Institut für Mathematik B, Technische Universität Graz, Austria

clemens.heuberger AT tugraz.at

Abstract. We describe new algorithms for performing scalar multiplica-
tion on supersingular elliptic curves in characteristic three. These curves
can be used in pairing-based cryptography. Since in pairing-based proto-
cols besides pairing computations also scalar multiplications are required,
and the performance of the latter is not negligible, improving it is clearly
important as well. The techniques presented here bring noticeable speed
ups (up to 30% for methods using a variable amount of memory and up
to 46.7% for methods with a small, fixed memory usage), while at the
same time bringing substantial memory reductions – factors like 3 to 8
are not uncommon.

The starting point for our methods is a structure theorem for unit groups
of residue classes of a quadratic order associated to the Frobenius endo-
morphism of the considered curves. This allows us to define new digit
sets whose elements are products of powers of certain generators of said
groups. There are of course several choices for these generators: we chose
generators associated to endomorphisms for which we could find efficient
explicit formulae in a suitable coordinate system. A multiple-base-like
scalar multiplication algorithm making use of these digits and these for-
mulae brings the claimed speed up.

Keywords: Supersingular elliptic curves, pairing-friendly elliptic curves,
scalar multiplication, Frobenius expansion, explicit formulae.

1 Introduction

The following elliptic curves over fields of characteristic three

E3,µ : Y 2 = X3 −X − µ with µ ∈ {±1} (1)

⋆ Supported by the European Commission through the IST Programme under contract
ICT-2007-216676 ECRYPT II.

⋆⋆ Supported by the Austrian Science Foundation FWF, project S9606, that is part of
the Austrian National Research Network “Analytic Combinatorics and Probabilistic
Number Theory.”

2 Roberto Avanzi and Clemens Heuberger

are supersingular with embedding degree 6. They thus offer less security per bit
than ordinary curves for DL-based applications. However, in 1998 Koblitz [20]
studied their arithmetic and found their performance to be competitive with
other public-key cryptosystems even after the security parameters were adjusted
accordingly. Recently, pairing-based cryptography has revived the interest in
these curves (together with all other types of pairing-friendly curves [16]). Most
of the current research is devoted to the optimization of the field arithmetic and
the pairing operation (just a few examples are [1, 9, 7, 8]).

The performance gap between pairing operations and scalar multiplication
has steadily decreased in the last years. In some cases the two operations have
comparable performance: In [1] variable base point scalar multiplication takes
between a half and a third of the time for a Tate pairing; in [9] a ηT pairing
over F397 is computed in 678 field multiplications, whereas a scalar multiplication
requires, with current state-of-the art methods, at least 230 multiplications using
normal bases and 296 using polynomial bases (cf. Tables 1 and 2 on page 18
under the columns labeled “BMX”, that correspond to the current state of the
art [10]); one of the fastest implementations of characteristic three arithmetic
and of pairings in general, due to Mitsunari [22], requires 0.181 µsec, resp. 0.149
µsec for a field multiplication, resp. an ηT pairing (single threaded) over F397 –
with our operation counts for [10] we extrapolate a timing of about 53.5 µsec for
a scalar multiplication; over the field F3193 the same implementation takes 0.624
µsec, resp. 975 µsec for the two operations – similarly we extrapolate 314.2 µsec
for a scalar multiplication in this case.

For other characteristics, in [12] extensive experiments are reported not only
for trace-zero varieties but also for elliptic curves, and in many cases a ηT pairing
evaluation is even faster than a scalar multiplication on the same curve.

Now, most pairing-based protocols – for instance Direct Anonymous Attesta-
tion [11] – also require scalar multiplications, the latter being often performed in
computationally restricted environments, such as TPM modules. Since in these
cases the pairings are usually computed on faster architectures, the question of
the performance of scalar multiplication becomes more, not less, severe. Thus it
is an important question whether one can either speed up this operation and/or
reduce its memory requirements. This is the problem studied in this paper: We
show how to perform scalar multiplication on supersingular Koblitz curves in
characteristic three with extremely reduced memory requirements with respect to
the state of the art while attaining better performance.

Usually, scalar multiplication on supersingular Koblitz curves in characteris-
tic three is done by a base three expansion [18] or by an expansion to the base
of τ [20, 10], where τ is a complex number associated to the Frobenius endomor-
phism of the curve. Double base methods have been suggested in this context,
for instance in [2], but only with the rational bases 2 and 3.

For the characteristic two case, it has been suggested to use the so-called
Verschiebung endomorphism besides τ , as in [3, 4]. This is the endomorphism
associated to the algebraic conjugate τ̄ of τ . In characteristic two τ and τ̄ can

Scalar Multiplication on Supersingular Curves in Characteristic Three 3

be used as a double bases, but, as we shall see in the next section, this cannot
extended to the case considered here.

Our goal to reduce memory requirements and speeding-up scalar multiplica-
tion on the curves (1), is attained by finding alternative endomorphisms that can
serve as additional bases to be used beside τ .

This is essentially done in Section 2 by Theorem 1, that describes the struc-
ture of the group of units in the ring of residue classes of Z[τ] modulo powers
of the prime ideal generated by τ ; the generators of this group are chosen in
such a way that they can be implemented efficiently, as explained in Section 4.
Their usage in practice is described in Sections 3 and 5. The techniques pre-
sented here bring noticeable speed ups – from a few percent to a near halving of
computational time – while often bringing substantial memory reductions at the
same time: reducing the memory requirement to just a third or even one eighth
of the memory usage of the current state of the art is not uncommon. Detailed
comparisons can be found in Section 5 and concluding remarks are in Section 6.

2 Digit Sets and the Structure of the Unit Group

We begin by recalling some facts on the Frobenius endomorphism τ and the
associated ring Z[τ].

For cryptographic applications one works in the group E3,µ(F3m) of the F3m-
rational points of the curve E3,µ, where m is an integer not divisible by either 2
or 3, and it is usually assumed that E3,µ(F3m) contains a unique large subgroup
G of prime order p. Cryptographic computations then take place in G.

The Frobenius endomorphism

τ : E3,µ(F3m)→ E3,µ(F3m) , (x, y) 7→ (x3, y3)

is such that τ2(P)− 3µ τ(P) + 3 · P = 0 for all points P on the curve; in other
words, the relation

τ2 − 3µ τ + 3 = 0 (2)

holds in the endomorphism ring of the curve. Prompted by this, we can identify
τ with a imaginary quadratic solution of the last equation

3µ+
√
−3

2
, (3)

which we also call τ . This induces an isomorphism (of rings with unit) between
the ring Z[τ] and the endomorphism ring of E3,µ, which also maps 1 to the
identity map on the curve and any rational integer n to the multiplication-by-
n isogeny. This endomorphism allows for a fast scalar multiplication based on
expansions of scalars to the base of τ .

We recall that Z[τ] is a factorial ring (it is a quadratic order of class number
1). Also, since τ is prime, an element of Z[τ] is coprime to τ if and only if τ does
not divide it. Let

ζ :=
1− µ

√
−3

2
, (4)

4 Roberto Avanzi and Clemens Heuberger

such that ζ is a primitive sixth root of unity. The complex conjugate of τ will be
denoted by τ̄ , and τ̄ = ζτ holds. These numbers act as follows as endomorphisms
on the curve:

ζ : (x, y) 7→ (x+ µ,−y) ,
τ̄ : (x, y) 7→ (x3 + µ,−y3) .

Since 3 = τ τ̄ = ζτ2, tripling is an efficient operation as well:

3 : (x, y) 7→ (x9 + µ,−y9) .

We see that τ and τ̄ are conjugated in the sense that their ratio is a unit, hence
they are essentially the same base and they cannot be used in a double-base or
in a double-loop scalar multiplication methods such as those from [2, 4].

Now we consider the construction of useful digit sets using the algebraic
numbers we have just defined.

Similarly to Solinas [24], one can take one representative from each residue
class modulo τw which is relatively prime to τ (a reduced residue system modulo
τ) together with the zero to form a digit set D for expansions of integers z ∈ Z[τ]:

z =
ℓ∑

i=0

diτ
i . (5)

If, for a given scalar z, such an expansion exists, we can use it to design a
scalar multiplication method on E3,µ(F3m): First, we precompute and store all
elements of the form d · P for P ∈ E3,µ(F3m), and then we can compute z · P by
a Horner scheme:

τ
(
τ
(
· · · τ

(
τ
(
τ(dℓP) + dℓ−1P

)
+ dℓ−2P

)
+ · · ·+ d2P

)
+ d1P

)
+ d0P .

An important desirable property for expansions (5) is that each block of w
consecutive digits di, di+1, ..., di+w−1 contains at most one non-zero. Such an
expansion is called a D-w-NAF and a digit set D is called a w-Non-Adjacent-
Digit-Set, or w-NADS, if every integer z ∈ Z[τ] admits a D-w-NAF. In analogy
to the characteristic two case (cf. Solinas [24]), we can choose the elements of
the digit set to be of minimal norm in their residue classes modulo τw. However,
this only guarantees the existence of expansions for w ⩾ 2. Smart [23] works
in a more general setting with, essentially, w = 1 and smallest rational integer
digits (and works in general odd characteristic): in characteristic three, in order
to guarantee termination, he needs an expansion with digits {0,±1,±2} where
at most one digit is exceptionally allowed to take value 2 or −2. In fact, Blake,
Kumar Murty and Xu [10], observed that {0,±1} is not a 1-NADS: Indeed, if
we try to expand ζ we obtain the infinite expansion

ζ = −1− µτ − τ2 − µτ3 − τ4 − µτ5 −

Scalar Multiplication on Supersingular Curves in Characteristic Three 5

In what follows we shall therefore assume w ⩾ 2. Blake, Kumar Murty and
Xu proved that a digit set of minimal norm representatives is a w-NADS. One
of Koblitz’ results can be formulated as saying that {0} ∪ ⟨ζ⟩ is a 2-NADS.

A big difference with respect to the characteristic two case is that in a given
residue class modulo τw an element of minimal norm is not necessarily unique
(in [5] it is fully explained when this happens, but we do not need this here).
However, one is not forced to take an element from each of the 6× 3w−2 residue
classes coprime to τ and store all the corresponding precomputations: Blake,
Kumar Murty and Xu [10, Section 4.2] use a signed expansion to reduce the
memory requirement by a factor of 2, i.e., to 3w−1 points.

But, there are other ways of constructing digit sets, and their structure can
be used to design alternative scalar multiplication schemes. To achieve this, we
first prove a structure theorem for the unit group of Z[τ] modulo τw, for each
natural number w. In particular we shall prove that this group is the direct
product of (up to) three cyclic subgroups. Clearly, taking representatives of each
class in this group will yield a reduced residue system modulo τw. Since the digit
sets we consider in this paper consist of zero and of a reduced residue system
modulo τw, the structure theorem will allow us to construct digit sets whose
elements are products of powers of three fixed elements.

The decomposition of (Z[τ]/τwZ[τ])× can also be derived, with some effort,
from Nakagoshi’s much more general results for generic unit groups of residue
classes of orders of number fields modulo powers of arbitrary prime ideals [21] or
from Halter-Koch’s classification [17] for quadratic orders. However, the proof
we give here is direct and much simpler, the expressions for the generators are
explicit, and the generators also enjoy the property that they correspond to
endomorphisms of E3,µ that lend themselves to efficient evaluation.

Theorem 1. We have(
Z[τ]
τZ[τ]

)×

= ⟨−1⟩ ≃ Z
2Z

,(
Z[τ]
τwZ[τ]

)×

= ⟨ζ⟩ ×
⟨
1 + µτ3

⟩
× ⟨−2⟩ ≃ Z

6Z
× Z

3⌊w/2⌋−1Z
× Z

3⌈w/2⌉−1Z
, w ⩾ 2 .

Here ⟨α⟩ denotes the group generated by α in (Z[τ]/τwZ[τ])×.

Remark 1. For w = 2, the subgroups generated by 1 + µτ3 and −2 in the unit
group (Z[τ]/τwZ[τ])× are degenerated, i.e., they are the trivial group with one
element, and for w = 3 only

⟨
1 + µτ3

⟩
is trivial. For w ⩾ 4 all three factor

subgroups are not trivial.
Once the structure of (Z[τ]/τwZ[τ])× is given, a digit set for integer expan-

sions can be built in such a way that we take one element from each residue
class modulo τw that is not divisible by τ . It suffices to take each d = d1d2d3
with d1 ∈ ⟨ζ⟩, d2 ∈

⟨
1 + µτ3

⟩
, and d3 ∈ ⟨−2⟩. The resulting digit set is invariant

by multiplication by ζ, i.e., under rotation of the complex plane by π/3. The
structure of this digit set will be exploited in the scalar multiplication algorithms
that will be introduced in Sections 3 and 5.

6 Roberto Avanzi and Clemens Heuberger

In order to prove Theorem 1 we need first to compute the orders of the
asserted generators modulo τw.

Lemma 1. Let k ⩾ 2, a ∈ Z[τ] with τ ∤ a and w ⩾ k − 1. Then

ordτw(1 + aτk) = 3⌈(w−k)/2⌉ . (6)

In particular, we have

(a) ordτw(1 + µτ3) = 3⌊w/2⌋−1 for w ⩾ 2,
(b) ordτw(−2) = 3⌈w/2⌉−1 for w ⩾ 1,
(c) ordτw(1 + µτ) = 3⌈w/2⌉−1 for w ⩾ 3,
(d) ordτw(ζ) = 6 for w ⩾ 2,

where ordτw(α) denotes the order of α in (Z[τ]/τwZ[τ])×, i.e., the least positive
exponent r such that αr ≡ 1 (mod τw).

Proof (Lemma 1). We first prove

(1 + aτk)3
ℓ

≡ 1 + aζℓτk+2ℓ (mod τ2k+2ℓ) . (7)

by induction on ℓ ⩾ 0. For ℓ = 0, (7) holds trivially. Assume that

(1 + aτk)3
ℓ

= 1 + aζℓτk+2ℓ + bτ2k+2ℓ

for some b ∈ Z[τ]. Then we have

(1 + aτk)3
ℓ+1

= (1 + aζℓτk+2ℓ + bτ2k+2ℓ)3 ≡ 1 + 3aζℓτk+2ℓ

≡ 1 + aζℓ+1τk+2ℓ+2 (mod τ2+2k+2ℓ) ,

as 3 = ζτ2, which concludes the proof of (7).
We set ℓ =

⌈
w−k
2

⌉
, which results in k + 2(ℓ− 1) < w ⩽ k + 2ℓ. As τ ∤ aζℓ−1

(note that ζ is a unit in Z[τ]), this leads to

(1 + aτk)3
ℓ

≡ 1 (mod τw) , (1 + aτk)3
ℓ−1

̸≡ 1 (mod τw) .

Thus ordτw(1 + aτk) divides 3ℓ, but does not divide 3ℓ−1. We conclude that
ordτw(1 + aτk) = 3⌈(w−k)/2⌉, as requested.

The assertion for the special case 1 + µτ3 follows immediately from (6) by
noting that

⌈
w−1
2

⌉
=

⌊
w
2

⌋
.

In order to determine the order of −2, we note that −2 = 1 − 3 = 1 − ζτ2,
from which the result follows immediately.

Next, we have (1+µτ)3 = 1+(4−2µτ)τ4. Thus ordτw((1+µτ)3) = 3⌈w/2⌉−2

for w ⩾ 3, which implies ordτw(1 + µτ) = 3⌈w/2⌉−1 for w ⩾ 3.
Finally, as ζ is a primitive sixth root of unity, we have ζ6 ≡ 1 (mod τw). As

ζ3 = −1 and τ ∤ 2, we have ζ3 ̸≡ 1 (mod τw). Finally, ζ2 − 1 = −µτ is divisible
by τ , but not τ2, whence ζ2 ̸≡ 1 (mod τw) for w ⩾ 2. Thus ordτw(ζ) = 6 for
w ⩾ 2. Of course, this is also a consequence of D2 being a 2-NADS. ⊓⊔

Scalar Multiplication on Supersingular Curves in Characteristic Three 7

We are now able to prove the theorem.

Proof (Theorem 1). We prove the assertion by induction on w. We set α1 = ζ,
α2 = 1 + µτ3 and α3 = −2.

For w = 1, there is nothing to show. As ⟨ζ⟩ is known to be a reduced residue
system modulo τ2 and ⟨α2⟩ and ⟨α3⟩ are both the trivial group, we are done for
w = 2.

Assume that the result holds for some w ⩾ 2. We first prove that α1, α2, α3

are independent modulo τw+1. So we assume that

αa1
1 α

a2
2 α

a3
3 ≡ 1 (mod τw+1) (8)

for some aj with 0 ⩽ aj < ordτw+1(αj) for j ∈ {1, 2, 3}. Reducing the relation
modulo τw, i.e.,

αa1
1 α

a2
2 α

a3
3 ≡ 1 (mod τw) ,

yields ordτw(αj) | aj for all j ∈ {1, 2, 3}.
As ordτw+1(α1) = ordτw(α1) = 6 by Lemma 1, we immediately get a1 = 0.
By Lemma 1 we also have

ordτw+1(αj) = ordτw(αj)

ordτw+1(αk) = 3 · ordτw(αk)

where {j, k} = {2, 3}, the appropriate permutation depending on the parity of
w. More precisely, it is (j, k) = (2, 3) for even w and (j, k) = (3, 2) for odd w.

Thus we also have aj = 0 and (8) reduces to αak

k ≡ 1 (mod τw+1), which
immediately implies ak = 0, too. This concludes the proof of the independence
of α1, α2, α3 modulo τw+1.

As

|⟨α1⟩ × ⟨α2⟩ × ⟨α3⟩| = 6 · 3⌊(w+1)/2⌋−1 · 3⌈(w+1)/2⌉−1 = 2 · 3w =

∣∣∣∣∣
(

Z[τ]
τwZ[τ]

)×
∣∣∣∣∣ ,

the generated group has the right cardinality, so α1, α2, α3 do generate the unit
group. ⊓⊔
Remark 2. (i) For w ⩾ 3, the generator −2 can be replaced by 1 + µτ . This

results from
(1 + µτ) = ζ4(1 + µτ3)(−2)−1 (9)

and ordτw(1 + µτ) = ordτw(−2) for w ⩾ 3.
(ii) For even values of w only,

(Z[τ]/τwZ[τ])× = ⟨ζ⟩ × ⟨1 + µτ⟩ × ⟨−2⟩ ,

but not for odd w. This also follows from (9) and from the fact that
ordτw(1 + µτ) = ordτw(−2). For odd w these elements generate a sub-
group of index 3 of the unit group.

(iii) Further choices of generators are possible, beside −2, 1 + µτ and 1 + µτ3.
These elements have been chosen for two reasons: (a) their relatively small
norm leads to an overall well bounded norm of the digit set elements, and
(b) we were able to find efficient explicit for them, cf. Section 4.

8 Roberto Avanzi and Clemens Heuberger

3 Scalar Multiplication Using a Factored Digit Set

Our next goal is to use the digit sets implied by the decomposition of the unit
group of Theorem 1 in a precomputationless scalar multiplication algorithm
similar to the one presented in [3] for Koblitz curves in characteristic two. In that
case the unit group had a much simpler structure than in the present context,
that will require a deeper study. From Theorem 1 we know that for w ⩾ 2 a
decomposition (Z[τ]/τwZ[τ])× = ⟨ζ⟩×⟨ϕ⟩×⟨ψ⟩ ≃ Z/6Z×Z/3aZ×Z/3bZ exists,
where ϕ and ψ are suitable elements of Z[τ] identified with the corresponding
elements of the endomorphism ring of E3,µ. Clearly, a+b = w−2. Assume further
that we can write a scalar z in the form

z =

m∑
i=0

εi
(
ϕfiψgi

)
τ i (10)

where 0 ⩽ fi < 3a, 0 ⩽ gi < 3b, and εi = 0 or εi = ζℓ with 0 ⩽ ℓ < 6. This is a
τ -adic expansion where the digit set is factored as the product of three subgroups
⟨ζ⟩, ⟨ϕ⟩ and ⟨ψ⟩.

We can thus perform a scalar multiplication by means of scalar multiplication
Algorithm 1 on the next page, whose correctness is an easy fact, as it simply
consists of three nested Horner schemes, the two outer ones looping on the
exponents of ϕ and ψ, the inner one on the exponents of τ . Note that for w = 2
we must have a = b = 0 and for w = 3 one of a, b must be zero (cf. Remark 1),
in which cases the algorithm simplifies because there will be less nested loops.

By an easy generalization of Koblitz’ arguments (cf. the end of the proof
of Theorem 1 in [20]) it can be proved that the expected density of a w-NAF
expansion is 2/(2w + 1). Note that these arguments do not apply exclusively to
expansions using minimal norm digits.

The expansion (10) can also be viewed as a triple base representation of the
scalar z. Double base representations have been already considered for supersin-
gular Koblitz curves, see for instance [2], where the possibility of using the bases
2 and 3 is mentioned but not analyzed, and in particular a rotational symmetry
of the digit set, such as the one that we exploit in our algorithms, is not present.

From Theorem 1 and Remark 2 we know that we can take ζ, −2 and, de-
pending on the parity of w, either 1+µτ or 1+µτ3 to generate a reduced residue
set modulo τw, and thus a digit set Dw. In order to guarantee that any τ -adic
expansion terminates, we follow the same approach as in [3, 4], which consists
in reducing the value of the parameter w if the norm of the input becomes too
small. As in [3, 4] it is easy to verify that this has a minimal and asymptotically
negligible impact on the weight of the expansion.

In the next section we consider the efficient implementation of the endomor-
phisms associated to the ring elements−2, 1+µτ and 1+µτ3. Since the innermost
loops of Algorithm 1 are performed more often, it is a good idea to place the
most expensive operation in the outermost loop and the computationally cheap-
est one in the innermost loop – in other words ψ should be less expensive than
ϕ. In Section 5 we shall reconsider Algorithm 1 and some variants, and estimate
the costs of scalar multiplication.

Scalar Multiplication on Supersingular Curves in Characteristic Three 9

Algorithm 1. Low-memory τ -adic Scalar Multiplication on Koblitz Curves

INPUT: P = (x, y) ∈ E3,µ(F3m), scalar z represented as in Equation (10)

OUTPUT: zP

1. Q← 0

2. for j = 3a − 1 to 0 do

3. Q← ϕQ [skip first time]

4. R← 0

5. for k = 3b − 1 to 0 do

6. R← ψR [skip first time]

7. S ← 0

8. for i = m− 1 to 0 do

9. S ← τS [skip first time]

10. if (εi ̸= 0 and fi = j and gi = k) then

11. let εi = ζℓ with 0 ⩽ ℓ ⩽ 5

12. switch ℓ

13. case 0: S ← S + (x, y)

14. case 1: S ← S + (x+ µ,−y)
15. case 2: S ← S + (x− µ, y)
16. case 3: S ← S + (x,−y)
17. case 4: S ← S + (x+ µ, y)

18. case 5: S ← S + (x− µ,−y)
19. R← R+ S

20. Q← Q+R

21. return Q

4 Group Operations on the Curve

In this section we show how to evaluate 1+µτ efficiently when the curve E3,µ is
represented using different coordinate systems. We could not find an optimized
evaluation of 1 + µτ3, that is, just adding P and µτ3(P) together seems to be
the most efficient way of evaluating this endomorphism.

The costs of the various operations on the curve in different coordinate sys-
tems are compared § 4.5, in order to choose the best coordinate system for our
scalar multiplication algorithms.

4.1 Explicit formulae for (1 + µτ) in affine coordinates

In this subsection as well as in the following three we discuss how to explicitly
compute the image of a point P on E3,µ(F3m)\E3,µ(F3) under the endomorphism
(1 + µτ)P using different coordinate systems. We begin with affine coordinates.

10 Roberto Avanzi and Clemens Heuberger

For three points Pi := (xi, yi), i = 1, 2, 3 on the curve, in the case that
P1 ̸= ±P2, the expression P1 + P2 = P3 holds with

x3 =

(
y2 − y1
x2 − x1

)2

− (x1 + x2) and y3 = y1 + y2 −
(
y2 − y1
x2 − x1

)3

. (11)

If we take P2 = µτP1, then (x2, y2) = (x31, µy
3
1). For simplicity let us now omit

the index 1 in what follows. We obtain

x3 =

(
µy3 − y
x3 − x

)2

− (x+ x3) and y3 = y + µy3 −
(
µy3 − y
x3 − x

)3

.

Making use of the facts that x3 − x = y2 + µ and µ2 = 1 and that we are
over a field of characteristic three, after a few manipulations we obtain compact
expressions for x3 and y3,

x3 = x+µ− x
3 − x− µ
(x3 − x)2

= x+µ− y2

(x3 − x)2
and y3 = y− y3

(x3 − x)3
, (12)

that will be the starting point to obtain explicit formulae in different coordinate
systems.

4.2 Projective coordinates

This is a standard coordinate system for elliptic curves, where a finite point
(x, y) is represented as [X:Y :Z] with x = X/Z and y = Y/Z. For the purpose
of computing on supersingular elliptic curves over fields of characteristic three
it has been first used by Koblitz [20]. Koblitz’ formulae have been improved by
Barreto, Kim, Lynn, and Scott [6].

To obtain an explicit formula consider expressions (12), first replace x, y
with X/Z and Y/Z in the two formulae for x3 and in the formula for y3. Upon
simplification, two rational expressions are obtained. Making their denominators
equal and taking this value as the Z-coordinate Z3 finally yields:

X3 = ((X + µZ)(X3 −XZ2)2 − Y 2Z5)(X3 −XZ2) ,

Y3 = Y (X3 −XZ2)3 − Y 3Z7 ,

Z3 = Z(X3 −XZ2)3 .

This gives us the following operation sequence, where the symbols M, C, I
shall denote a multiplication, a cubing and an inversion in F3m . (We do not

Scalar Multiplication on Supersingular Curves in Characteristic Three 11

distinguish between multiplication and squaring.)

Computing (1 + µτ) in projective coordinates
Input: [X:Y :Z] – Output: [X3:Y3:Z3] = (1 + µτ)[X:Y :Z]
Operation Cost Remark
A← X3 −XZ2 2 M+ 1 C save Z2

B ← A3 1 C —
Z3 ← ZB 1 M —
Y3 ← Y B − (Y Z2)3Z 3 M+ 1 C save Y Z2

X3 ← XB + µZ3 − (Y Z2)2ZA 4 M —
Total cost: 10 M+ 3 C

4.3 Jacobian coordinates

These coordinates have been introduced in the context of curves in characteristic
three by Harrison, Page and Smart in [18], where they are called projective, but
they are long known, see for instance [13] and, for cryptographic applications [14].
In order to distinguish them from those described in § 4.2 and in accordance with
the rest of the literature on elliptic curves we instead call them Jacobian. In
Jacobian coordinates the affine point (x, y) is represented as ⟨X:Y :Z⟩ = (x, y),
where x = X/Z2 and y = Y/Z3.

As in the projective case our starting point are the addition formulae (11)
specialized for the case where P2 = µτP1 and simplified, i.e., (12). Putting
x = X/Z2 and y = Y/Z3 in the formulae for x3 and in the formula for y3 and
proceeding as above we obtain

X3 = ((X + µZ2)(X3 −XZ4)2 − Y 2Z8)Z(X3 −XZ4) ,

Y3 = Y (X3 −XZ4)3 − Y 3Z12 ,

Z3 = Z3(X3 −XZ4)3 .

We obtain the following operation sequence:

Computing (1 + µτ) in Jacobian coordinates
Input: ⟨X:Y :Z⟩ – Output: ⟨X3:Y3:Z3⟩ = (1 + µτ)⟨X:Y :Z⟩
Operation Cost Remark
A← X3 −XZ4 2 M+ 2 C save Z4

B ← A3 1 C —
Z3 ← (ZA)3 1 M+ 1 C save ZA
Y3 ← Y B − (Y Z4)3 2 M+ 1 C save Y Z4

X3 ← [(X + µZ2)A2 − (Y Z4)2](ZA) 5 M —
Total cost: 10 M+ 5 C

4.4 Modified Jacobian coordinates

With these coordinates, introduced by Kim and Negre [19], an affine point (x, y)
on E3,µ is represented by the quadruple ⟨X:Y :Z:T ⟩, where x = X/Z2 and y =

12 Roberto Avanzi and Clemens Heuberger

Y/Z3 as before, and T = Z2. The explicit formula in this case is obtained by
modifying the formula in § 4.3.

Computing (1 + µτ) in modified Jacobian coordinates
Input: ⟨X:Y :Z:T ⟩ – Output: ⟨X3:Y3:Z3:T3⟩ = (1 + µτ)⟨X:Y :Z:T ⟩
Operation Cost Remark
A← X3 −XT 2 2 M+ 1 C save T 2

B ← A3 1 C —
Z3 ← (ZA)3 1 M+ 1 C save ZA
Y3 ← Y B − (Y T 2)3 2 M+ 1 C save Y T 2

X3 ← [(X + µT)A2 − (Y T 2)2](ZA) 4 M —
T3 ← Z2

3 1 M —
Total cost: 10 M+ 4 C

4.5 Costs of operations in different systems

We now tabulate the costs of several operations on an elliptic curve E3,µ.

Coordinates →
Affine Projective Jacobian

Modified
↓ Operation Jacobian
ADD 1 I+ 3 M 14 M+ 1 C 12 M+ 4 C 11 M+ 4 C
mADD NA 9 M+ 2 C 8 M+ 3 C 7 M+ 3 C
DBL (also −2) 1 I+ 2 M 11 M+ 1 C 7 M+ 2 C 6 M+ 4 C
TPL 4 C 6 C 1 M+ 6 C 8 C
τ 2 C 3 C 3 C 4 C
1 + µτ 1 I+ 2 M+ 3 C 10 M+ 3 C 10 M+ 5 C 10 M+ 4 C
1 + µτ3 1 I+ 3 M+ 6 C 14 M+ 10 C 12 M+ 13 C 11 M+ 16 C

ADD, DBL, and TPL denote addition of two different points, doubling and
tripling of a point, respectively. The prefix m is used to denote a mixed addi-
tion, i.e., addition of a point given in affine coordinates to a point in a non-affine
coordinate system (in other words, Z2 = 1), with a result in the same coordinate
system of the second point. We did not find gains with repeated additions, i.e.
when a given point is added to several inputs, except with standard Jacobian
coordinates, where one M can be saved in the ADD. In Jacobian and modified
Jacobian coordinates we save a cubing for the generic addition and nothing for
the mixed addition. As symbols, τ , 1 + µτ , and 1 + µτ3 denote the application
of the corresponding endomorphisms.

Remark 3. (i) The costs for the projective operations have been inferred from
the formulae in [20] (with some obvious simplifications) and [6].

(ii) For mADD in Jacobian coordinates we started with the formula for ADD

in [18], which we report here for the reader’s convenience:

λ1 ← X1Z
2
2 , λ2 ← X2Z

2
1 , λ3 ← λ1 − λ2 , λ4 ← Y1Z

3
2 ,

λ5 ← Y2Z
3
1 , λ6 ← λ4 − λ5 , λ7 ← λ1 + λ2 , λ8 ← λ4 + λ5 ,

Z3 ← Z1Z2λ3 , X3 ← λ26 − λ7λ23 , Y3 ← λ8λ
3
3 − λ36 .

Scalar Multiplication on Supersingular Curves in Characteristic Three 13

Putting Z2 = 1 we save 1 M + 1 S in first step, then 1 M + 1 C in the fourth
step. Note that λ1 = X1 and λ4 = Y1, but no further savings come from
this. However, in the computation of Z3 one last M is saved. This brings
the total cost to 8 M+ 3 C.

(iii) The formulae and relative costs for ADD, DBL, and TPL in modified Jacobian
coordinates have been taken from [19].

Modified Jacobian coordinates are then the fastest system, as long as a field
inversion is slow. In fact, according to [18] and [1], a field inversion costs more
than ten field multiplications already for relatively small fields. Therefore, we
shall use the modified Jacobian coordinate system in the sequel.

5 Further Improvements to Scalar Multiplication

Let us have another look at Algorithm 1: it will be the starting point for a few
additional scalar multiplication methods.

Trading Frobenius Operations for Basis Conversions: If cubings are not
extremely inexpensive or even essentially for free (such as with normal bases)
they can easily become the dominant operation in Algorithm 1. In fact, there
are 2 · 3wm of them.

Therefore one can envision the alternative approach of converting the coordi-
nates of S to a normal basis representation before applying a power of τ (that in
normal basis representation has nearly no computational cost) and then convert-
ing back to polynomial basis representation before adding ζℓP to it. By means of
this, 2 ·3wm cubings are replaced by two basis conversion per coordinate of S for
each non-zero digit, i.e., about 8 · 2

2w+1 m basis conversions (assuming modified
Jacobian coordinates). However, there is a more efficient approach based on the
same idea: Instead of applying powers of τ to S and adding P , we convert instead
the base point P to normal basis representation and apply τ i before converting
it back, applying ζℓ and adding the resulting point to S. This is Algorithm 2.
Only 2 basis conversions at the beginning plus 2 more for each non-zero digit
in the expansion are necessary, i.e., about 2 + 2 · 2

2w+1 m. This is similar to the
method used in [4] for elliptic Koblitz curves in characteristic two. This approach
can be advantageous, but only for relatively large values of m and w, since a
basis conversion can be quite expensive: Whereas for characteristic two one such
operation takes about the same time as one polynomial basis multiplication [15],
in characteristic three the cost can be between two and three polynomial basis
multiplications.

A Different Kind of Tradeoff: The biggest advantages of Algorithms 1 and 2
lie in their minimal memory requirements, but if cubings or basis conversions
are not completely negligible, performance will not be their biggest strength.
However, one can exploit the structure of the unit group in a more subtle way,
to store only about O(3w/2) precomputed points instead of O(3w) to perform a
width-w windowed scalar multiplication.

14 Roberto Avanzi and Clemens Heuberger

Algorithm 2. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with basis
conversions

INPUT: P = (x, y) ∈ E3,µ(F3m), scalar z represented as in Equation (10)

OUTPUT: zP

1. Q← 0

2. P̂ ← normal basis(P)

3. for j = 3a − 1 to 0 do

4. Q← ϕQ [skip first time]

5. R← 0

6. for k = 3b − 1 to 0 do

7. R← ψR [skip first time]

8. S ← 0

9. for i = 0 to m− 1 do

10. if (εi ̸= 0 and fi = j and gi = k) then

11. S ← S + εi polynomial basis
(
τ iP̂

)
12. R← R+ S

13. Q← Q+R

14. return Q

In the notation of Section 3 and in particular of Equation (10), this idea
consists in (i) precomputing and storing all the points ϕj(P) for 0 ⩽ j < 3a,
and then (ii) using a double Horner scheme on double base representation z =∑m

i=0

(
εiϕ

fi
)
ψgiτ i with bases τ and ψ, and digits εiϕ

fi , in place of the triple
Horner scheme of Algorithm 1. It is clear now how to write down the methods:
Algorithms 3 and 4 on page 16 are the “square root sized digit set” variants of
Algorithms 1 and 2, respectively.

Comparisons: We now compare the performance and memory consumption
of these algorithms to other methods presented in the scientific literature. The
results are summarized in Tables 1 and 2 on page 18. We now describe our
approach to the comparisons:

(i) We consider here the simple τ -adic scalar multiplication from Koblitz [20],
corresponding to a τ -adic 2-NAF with digit set {0} ∪ ⟨ζ⟩, the windowed
method from [10] for w ⩾ 3, and our four algorithms. Note that we extend
the method from [10] also to w = 5 (since, for large m, w = 3 or w = 4 are
no longer optimal). For completeness we also report the operation counts
for Smart’s method [23] specialized to characteristic three.

(ii) Seven different field sizes F3m with m = 97, 163, 193, 239, 509, 773 and
1223, and two representations of the fields – normal basis and polynomial
basis – are considered. The first five are fields already considered in the
literature, the last two have been chosen to see how the methods scale with
the field size, but are not necessarily tied to particular applications.

Scalar Multiplication on Supersingular Curves in Characteristic Three 15

(iii) All the computational costs are expressed in field multiplications. The cost
of a field inversion is taken to be equal to 15, 17, 20, 30, 40, 60 and 80
multiplications, respectively for the seven chosen values of m, and a cubing
is equal to 0.15, 0.10, 0.09, 0.07, 0.045, 0.037 and 0.033 multiplications,
respectively. Whereas using normal bases a cubing is essentially for free,
the cost cannot be ignored when using a polynomial basis, because of the
cost of the reduction of a polynomial of degree up to 3(m − 1) modulo the
defining polynomial of the field extension. These values are approximate
distillates of the values found in [18, 1] and of our own implementation
experiments, and checked against Mitsunari’s code [22].

(iv) For each scalar multiplication algorithm parametrized by a “window width”
w, the cost corresponding to the optimal value of w is given.

(v) For all our algorithms the generators are chosen following the considera-
tions in Remark 2: For even w, we take {ϕ, ψ} = {−2, 1 + µτ} and from
Lemma 1 we get a = b = 3w/2−1. For odd w we take {ϕ, ψ} = {−2, 1+µτ3};
from Lemma 1 we know that ordτw(−2) = 3(w−1)/2, ordτw(1 + µτ3) =
3(w−3)/2. If ψ = −2, then a = (w − 1)/2, b = (w − 3)/2, otherwise (i.e., if
ϕ = −2) a = (w − 3)/2, b = (w − 1)/2.
When different choices of the generators affect the performance, as in Al-
gorithms 3 and 4, we make further case distinctions in the comparisons.

(vi) Memory consumption is given as the number of registers that are required
for storing input-dependent points: The method from [10] needs to store
the precomputed points other than the base point P itself, and uses an
extra variable in the Horner scheme; Algorithm 1 needs to store Q, R and
S and Algorithm 2 also storage P̂ and a copy of τ iP̂ in polynomial basis
(cf. in Step 11); Algorithm 3 needs storage for the 3a − 1 points ϕjP with
j > 0, as well as R, S; with respect to Algorithm 3, Algorithm 4 needs one
register for P in normal basis as well, and one for the point converted in
Step 7.
We do not consider the memory conversion matrices (that only apply to
Algorithms 2 and 4) since they can be stored statically.

(vii) Algorithms 2 and 4 are not relevant for the normal basis comparison.

A comparison to expansions to the base of three, such as those in [18], seems
due. A tripling requires twice as many cubings as a Frobenius operation. Since the
density of a simple base-three expansion is 1/2 – higher than the 2/5 of Koblitz’
espansion – the method is slower than Koblitz’ τ -adic method. Similarly, their
nonary method requiring 7 precomputations is slower than the method of Blake,
Kumar, and Xu already for w = 3, with comparable memory requirements.

Double base chains with bases (2, 3) such as those presented in [2] make sense
when the doubling and tripling operation have both non-trivial costs. While
computing the operation chain for a given scalar z one observes that it may end
it with: (a) a doubling if 2 | z; (b) a tripling if 3 | z; (c) a doubling and an
addition if 2 ∤ z; or (d) a tripling and an addition/subtraction if 3 ∤ z. The rest
of the chain is the one associated to integers z/2, z/3, (z ± 1)/2 and (z ± 1)/3
respectively. Now, tripling in our case is always very efficient, but not doubling.

16 Roberto Avanzi and Clemens Heuberger

Algorithm 3. Square-root memory usage τ -adic Scalar Multiplication on Koblitz
Curves

INPUT: P = (x, y) ∈ E3,µ(F3m), scalar z represented as in Equation (10)

OUTPUT: zP

1. for j = 0 to 3a − 1 do Precompute and store ϕjP

2. R← 0

3. for k = 3b − 1 to 0 do

4. R← ψR, S ← 0

5. for i = m− 1 to 0 do

6. S ← τS [skip first time]

7. if (εi ̸= 0 and gi = k) then

8. S ← S + εi
(
ϕfjP

)[
Use idea from Algo. 1, Steps 11–18 with (x, y) = ϕfjP from table

]
9. R← R+ S

10. return R

Algorithm 4. Square-root memory usage Scalar Multiplication on Koblitz Curves
with basis conversions

INPUT: P = (x, y) ∈ E3,µ(F3m), scalar z represented as in Equation (10)

OUTPUT: zP

1. for j = 0 to 3a − 1 do Precompute and store normal basis(ϕjP)

2. R← 0

3. for k = 3b − 1 to 0 do

4. R← ψR, S ← 0

5. for i = 0 to m− 1 do

6. if (εi ̸= 0 and gi = k) then

7. S ← S + εi polynomial basis
(
τ i(ϕfjP)

)
8. R← R+ S

9. return R

Hence, options (c) and (d) are almost always more convenient than (a) also by
virtue of of the faster reduction of the intermediate results. Therefore, double
base chains almost always degenerate to base-three expansions, which we have
just considered.

6 Conclusions and Final Remarks

It is clear from Tables 1 and 2 on page 18 that the new methods provide a
substantial improvement w.r.t. the state of the art.

Scalar Multiplication on Supersingular Curves in Characteristic Three 17

1. In the case of fields represented with a polynomial basis, we see that speedups
are attained already for small curves. If w = 97, for instance For instance,
the method from [10] is already beaten by Algorithm 2 with a much lower
memory usage. Form = 509, we obtain similar or slightly better performance
using Algorithms 3 and 4, but the memory reduction goes from a factor
2.25 = 27/12 to 6.75 = 27/4. For even larger fields, such as m = 1223, the
method from [10] with w = 5 uses 81 registers and has similar performance
to Algorithm 3, but the latter uses only 10 memory registers, which therefore
is about one eighth than the previous state of the art. Speed improvements
are often up to 7% for variable memory usage methods (but with reduced
memory usage) to 24% for methods with fixed memory usage (i.e., then
comparing our first two algorithms to Koblitz’ algorithm).
We also note that whereas Algorithm 4 needs static storage for basis con-
version matrices, these are not needed in Algorithm 3, that is usually just a
bit slower and still faster than previous methods.

2. With a normal basis the improvements are even more impressive, going from
20% when m = 97 to 26% for m = 509 and then reaching nearly 30% for
m = 1223, in all cases with vastly reduced memory usage.

3. If we compare methods with fixed memory consumption, we see that Algo-
rithm 2 consistently outperforms the method of Koblitz, the speed up ranging
from a few percent to 26.4% for m = 509 and even 46.7% for m = 1223 in
the normal basis case (the price to pay being the usage of three intermediate
registers in place of just one).

The techniques introduced in this paper therefore bring substantial speedups to
scalar multiplication on supersingular Koblitz curves in characteristic three, at
the same time reducing the memory footprint – by a factor roughly up to 8 in
the examples we explicitly computed.
For extremely restricted environments, with no additional memory for code, the
simple simple τ -adic method by Koblitz may of course still be preferable.

References

1. Omran Ahmadi, Darrel Hankerson, and Alfred Menezes, Software Implementation
of Arithmetic in F3m , WAIFI 2007, Springer LNCS vol. 4547, pp. 85–102. Springer,
2007.

2. Roberto Avanzi, Vassil Dimitrov, Christophe Doche, and Francesco Sica, Extending
scalar multiplication using double bases, ASIACRYPT 2006, Springer LNCS vol.
4284, pp. 130–144. Springer, 2006,

3. Roberto Avanzi, Clemens Heuberger, and Helmut Prodinger, On Redundant τ -
adic Expansions and Non-Adjacent Digit Sets., SAC 2006, Springer LNCS vol.
4356, pp. 285–301. Springer, 2007

4. , Redundant τ -adic Expansions I: Non-Adjacent Digit Sets and their Ap-
plications to Scalar Multiplication, Design, Codes and Cryptography (2010), to
appear.

5. , Arithmetic of Koblitz Curves in Characteristic Three, Preprint., 2010.

18 Roberto Avanzi and Clemens Heuberger

Previous methods New methods

m
Smart Koblitz BMX [10]

Algo. 1
Algo. 2 Algorithm 3 Algorithm 4

[23] [20] extended ψ=−2 ψ=−2 ϕ=−2 ψ=−2 ϕ=−2

97
535.6 339.2 296.1 392.4 331.7 278.1 385.0 278.1 278.1
1 1 9 (3) 3 (3) 5 (3) 4 (3) 2 (3) 6 (4) 6 (4)

163
854.4 533.5 436.5 547.5 494.2 418.5 493.3 408.8 432.0
1 1 9 (3) 3 (3) 5 (4) 4 (3) 4 (4) 6 (4) 6 (5)

193
1001.9 624.1 503.6 621.3 567.9 483.6 553.5 468.7 492.1

1 1 9 (3) 3 (3) 5 (4) 4 (3) 4 (4) 6 (5) 6 (5)

239
1211.8 748.7 595.5 705.3 679.2 572.5 616.9 566.0 566.0

1 1 27 (3) 3 (3) 5 (4) 4 (3) 4 (4) 12 (6) 12 (6)

509
2509.0 1537.0 1035.4 1325.0 1300.5 1032.5 1115.0 1024.1 1024.1

1 1 27 (4) 3 (3) 5 (5) 10 (5) 4 (4) 12 (6) 12 (6)

773
3775.2 2305.9 1528.4 1926.4 1830.4 1439.8 1597.8 1419.6 1472.9

1 1 81 (5) 3 (3) 5 (5) 10 (5) 4 (4) 12 (6) 12 (7)

1223
5923.8 3608.0 2177.4 2930.4 2733.8 2113.5 2400.3 2111.6 2111.7

1 1 81 (5) 3 (3) 5 (5) 10 (5) 4 (4) 30 (8) 30 (8)

Table 1. Cost – expressed in field multiplications – and random access memory us-
age – expressed as the number of precomputed and intermediate points – of scalar
multiplication on curves over fields represented in polynomial basis. In each entry the
computational cost is above, memory usage and, if applicable, the value of w between
parentheses, are below.

Previous methods New methods

m
Smart Koblitz BMX [10]

Algo. 1
Algorithm 3

[23] [20] extended ψ=−2 ϕ=−2

97
449.2 264.6 230.0 207.1 183.9 183.9
1 1 9 (3) 3 (3) 4 (4) 4 (4)

163
757.2 449.4 362.0 339.0 286.6 286.6
1 1 9 (3) 3 (3) 4 (4) 4 (4)

193
897.2 533.4 410.2 388.2 333.2 316.6
1 1 27 (4) 3 (3) 4 (4) 4 (4)

239
1111.8 662.2 487.7 466.5 399.2 375.2

1 1 27 (4) 3 (4) 10 (5) 4 (5)

509
2371.8 1418.2 947.8 885.8 701.2 701.2

1 1 27 (4) 3 (4) 10 (6) 10 (6)

773
3603.8 2157.4 1395.8 1246.8 985.5 985.5

1 1 81 (5) 3 (5) 10 (6) 10 (6)

1223
5703.8 3417.4 2008.5 1819.6 1470.0 1410.0

1 1 81 (5) 3 (5) 10 (6) 10 (7)

Table 2. Computational costs and memory consumption as in Table 1 but when using
a normal basis.

6. Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott, Efficient
algorithms for pairing-based cryptosystems, Crypto 2002, Springer LNCS vol. 2442,

Scalar Multiplication on Supersingular Curves in Characteristic Three 19

pp. 354–368. Springer, 2002.
7. Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, and Fran-

cisco Rodŕıguez-Henŕıquez, A Comparison between Hardware Accelerators for the
Modified Tate Pairing over F2m and F3m , Pairing 2008, Springer LNCS vol. 5209,
pp. 297–315. Springer, 2008.

8. Jean-Luc Beuchat, Emmanuel López-Trejo, Luis Mart́ınez-Ramos, Shigeo Mit-
sunari, and Francisco Rodŕıguez-Henŕıquez, Multi-core Implementation of the Tate
Pairing over Supersingular Elliptic Curves, CANS 2009, Springer LNCS vol. 5888,
pp. 413–432. Springer, 2009.

9. Jean-Luc Beuchat, Masaaki Shirase, Tsuyoshi Takagi, and Eiji Okamoto, An Al-
gorithm for the ηT Pairing Calculation in Characteristic Three and its Hardware
Implementation, ARITH ’07, pp. 97–104. IEEE Computer Society, 2007.

10. Ian F. Blake, Vijaya Kumar Murty, and Guangwu Xu, Efficient algorithms for
Koblitz curves over fields of characteristic three, J. Discrete Algorithms 3 (2005),
no. 1, pp. 113–124.

11. Ernie Brickell, Liqun Chen, and Jiangtao Li, A New Direct Anonymous Attestation
Scheme from Bilinear Maps, Trust 2008, Springer LNCS vol. 4968, pp. 166–178.
Springer, 2008.

12. Emanuele Cesena, Trace Zero Varieties in Pairing-based Cryptography, Ph.D. The-
sis, Università degli Studi Roma TRE, 2010.

13. David V. Chudnovsky and Gregory V. Chudnovsky, Sequences of numbers gener-
ated by addition in formal groups and new primality and factorization tests, Ad-
vances in Applied Math. 7 (1986), 385–434.

14. Henri Cohen, Atsuko Miyaji, and Takatoshi Ono, Efficient elliptic curve exponenti-
ation using mixed coordinates, Advances in Cryptology – Asiacrypt 1998, Springer
LNCS vol. 1514, Springer-Verlag, Berlin, 1998, pp. 51–65.

15. Jean-Sébastien Coron, David M’Räıhi, and Christophe Tymen, Fast generation
of pairs (k, [k]P) for Koblitz elliptic curves, SAC 2001, Springer LNCS vol. 2259,
pp. 151–164. Springer, 2001.

16. David Freeman, Michael Scott, and Edlyn Teske, A Taxonomy of Pairing-Friendly
Elliptic Curves, J. Cryptology (2010), Vol 23 No. 2, pp. 224–280.

17. Franz Halter-Koch, Einseinheitengruppen und prime Restklassengruppen in
quadratischen Zahlkörpern, Journal of Number Theory 4 (1972), pp. 10–17.

18. Keith Harrison, Dan Page, and Nigel Smart, Software Implementation of Finite
Fields of Characteristic Three, for Use in Pairing Based Cryptosystems, LMS Jour-
nal of Computation and Mathematics 5 (2002), pp. 181–193.

19. Kwang-Ho Kim and Christophe Nègre, Point multiplication on supersingular ellip-
tic curves defined over fields of characteristic 2 and 3, SECRYPT 2008, pp. 373–
376. INSTICC Press, 2008.

20. Neal Koblitz, An elliptic curve implementation of the finite field digital signature
algorithm, CRYPTO ’98, Springer LNCS vol. 1462, pp. 327–337. Springer, 1998.

21. Norikata Nakagoshi, The structure of the multiplicative group of residue classes
modulo pN+1, Nagoya Mathematical Journal 73 (1979), pp. 41–60.

22. Shigeo Mitsunari. A fast implementation of ηT pairing in characteristic three on
intel processor. Cryptology ePrint Archive, report 2009/032. 2009.

23. Nigel Smart, Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic.
J. Cryptology (1999) 12, pp. 141–151. Springer, 1999.

24. Jerome A. Solinas, Efficient arithmetic on Koblitz curves, Design, Codes and Cryp-
tography 19 (2000), pp. 195–249. Springer, 2000.

