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Abstract. Attribute-based encryption (ABE), as introduced by Sahai
and Waters, allows for fine-grained access control on encrypted data. In
its key-policy flavor, the primitive enables senders to encrypt messages
under a set of attributes and private keys are associated with access
structures that specify which ciphertexts the key holder will be allowed
to decrypt. In most ABE systems, the ciphertext size grows linearly with
the number of ciphertext attributes and the only known exceptions only
support restricted forms of threshold access policies.
This paper proposes the first key-policy attribute-based encryption (KP-
ABE) schemes allowing for non-monotonic access structures (i.e., that
may contain negated attributes) and with constant ciphertext size. To-
wards achieving this goal, we first show that a certain class of identity-
based broadcast encryption schemes generically yields monotonic KP-
ABE systems in the selective set model. We then describe a new efficient
identity-based revocation mechanism that, when combined with a par-
ticular instantiation of our general monotonic construction, gives rise to
the first truly expressive KP-ABE realization with constant-size cipher-
texts. The downside of these new constructions is that private keys have
quadratic size in the number of attributes. On the other hand, they re-
duce the number of pairing evaluations to a constant, which appears to
be a unique feature among expressive KP-ABE schemes.

Keywords. Attribute-based encryption, expressivity, efficiency.

1 Introduction

It frequently happens that sensitive data must be archived by storage servers in
such a way that only specific parties are allowed to read the content. In these
situations, enforcing the access control using ordinary public key encryption
schemes is not very convenient as such primitives severely decrease the flexibil-
ity of users to share their data.

? This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-
F.N.R.S.) for his “chargé de recherches” fellowship and the BCRYPT Interuniversity
Attraction Pole.



To address these concerns, Sahai and Waters [29] introduced attribute-based
encryption (ABE), which refines identity-based encryption [30, 8] by associating
ciphertexts and private keys with sets of descriptive attributes. Decryption is
then possible when there is a sufficient overlap between the two sets. These re-
sults were extended by Goyal, Pandey, Sahai and Waters [20] into richer kinds
of attribute-based encryption, where decryption is permitted when the attribute
set satisfies a more complex boolean formula specified by an access structure.
This paper describes truly expressive ABE systems featuring compact cipher-
texts, regardless of the number of underlying attributes.

Related Work. Attribute-based encryption comes in two flavors. In key-policy
ABE schemes (KP-ABE), attribute sets are used to annotate ciphertexts and
private keys are associated with access structures that specify which ciphertexts
the user will be entitled to decrypt. Ciphertext-policy ABE (CP-ABE) proceeds
in the dual way, by assigning attribute sets to private keys and letting senders
specify an access policy that receivers’ attribute sets should comply with.

The ciphertext-policy scenario was first studied in [5, 18]. The construction
of [18] only handles AND gates while the first expressive construction [5] was
only analyzed in the generic group model. Goyal, Jain, Pandey and Sahai [21]
gave a construction in the standard model but its large parameters and key sizes
make it impractical for reasonably expressive policies. Efficient and expressive
realizations in the standard model were subsequently put forth by Waters [32]
and one of them was recently extended by Lewko et al. [25], and subsequently by
Okamoto and Takashima [31], into schemes providing adaptive security whereas
all prior works on ABE were limited to deal with selective adversaries [13, 14, 6]
– who have to make up their mind about their target before having seen public
parameters – in their security analysis.

In both CP-ABE and KP-ABE schemes, expressivity requires to go beyond
what monotonic access structures can express. Ostrovsky, Sahai and Waters [28]
considered access structures that may contain negative attributes without blow-
ing up the size of shares or ciphertexts. Their initial construction was recently
improved by Lewko, Sahai and Waters [24] who used techniques from revocation
systems (which can be seen as negative analogues of identity-based broadcast
encryption) to design the most efficient non-monotonic KP-ABE to date.

Our Contributions. So far, the research community has mostly focused on
the design of expressive schemes – where access structures can implement as
complex boolean formulas as possible – without trying to minimize the size of
ciphertexts. Indeed, most schemes [20, 28, 32, 25, 24] feature linear-size cipher-
texts in the maximal number of attributes that ciphertexts can be annotated
with. In the ciphertext-policy setting, Emura et al. suggested a scheme with
short ciphertexts [19] but policies are restricted to a single AND gate. More
recently, Herranz et al. [22] described a scheme with threshold access policies
and constant-size4 ciphertexts. Yet, their scheme is still not as expressive as one

4 By “constant”, we mean that the size only depends on the security parameter λ (the
number of transmitted bits is typically O(λ)) and not on the number of ciphertext
attributes.
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could hope for. In particular, it seems difficult to extend it to support general
linear-secret-sharing-realizable (or LSSS-realizable for short) access structures.

In the context of key-policy attribute-based encryption, this paper aims at
devising schemes with constant-size ciphertexts5 (regardless of the number of
ciphertext attributes) allowing for as expressive policies as possible. To this
end, we first show that a certain class of identity-based broadcast encryption
(IBBE) schemes readily yields KP-ABE schemes with monotonic (though LSSS-
realizable) access structures via a generic transformation. The latter preserves
the ciphertext size and guarantees the resulting scheme to be selectively secure
(as defined in [13, 6]) as long as the underlying IBBE system is itself selectively
secure. At the expense of quadratic-size private keys (which comprise O(t · n)
elements, where n is the maximal number of ciphertext attributes and t is the
maximal number of leaf attributes in access trees), this transformation directly
provides us with monotonic KP-ABE schemes with O(1)-size ciphertexts.

In a second step, we use a particular output of the aforementioned transfor-
mation to design a scheme supporting non-monotonic access structures without
sacrificing the efficiency. In the resulting construction, the ciphertext overhead
reduces to three group elements, no matter how many attributes ciphertexts
are associated with. As in the monotonic case, private keys are inflated by a
factor of n in comparison with [28, 24]. Nevertheless, these new schemes remain
attractive for applications where bandwidth is the primary concern. In mobile
Internet connections for instance, users are charged depending on the amount of
transmitted messages; while in contrast, the storage is becoming much cheaper
nowadays even for a large amount, as evidently in many smart phones.

As an intermediate step towards the new non-monotonic ABE, we design
a new identity-based revocation (IBR) mechanism (as defined by Lewko, Sa-
hai and Waters [24]) with O(1)-size ciphertexts and a similar structure to that
of the monotonic KP-ABE schemes provided by our general construction. This
was necessary since prior IBR systems with short ciphertexts [4] were not di-
rectly amenable to fulfill these requirements. We believe this new IBR realization
to be of independent interest since it performs noticeably better than previous
schemes featuring short ciphertexts [4] and still relies a natural (though “q-type”)
intractability assumption.

The security of our schemes is proved against selective adversaries (that
are not allowed to choose their target attribute set adaptively) under a non-
interactive assumption. We leave it as an open problem to obtain KP-ABE
schemes with compact ciphertexts that can be proven secure against adaptive
adversaries (as in the work of Lewko et al. [25]).

Other Related Work. The aforementioned realizations all assume ABE
schemes with a single authority and we focus on this context as well. Extensions
to the multi-authority scenario were investigated in [15, 16] for a conjunctive

5 As in the literature on broadcast encryption (see, e.g., [9]) where the list of receivers
is not included in the ciphertext, we do not count the description of ciphertext
attributes as being part of the ciphertext. Indeed, many ciphertexts may have to be
encrypted under the same attribute set.
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setting and in [3] for a disjunctive setting. Besides the two usual flavors of ABE,
another recently considered kind of ABE schemes [2], called dual-policy ABE,
mixes features from both KP-ABE and CP-ABE systems.

Organization. In the following, we first review various primitives in section 2.
Section 3 describes our general construction of monotonic KP-ABE. The new
revocation scheme is depicted in section 4. Section 5 finally presents the non-
monotonic ABE realization with compact ciphertexts.

2 Background and Definitions

Notation. We will treat a vector as a column vector, unless stated otherwise.
Namely, for any vectorα = (α1, . . . , αn)> ∈ Znp , gα stands for the vector of group

elements (gα1 , . . . , gαn)> ∈ Gn. For a, z ∈ Znp , we denote their inner product

as 〈a, z〉 = a>z =
∑n
i=1 aizi. Given ga and z, (ga)z := g〈a,z〉 is computable

without knowing a. We denote by In the identity matrix of size n. For a set U ,
we define 2U = {S | S ⊆ U} and

(
U
<k

)
= {S | S ⊆ U, |S| < k} for k ≤ |U |.

2.1 Syntax and Security Definition for Functional Encryption

We capture notions of KP-ABE, IBBE, IBR by providing a unified definition
and security notion for functional encryption6 here and then instantiating to
these primitives in the next subsections.

Syntax. Let R : Σk × Σe → {0, 1} be a boolean function where Σk and Σe
denote “key index” and “ciphertext index” spaces. A functional encryption (FE)
scheme for the relation R consists of algorithms: Setup, KeyGen, Encrypt, Decrypt.

Setup(λ,des)→ (mpk,msk): The setup algorithm takes as input a security pa-
rameter λ and a scheme description des and outputs a master public key
mpk and a master secret key msk.

KeyGen(msk, X)→ skX : The key generation algorithm takes in the master secret
key msk and a key index X ∈ Σk. It outputs a private key skX .

Encrypt(mpk,M, Y )→ C: This algorithm takes as input a public key mpk, the
message M, and a ciphertext index Y ∈ Σe. It outputs a ciphertext C.

Decrypt(mpk, skX , X,C, Y )→ M or ⊥: The decryption algorithm takes in the
public parameters mpk, a private key skX for the key index X and a cipher-
text C for the ciphertext index Y . It outputs the message M or a symbol ⊥
indicating that the ciphertext is not in a valid form.

Correctness mandates that, for all λ, all (mpk,msk) produced by Setup(λ, des),
all X ∈ Σk, all keys skX returned by KeyGen(msk, X) and all Y ∈ Σe,

− If R(X,Y ) = 1, then Decrypt(mpk,Encrypt(mpk,M, Y )), skX) = M.

6 The term “functional encryption” was defined in slightly different manners in [25, 4,
31] before recently fully formalized in [11]. Our definition of FE here and throughout
the paper refers to the class of predicate encryption with public index of [11].
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− If R(X,Y ) = 0, then Decrypt(mpk,Encrypt(mpk,M, Y )), skX) = ⊥.

Security Notion. We now give the standard security definition for FE schemes.

Definition 1. A FE scheme for relation R is fully secure if no probabilistic
polynomial time (PPT) adversary A has non-negligible advantage in this game:

Setup. The challenger runs (mpk,msk)← Setup(λ,des) and gives mpk to A.
Phase 1. On polynomially-many occasions, A chooses a key index X and gets

skX = Keygen(msk, X). Such queries can be adaptive in that each one may
depend on the information gathered so far.

Challenge. A chooses messages M0,M1 and a ciphertext index Y ? such that
R(X,Y ?) = 0 for all key indexes X that have been queried at step 2. Then,
the challenger flips a fair binary coin d ∈ {0, 1}, generates a ciphertext
C? = Encrypt(mpk,Md, Y

?), and hands it to the adversary.
Phase 2. A is allowed to make more key generation queries for any key index

X such that R(X,Y ?) = 0.
Guess. A outputs a bit d′ ∈ {0, 1} and wins if d′ = d.
The advantage of the adversary A is measured by Adv(λ) := |Pr[d′ = d]− 1

2 |.

A weaker notion called selective security [13, 6] can be defined as in the
above game with the exception that the adversary A has to choose the challenge
ciphertext index Y ? before the setup phase but private key queries X1, . . . , Xq

can still be adaptive. A dual notion called co-selective security [4], in contrast,
requires A to declare q key queries for key indexes X1, . . . , Xq before the setup
phase, but A can adaptively choose the target challenge ciphertext index Y ?.

2.2 Key-Policy Attribute-Based Encryption

Before describing the definition of KP-ABE, we first recall the definitions of
access structures and linear secret sharing schemes, as defined in [20].

Definition 2 (Access Structures). Consider a set of parties P = {P1, P2, . . . ,
Pn}. A collection A ⊆ 2P is said to be monotone if, for all B,C, if B ∈ A and
B ⊆ C, then C ∈ A. An access structure (resp., monotonic access structure) is
a collection (resp., monotone collection) A ⊆ 2P \ {∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets.

Definition 3 (Linear Secret Sharing Scheme). Let P be a set of parties.
Let L be a `× k matrix. Let π : {1, . . . , `} → P be a function that maps a row to
a party for labeling. A secret sharing scheme Π for access structure A over a set
of parties P is a linear secret-sharing scheme (LSSS) in Zp and is represented
by (L, π) if it consists of two efficient algorithms:

Share(L,π): takes as input s ∈ Zp which is to be shared. It chooses β2, . . . , βk
R←

Zp and let β = (s, β2, . . . , βk)>. It outputs L · β as the vector of ` shares.
The share λi := 〈Li,β〉 belongs to party π(i), where Li

> is the ith row of L.
Recon(L,π): takes as input an access set S ∈ A. Let I = {i| π(i) ∈ S}. It outputs

a set of constants {(i, µi)}i∈I such that
∑
i∈I µi · λi = s.
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In a key-policy attribute-based encryption scheme, ciphertexts are associ-
ated with a set of attributes ω and private keys correspond to access structures
A. Decryption is possible when the attribute set ω is authorized in the access
structure A (i.e., ω ∈ A). We formally define it as an instance of FE as follows.

Definition 4 (KP-ABE). Let U be an attribute space. Let n ∈ N be a bound
on the number of attributes per ciphertext. A key-policy attribute-based encryp-
tion (KP-ABE) for a collection AS of access structures over U is a functional
encryption for RKP : AS ×

(
U
<n

)
→ {0, 1} defined by RKP(A, ω) = 1 iff ω ∈ A

(for ω ⊆ U such that |ω| < n, and A ∈ AS). Furthermore, the description des
consists of the attribute universe U , ΣKP

k = AS, and ΣKP
e =

(
U
<n

)
.

Definition 4 conforms with the original definition of KP-ABE, as in [20, 28,
24, 25, 11]. There is another variant of KP-ABE recently used in [31], that we
call KP-ABE with labeling. We re-formalize it in appendix A, for the purpose of
comparison in Table 2. We remark that normal KP-ABE implies KP-ABE with
labeling.

We note that chosen-ciphertext secure versions of our proposed KP-ABE
schemes in this paper can be obtained from recent generic results of [33].

2.3 Identity-Based Broadcast Encryption and Revocation Scheme

An ID-based broadcast encryption, as formalized in [1], allows a sender to en-
crypt a message to a set of identities, say S = {ID1, . . . , IDq}, where q < n for
some a-priori fixed bound n ∈ N, so that a user who possesses a key for ID ∈ S
can decrypt. In contrast, an ID-based revocation scheme [24] allows a sender to
specify a revoked set S so that only a user with ID 6∈ S can decrypt.

Definition 5. Let I be an identity space. An ID-based broadcast encryption
scheme (IBBE) with the maximal bound n for the number of receivers per ci-
phertext is a functional encryption for RIBBE : I ×

( I
<n

)
→ {0, 1} defined by

RIBBE(ID, S) = 1 iff ID ∈ S.

Definition 6. Let I be an identity space. An ID-based revocation (IBR) with the
maximal bound n for the number of revoked users per ciphertext is a functional
encryption for RIBR : I ×

( I
<n

)
→ {0, 1} defined by RIBR(ID, S) = 1 iff ID 6∈ S.

Remark 1. Although selective and co-selective security are incomparable in gen-
eral, we remark that, in IBR schemes, co-selective security implies selective se-
curity. To see why, we first recall that selective security for IBR requires the
adversary A to declare the target revoked set S? before seeing the public key
mpk. Here, phase 1 can be simplified by letting the challenger hand over all the
private keys for identities in S? at once (along with mpk). On the other hand,
co-selective IBR security requires A to declare the set S̃ of identities that will
be queried for private key generation before seeing mpk whereas the target revo-
cation set S? does not have to be fully determined before the challenge phase.
At the same time as mpk, the challenger then reveals all keys for identities in
S̃ at once. Later, the adversary can choose any S? ⊆ S̃ in the challenge phase.
Selective security corresponds to the special case where S? = S̃.

6



2.4 Complexity Assumptions

We use groups (G,GT ) of prime order p with an efficiently computable mapping
e : G × G → GT s.t. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G, a, b ∈ Z and
e(g, h) 6= 1GT whenever g, h 6= 1G. We rely on the DBDHE assumption intro-
duced in [9]. This assumption is shown to hold in the generic group model [7].
In addition, it is non-interactive and falsifiable [26].

Definition 7. In (G,GT ), the q-Decision Bilinear Diffie-Hellman Expo-

nent (q-DBDHE) problem is, given (g, gγ , g(γ2), . . . , g(γq), g(γq+2), . . . , g(γ2q), h, T )

where γ R← Zp, g, h R← G and T ∈R GT , to decide if T = e(g, h)(γq+1) or if T is
a random element of GT .

3 Monotonic KP-ABE with Short Ciphertexts

Our first goal is to construct monotonic KP-ABE with short ciphertexts. We
do so by showing a general transformation that automatically turns any IBBE
scheme fitting a certain template into a KP-ABE in the selective security model.

The construction is somewhat similar to the one described by Boyen [12],
which transforms IBE in the exponent-inversion framework to ABE. The ap-
proach of [12] took advantage of certain linearity properties in a family of IBE
schemes. Our approach also exploits some linearity properties, albeit instead of
IBE, we use IBBE as the underlying primitive. In contrast to [12], our transfor-
mation preserves the ciphertext size, hence using IBBE with short ciphertexts
will yield KP-ABE with the same ciphertext size.

3.1 Linear ID-based Broadcast Encryption Template

We define a template that IBBE schemes should comply with in order to give rise
to (selectively secure) KP-ABE schemes. We call this a linear IBBE template.
Let (G,GT ) be underlying bilinear groups of order p. A linear IBBE scheme is
determined by parameter n1, n2 ∈ N, a family F of vectors of functions, and a
function D, of which the latter two are specified by

F ⊂
{

(f1, f2, F ) | f1 : Z∗p → G, f2 : Z∗p → Gn1 , F : (Z∗p)≤n−1 → G≤n2
}
,

D : Gn1+2 × I ×G≤n2+1 ×
( I
<n

)
→ GT ,

with requirements specified below. A linear IBBE scheme works as follows.

I Setup(λ, n): Given a security parameter λ ∈ N and a bound n ∈ N on the
number of identities per ciphertext, the algorithm selects bilinear groups (G,GT )
of prime order p and a generators g R← G. It computes e(g, g)α for a random
α R← Z∗p and chooses functions (f1, f2, F ) R← F . The master secret key consists

of msk := gα while the public key is mpk :=
(
g, e(g, g)α, f1, f2, F, n, n1, n2

)
.

I Keygen(msk, ID): It picks r R← Z∗p and computes

skID = (d1, d2, d3) =
(
gα · f1(ID)r, gr, f2(ID)r

)
∈ Gn1+2.
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I Encrypt(mpk,M, S): It parses S as S = {ID1, . . . , IDq}, where q < n. To encrypt

M ∈ GT , it chooses a random exponent s R← Z∗p and computes the ciphertext as

C = (C0, C1, C2) =
(
M · e(g, g)α·s, gs, F (ID1, . . . , IDq)

s
)
.

I Decrypt(mpk, skID, ID, C, S): It parses skID = (d1, d2, d3) and C = (C0, C1, C2)
then runs

D
(
(d1, d2, d3), ID, (C1, C2), S

)
→ e(g, g)α·s,

and obtains M = C0/e(g, g)α·s. We are now ready to state the requirements: for
all (f1, f2, F ) ∈ F , the following two properties must hold.

1. Correctness. For all α, r, s ∈ Z∗p, ID ∈ I, S = {ID1, . . . , IDq} ∈
( I
<n

)
and

ID ∈ S, we have

D
((
gαf1(ID)r, gr, f2(ID)r

)
, ID, (gs, F (ID1, . . . , IDq)

s), S
)

= e(g, g)α·s.

2. Linearity. For all γ ∈ Z∗p, ID ∈ I, S ∈
( I
<n

)
, ID ∈ S, (d1, d2, d3) ∈ Gn1+2,

and (C1, C2) ∈ G≤n2+1, we have

D
(

(d1, d2, d3)γ , ID, (C1, C2), S
)

= D
(

(d1, d2, d3), ID, (C1, C2), S
)γ
.

3.2 Generic Conversion from Linear IBBE to KP-ABE

Let ΠIBBE = (Setup′,Keygen′,Encrypt′,Decrypt′) be a linear IBBE system. We
construct a KP-ABE scheme from ΠIBBE as follows.

I Setup(λ, n): It simply outputs Setup′(λ, n)→ (msk,mpk).
I Keygen(msk, (L, π)): The algorithm computes a private key for an access struc-
ture that is associated with LSSS scheme (L, π) as follows. Let L be `×k matrix.
First, it generates shares of 1 with the LSSS (L, π). Namely, it chooses a vector
β = (β1, β2, . . . , βk)> R← (Zp)k subject to the constraint β1 = 1. Then for each

i = 1 to `, it calculates λi = 〈Li,β〉, picks r′ R← Zp and sets Di as follows.

Keygen′(msk, π(i))→ (di,1, di,2, di,3),

Di =
(
dλii,1 · f1(π(i))r

′
, dλii,2 · g

r′ , dλii,3 · f2(π(i))r
′)
.

It then outputs the private key as sk(L,π) = {Di}i=1,...,`.

I Encrypt(mpk,M, ω): It simply outputs Encrypt′(mpk,M, ω)→ (C0, C1, C2).

I Decrypt(mpk, sk(L,π), (L, π), C, ω): Assume first that the policy (L, π) is satis-
fied by the attribute set ω, so that decryption is possible. Let I = {i| π(i) ∈ ω}.
It calculates the reconstruction constants {(i, µi)}i∈I = Recon(L,π)(ω). It parses
C as (C0, C1, C2) and sk(L,π) as {Di}i=1,...,` where Di = (d′i,1, d

′
i,2, d

′
i,3). For each

i ∈ I, it computes

D
(
(d′i,1, d

′
i,2, d

′
i,3), ID, (C1, C2), S

)
→ e(g, g)α·s·λi , (1)

which we prove correctness below. It computes e(g, g)α·s =
∏
i∈I
(
e(g, g)α·s·λi

)µi
and finally obtains M = C0/e(g, g)α·s, where we recall that

∑
i∈I λiµi = 1.
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Correctness. We now verify that equation (1) is correct. First from a property
of keys in linear IBBE, we have that (di,1, di,2, di,3) will be in the form

(
gα ·

f1(π(i))ri , gri , f2(π(i))ri
)

for some ri ∈R Zp. Therefore, we have

Di =
(
gαλi · f1(π(i))r̃iλi , gr̃iλi , f2(π(i))r̃iλi

)
=
(
dλi1 , d

λi
2 , d

λi
3

)
,

with r̃i = ri + r′/λi and (d1, d2, d3) = skπ(i) with randomness r̃i. Hence,

D
(
(d′i,1, d

′
i,2, d

′
i,3), ID, (C1, C2), S

)
= D

(
(d1, d2, d3), ID, (C1, C2), S

)λi
=
(
e(g, g)α·s

)λi
,

where each equality holds from linearity and correctness of D respectively.
The construction only guarantees selective security for the resulting KP-

ABE. It does not extend to the adaptive scenario because the proof relies on the
fact that the reduction knows the forbidden attribute set from the beginning.

Theorem 1. If the underlying IBBE scheme is selectively secure, then the re-
sulting KP-ABE system is also selectively secure. (The proof is given in the full
version of the paper).

Instantiation Example. The large-universe construction of KP-ABE in [20]
falls into our framework here. Its underlying IBBE system can be seen as a
particular instance of the linear IBBE template with n2 = n, f2(ID) = ∅,
F (ID1, . . . , IDq) = (f1(ID1), . . . , f1(IDq)), and the form of f1 can be straightfor-
wardly deduced from [20]. Since the size of an output from F is linear, ciphertexts
in the KP-ABE of [20] are also of linear size.

3.3 IBBE Instantiation with Short Ciphertexts

This subsection presents an IBBE scheme with short ciphertexts and shows how
to apply the KP-ABE conversion. This specific IBBE can be seen as an instance
of the functional encryption (FE) for zero inner-product proposed in [4, Sect.4.1],
which itself is implied by spatial encryption of [10]. A FE system for zero inner-
product is defined by a relation RZIP : Zp × Zp → {0, 1} where RZIP(X,Y ) = 1
iff 〈X,Y 〉 = 0. The technique of deriving an IBBE scheme from a FE scheme
for zero inner-product can be traced to [23]. A private key for an identity ID
is defined by setting X = (x1, . . . , xn)>, with xi = IDi−1. To encrypt to a set
S = {ID1, . . . , IDq}, one defines Y = (y1, . . . , yn)> as a coefficient vector from

PS [Z] =

q+1∑
i=1

yiZ
i−1 =

∏
IDj∈S

(Z − IDj), (2)

where, if q + 1 < n, the coordinates yq+2, . . . , yn are set to 0. By doing so, we
note that PS [ID] = 〈X,Y 〉 evaluates to 0 iff ID ∈ S. We now describe the IBBE
instantiated from the FE system of [4]. Its selective security is an immediate
consequence of [4], where it is proved under the DBDHE assumption.
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I Setup(λ, n): It chooses bilinear groups (G,GT ) of prime order p > 2λ with
g R← G. It randomly chooses α, α0

R← Zp, α = (α1, . . . , αn)> R← Znp . It then sets

H = (h1, . . . , hn)> = gα. The master secret key is msk = α, and the public key
is mpk =

(
g, e(g, g)α, h0 = gα0 , H = gα

)
.

I Keygen(msk, ID): The algorithm first defines a vector X = (x1, . . . , xn)> such
that xi = IDi−1 for i = 1 to n. It chooses r R← Zp and outputs the private key
as skID = (D1, D2,K2, . . . ,Kn) where

D1 = gα · hr0, D2 = gr,
{
Ki =

(
h
− xi
x1

1 · hi
)r}

i=2,...,n
.

I Encrypt(mpk,M, S): To encrypt M to the receiver set S (where |S| < n),
the algorithm defines Y = (y1, . . . , yn)> as the coefficient vector of PS [Z] from
equation (2). It then picks s R← Zp and computes the ciphertext as

C = (C0, C1, C2) =
(
M · e(g, g)αs, gs,

(
h0 · hy11 · · ·hynn

)s)
.

I Decrypt(mpk, skID, ID, C, S): It defines the vector Y = (y1, . . . , yn)> from the
polynomial PS [Z] as usual. It then computes

e(g, g)α·s =
e(C1, D1 ·Ky2

2 · · ·Kyn
n )

e(C2, D2)
, (3)

and recovers M = C0/e(g, g)α·s.

Correctness. If 〈X,Y 〉 = 0, then decryption recovers M since

D1 ·
n∏
i=2

Kyi
i = gα ·

(
h0 · h

− 1
x1

(〈X,Y 〉−x1y1)

1

n∏
i=2

hyii

)r
= gα ·

(
h0 ·

n∏
i=1

hyii

)r
,

so that e(C1, D1 ·
∏n
i=1K

yi
i ) = e(g, g)αs · e(h0 ·

∏n
i=1 h

yi
i , g

rs) equals the product
e(g, g)αs · e(C2, D2).

Applying the KP-ABE Conversion. The above IBBE can be considered as
a linear IBBE system with n1 = n − 1, n2 = 1 and the family F is defined by
taking all functions of the following forms ranging over h0, h1, . . . , hn ∈ G:

f1(ID) = h0, f2(ID) =
(
h−ID

1 h2, . . . , h
−IDn−1

1 hn
)
, F (ID1, . . . , IDq) = h0

q+1∏
i=1

hyii ,

where the vector Y = (y1, . . . , yn)> is defined from the polynomial PS [Z] in
equation (2) as usual. In addition, the function D is the computation in equa-
tion (3), which can be shown to have linearity as required.

The resulting KP-ABE has constant-size ciphertexts. This comes with the
expense of longer private keys of size O(t ·n), where t is the number of attributes
in the access structure. It is also worth mentioning that we can obtain another
IBBE with short ciphertexts from the spatial encryption scheme of [10] since it
also falls into our framework and thus produces another KP-ABE scheme.

Our goal in this paper is to construct KP-ABE with non-monotonic struc-
tures. We will combine the monotonic KP-ABE system in this subsection with
new ID-based revocation in the next section.
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4 Revocation Scheme with Very Short Ciphertexts

This section describes a new ID-based revocation system which is tailored to
the needs of our application. Analogously to the case of IBBE, an IBR scheme
can be instantiated from a FE system for non-zero inner-product relations. Two
such existing IBR schemes [4, Sect. 5.1 and 5.2] already provide constant-size ci-
phertexts. When it comes to construct a non-monotonic KP-ABE however, these
schemes seem hardly compatible with the monotonic KP-ABE of section 3.3 as
they rely on different assumptions. We thus describe a new IBR scheme for this
purpose. Its structure is similar to that of revocation schemes given in [4] but it
provides a better efficiency and relies on the DBDHE assumption.

I Setup(λ, n): It chooses bilinear groups (G,GT ) of prime order p > 2λ and a
generator g R← G. It randomly picks α R← Zp, α = (α1, . . . , αn)> R← Znp and sets

H = (h1, . . . , hn)> = gα. The master secret key is msk = α, while the public
key is mpk =

(
g, e(g, g)α, H = gα

)
.

I Keygen(msk, ID): The algorithm first defines a vector X = (x1, . . . , xn)> such
that xi = IDi−1 for i = 1 to n. It chooses r R← Zp and outputs the private key
as skID = (D1, D2,K2, . . . ,Kn) where

D1 = gα · hr1, D2 = gr,
{
Ki =

(
h
− xi
x1

1 · hi
)r}

i=2,...,n
.

Indeed, we can also write KX = (K2, . . . ,Kn) = gr·M
>
Xα, where the matrix

MX ∈ (Zp)n×(n−1) is defined by MX =
(
− x2x1 −

x3
x1
··· − xnx1

In−1

)
.

I Encrypt(mpk,M, S): To encrypt M with the revoked set S (where |S| < n),
the algorithm defines Y = (y1, . . . , yn)> as the coefficient vector of PS [Z] from
equation (2). It then picks s R← Zp and computes the ciphertext as

C = (C0, C1, C2) =
(
M · e(g, g)α·s, gs,

(
hy11 · · ·hynn

)s)
.

I Decrypt(mpk, skID, ID, C, S): It defines X from ID and Y from S as usual. It

then successively computes elementsK =
∏n
i=2K

yi
i =

(
h
−〈X,Y 〉/x1

1 ·hy11 · · ·hynn
)r

,

τ =
(
e
(
K,C1)

e(C2,D2)

)− x1
〈X,Y 〉

= e(g, h1)rs, and then obtains M = C0 · e(C1, D1)−1 · τ.

Correctness. We first observe that

K =
(
h
−(〈X,Y 〉−x1y1)/x1

1

n∏
i=2

hyii
)r

=
(
h
−〈X,Y 〉/x1

1

n∏
i=1

hyii
)r

so that whenever 〈X,Y 〉 6= 0 (i.e., ID 6∈ S), the following computation can be
done.

τ =
( e(K,C1)

e(C2, D2)

)− x1
〈X,Y 〉

=
(e(h−〈X,Y 〉/x1

1

∏n
i=1 h

yi
i , g

rs)

e(
∏n
i=1 h

yi
i , g

rs)

)− x1
〈X,Y 〉

= e(g, h1)rs.
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Finally, we have e(C1, D1)·τ−1 = e(g, g)α·s ·e(gs, hr1)·e(g, h1)−rs = e(g, g)α·s. We
note that the decryption algorithm can be optimized by computing the plaintext

as M = C0 · e
(
C2, D

x1/〈X,Y 〉
2

)
· e
(
C1, D

−1
1 ·K−x1/〈X,Y 〉

)
.

At a high level, it shares the same structure (including the form of the pub-
lic key and the ciphertext) as the IBBE in section 3.3 and relies on the same
assumption. Intuitively, these similarities make it possible to assemble both con-
structions in the design of a non-monotonic ABE system in section 5.

We now prove the co-selective security of the scheme. It is also worth recalling
that co-selective security for IBR also implies selective security.

Theorem 2. The above ID-based revocation scheme with the maximal bound
n for the number of revoked users (i.e., |S| < n) is co-selectively secure if the
n-DBDHE assumption holds in (G,GT ).

Proof. We show an algorithm B that receives (g, h, z1, . . . , zn, zn+2, . . . , z2n, T )

in G2n+1 × GT , where zi = g(γi), and decides if T = e(g, h)(γn+1) using the
co-selective adversary A.

At the outset of the game, the adversaryA declares the set S̃ = {ID1, . . . , IDq},
where q ≤ n − 1, of identities for which she wishes to obtain private keys. Let
X1, . . . ,Xq the corresponding vectors. That is, Xk = (1, IDk, ID

2
k, . . . , ID

n−1
k ).

To prepare the public key, B chooses δ0
R← Zp and computes e(g, g)α = e(z1, zn)δ0 ,

which implicitly defines α = γ(n+1) ·δ0. ElementsH = (h1, . . . , hn)> are then de-
fined as follows. For each k ∈ [1, q], B considers the vectorXk = (xk,1, . . . , xk,n)>

and selects bk ∈ Znp such that

b >k ·MXk = b >k ·
(
−xk,2xk,1

− xk,3
xk,1

· · · − xk,n
xk,1

In−1

)
= 0. (4)

The simplest candidate consists of the vector bk = (1,
xk,2
xk,1

,
xk,3
xk,1

, . . . ,
xk,n
xk,1

)>.

Then, B considers the n × n matrix B =
(
b1| . . . |bq|0| . . . |0

)
whose kth col-

umn consists of bk, for k = 1 to q, and where the n − q remaining columns
are 0. It defines a = (a1, . . . , an)> ∈ (Zp)n such that ai = γn+1−i by setting
ga = (zn, . . . , z1)>. Then, it implicitly sets α = B · a+ δ by randomly choosing
δ R← Znp and defining H = gB·a · gδ, which is uniformly distributed as required.

Due to (4), the matrix B is defined in such a way that, for each k ∈ [1, q], the
kth column of M>Xk

·B ∈ (Zp)(n−1)×n is 0, so that M>Xk
·B ·a does not contain

ak = γn+1−k. Then, a private key for the identity IDk (and thus the vector Xk)
can be obtained by implicity defining r̃k = rk − δ0γk for a random rk

R← Zp.
Indeed, with the above choice of B, the first coordinate of α = δ +

∑q
j=1 ajbj

equals α1 = δ1 +
∑q
j=1 aj = δ1 +

∑q
j=1 γ

(n+1−j), so that B is able to compute

D1 = gα · hr̃k1 = g(γn+1)δ0 · hrk1 ·
(
gδ1 ·

q∏
j=1

zn+1−j

)−δ0γk
= hrk1 ·

(
zδ1k ·

q∏
j=1,j 6=k

zn+1−j+k

)−δ0
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and D2 = grk · z−δ0n+1−k. As for the delegation component KXk
= gr̃kM

>
Xk
α, B is

also able to compute it from available values since M>Xk
α = M>Xk

·B ·a+M>Xk
·δ

is independent of ak = γn+1−k (recall that the kth column of M>Xk
·B is 0) and

no term γn+1 appears in the exponent in KXk
.

In the challenge phase, B chooses M0,M1 ∈ GT and a revocation set S
corresponding to a vector Y = (y1, . . . , yn)> that must satisfy 〈Xk,Y 〉 = 0 for
k = 1 to q. This amounts to say that Y = MXk

·w, where w = (y2, . . . , yn)>,
for each k ∈ [1, q]. We claim that Y > ·B · a = 0. Indeed,

Y > ·B · a = Y > ·
( q∑
k=1

ak · bk
)

=

q∑
k=1

ak · Y > · bk =

q∑
k=1

ak ·w> ·M>Xk
· bk

and M>Xk
· bk = 0 for each k ∈ [1, q]. Therefore, it comes that 〈Y ,α〉 = 〈Y , δ〉,

so that B can generate a challenge ciphertext (C0, C1, C2) as

C0 = Md · T δ0 , C1 = h, C2 = h〈Y ,δ〉,

for a random bit d R← {0, 1}. If T = e(g, h)(γn+1), C = (C0, C1, C2) forms a valid
encryption of Md. If T is random, A’s advantage is clearly zero. ut

Efficiency Comparisons. We believe this IBR scheme to be of interest in its
own right. If we compare it with the scheme of [4, Sect.5.2] (called AL2 here),
which also features short ciphertexts, it relies on a stronger assumption (since
no “q-type” assumption is needed in [4] or in LSW2 [24]) but provides signifi-
cantly shorter ciphertexts (as the ciphertext overhead is decreased by more than
75%)7 and requires fewer pairing evaluations to decrypt (only 2 instead of 9).
Another IBR scheme (dubbed AL1 in the table) with a better efficiency than
AL2 was described in [4, Sect.5.1]. Still, the new scheme is slightly more efficient
and relies on a weaker assumption since q-DBDHE is weaker and appears more
natural than the q-type assumption (MEBDH) used in [24, 4].

In comparison with the schemes of Lewko, Sahai and Waters, the disadvan-
tage lies in that a bound on the number of revocations must be chosen when the
system is set up. A comparative efficiency of known IBR schemes is given in the
table hereafter.

Table 1. Performances of revocation systems

Schemes Ciphertext overhead Private key size Decryption cost Assumption
|G| |G| pair. exp.

LSW1 [24] (2n̄+ 1) 3 3 O(n̄) n-MEBDH
LSW2 [24] (2n̄+ 7) 7 9 O(n̄) DLIN, DBDH
AL1 [4] 3 (n+ 2) 3 O(n) n-MEBDH
AL2 [4] 9 (n+ 2) 9 O(n) DLIN, DBDH
This work 2 (n+ 2) 2 O(n) n-DBDHE
† n̄ = # of revoked users = |S|; n = the maximal bound for n̄. (i.e., |S| < n).
‡ pair.,exp. shows # of pairing and exponentiation computation.

7 We compare by simple element counting. In a stricter sense, one may want to also
consider the compensation due to the attack on q-type assumptions by Cheon [17].
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5 Non-Monotonic KP-ABE with Short Ciphertexts

Ostrovsky, Sahai and Waters [28] suggested a technique to move from monotonic
to non-monotonic access structures without incurring an immoderate private key
size. They assume a family {ΠA}A∈AS of linear secret-sharing schemes for a set
of monotone access structures A. For each such access structure A ∈ AS, the
set P of underlying parties is defined in such a way that parties’ names can be
normal (like x) or primed (like x′). Prime attributes are conceptually seen as the
negation of unprimed attributes. In addition, it is required that, if x ∈ P, then
x′ ∈ P and vice versa.

A family AS of non-monotone access structures can be defined as follows.
For each access structure A ∈ AS over a set of parties P, one defines a possibly
non-monotonic access structure NM(A) over the set P̃ of all unprimed parties
in P. An operator N(.) is then defined as follows. For every set S̃ ⊂ P̃, one
imposes S̃ ⊂ N(S̃). Also, for each x ∈ P̃ such that x 6∈ S̃, x′ ∈ N(S̃). Finally,
NM(A) is defined by saying that S̃ is authorized in NM(A) if and only if N(S̃)
is authorized in A (so that NM(A) has only unprimed parties in its access sets).
For each access set X ∈ NM(A), there is a set in A containing the elements in
X and primed elements for each party not in X.

In [28], the above technique was combined with the Naor-Pinkas revocation
method [27] to cope with non-monotonic access structures. Lewko, Sahai and
Waters provided improvements using a revocation system with short keys [24]
instead of [27]. In the following, we apply the same technique to our revocation
mechanism and combine it with the monotonic KP-ABE derived from the IBBE
scheme of section 3.3 in order to handle non-negated attributes.

I Setup(λ, n): Given a security parameter λ ∈ N and a bound n ∈ N of the
number of attributes per ciphertext, it chooses bilinear groups (G,GT ) of prime
order p > 2λ and g R← G. It defines H = (h1, . . . , hn)> and U = (u0, . . . , un)>

such that hi = gαi , uj = gβj for each i ∈ {1, . . . , n} and j ∈ {0, . . . , n} where

α = (α1, . . . , αn)> R← Znp and β = (β0, β1, . . . , βn)> R← Zn+1
p . It then picks

α R← Z∗p and computes e(g, g)α. The master secret key is msk = α and the

master public key is mpk =
(
g, e(g, g)α, H = gα, U = gβ

)
.

I Keygen(msk, Ã): Given a non-monotonic access structure Ã such that we have
Ã = NM(A) for some monotonic access structure A over a set P of attributes
and associated with a linear secret sharing scheme Π, the algorithm applies Π
to obtain shares {λi} of the master secret key α. The party corresponding to
share λi is denoted by x̆i ∈ P, where xi is the underlying attribute, and can
be primed (i.e., negated) or unprimed (non-negated). For each i, the algorithm
chooses ri

R← Zp, defines ρi = (ρi,1, . . . , ρi,n)> = (1, xi, x
2
i , . . . , x

n−1
i )>. That is

ρi,j = xj−1
i . It then does as follows.

• For each i such that x̆i is unprimed (i.e., non-negated), the algorithm com-

putes a tuple Di = (D
(1)
i,1 , D

(2)
i,2 ,K

(3)
ρi,i

) ∈ Gn+1 where the first two elements

are (D
(1)
i,1 , D

(1)
i,2 ) =

(
gλi · uri0 , gri

)
and
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K
(1)
ρi,i

= (K
(1)
i,2 , . . . ,K

(1)
i,n ) =

((
u
−
ρi,2
ρi,1

1 · u2

)ri
, . . . ,

(
u
−
ρi,n
ρi,1

1 · un
)ri)

= gri·M
>
ρi
β,

where Mρi ∈ (Zp)n×(n−1) is the matrix Mρi =

(
−
ρi,2
ρi,1

−
ρi,3
ρi,1

··· −
ρi,n
ρi,1

In−1

)
.

• For each i such that x̆i is primed (i.e., negated), one computes a tuple

Di = (D
(2)
i,1 , D

(2)
i,2 ,K

(2)
ρi,i

) ∈ Gn+1 where (D
(2)
i,1 , D

(2)
i,2 ) =

(
gλi · hri1 , gri

)
and

K
(2)
ρi,i

= (K
(2)
i,2 , . . . ,K

(2)
i,n ) =

((
h
−
ρi,2
ρi,1

1 · h2

)ri
, . . . ,

(
h
−
ρi,n
ρi,1

1 · hn
)ri)

= gri·M
>
ρi
α.

The private key is skÃ = {Di}x̆i∈P ∈ G`×(n+1).

I Encrypt(mpk,M, ω): To encrypt M for a set ω (with |ω| < n), it first defines
Y = (y1, . . . , yn)> as the vector whose first q+ 1 coordinates are the coefficients

of the polynomial Pω[Z] =
∑q+1
i=1 yiZ

i−1 =
∏
j∈ω(Z − j). If q+ 1 < n, set yj = 0

for q + 2 ≤ j ≤ n. Then it picks s R← Zp and computes

C = (C0, C1, C2, C3) =
(
M · e(g, g)α·s, gs,

(
u0 ·

n∏
i=1

uyii
)s
,
( n∏
i=1

hyii
)s)

.

I Decrypt(mpk, skÃ, Ã, C, ω): It parses C as (C0, C1, C2, C3) and the private key

skÃ as skÃ = {Di}x̆i∈P ∈ G`×(n+1). The algorithm outputs ⊥ if ω 6∈ Ã. Oth-

erwise, since Ã = NM(A) for some access structure A associated with a linear
secret sharing scheme Π, we have ω′ = N(ω) ∈ A and we let I = {i : x̆i ∈ ω′}.
Since ω′ is authorized in A, the receiver can efficiently compute coefficients
{µi}i∈I such that

∑
i∈I µiλi = α (although the shares are not known to the

receiver). Let Y = (y1, . . . , yn)> be the vector containing the coefficients of the

polynomial Pω[Z] =
∏
j∈ω(Z − j) =

∑q+1
i=1 yiZ

i−1.

• For every positive attribute x̆i ∈ ω′ (for which xi ∈ ω), the decryption

procedure computes D̃
(1)
i,1 = D

(1)
i,1 ·

∏n
j=2K

(1)
i,j

yj
= gα ·

(
u0 ·uy11 · · ·uynn

)ri
, and

then e(g, g)λis = e(C1, D̃
(1)
i,1 )/e(C2, D

(1)
i,2 ).

• For each negated attribute x̆i ∈ ω′ (for which xi 6∈ ω), the receiver sets
ρi = (1, xi, . . . , x

n−1
i )> and successively computes

K
(2)
i =

n∏
j=2

K
(2)
i,j

yj
=
(
h
−〈ρi,Y 〉/x1

1 · hy11 · · ·hynn
)ri
,

τi =
(e(K(2)

i , C1)

e(C3, D
(2)
i,2 )

)− ρi,1
〈ρi,Y 〉 = e(g, h1)ris

and then e(g, g)λis = e(C1, D
(2)
i,1 )−1 · τ−1

i .

Finally, decryption computes M = C0 ·
∏
i∈I e(g, g)−µiλis.
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If we split I into I0∪I1, where I0 and I1 correspond to unprimed and primed
attributes, respectively, decryption can more efficiently compute

e(g, g)α·s = e
(
C1,

∏
i∈I0

D̃
(1)µi

i,1 ·
∏
i∈I1

(
D

(2)
i,1 ·K

(2)
i

µi·ρi,1
〈ρi,Y 〉

))
· e
(
C2,

∏
i∈I0

D
(1)µi

i,2

)
· e
(
C3,

∏
i∈I1

D
(2)
i,2

µi·ρi,1
〈ρi,Y 〉

)
,

so that only three pairing evaluations are necessary.

Theorem 3. The above KP-ABE system with the maximal bound n for the
number of attributes per ciphertext (i.e., |ω| < n) is selectively secure if the n-
DBDHE assumption holds. (The proof is given in the full version of the paper).

6 Comparisons

Table 2 compares efficiency among available expressive KP-ABE schemes that
support non-monotonic access structures. Comparisons are made in terms of ci-
phertext overhead, private key size as well as in the number of pairing evaluations
and exponentiations (in G and GT ) upon decryption.

We remark that the functionality of KP-ABE in [31] is slightly different from
the original one [20]. For self-containment, we re-formalize it in appendix A,
where we also briefly propose a modification of KP-ABE [31] so as to have the
same functionality as the original ABE. We also include this modified scheme in
Table 2. Note that [31] has a unique feature of being adaptively secure.

Table 2. Efficiency of non-monotonic KP-ABE schemes

Schemes Ciphertext overhead Private key size Decryption cost Assumption
|G| |G| pair. exp.

OSW [28] O(n̄) O(t · logn) O(t) O(t · n̄) DBDH
LSW [24] O(n̄) O(t) O(t) O(t · n̄) n-MEBDH
OT [31] O(n̄ · ϕ) O(t · ϕ) O(t · ϕ) O(t) DLIN

OTmodified O(n̄ · n) O(t · n) O(t · n) O(t) DLIN
This work 3 O(t · n) 3 O(t) n-DBDHE
† n̄ = |attribute set| = |ω| for a ciphertext; n =the maximal bound for n̄ (i.e., |ω| < n);
t = # of attributes in an access structure for a key; ϕ =maximum size for repetition of
attribute label per key (only for the KP-ABE with labeling, formalized in appendix A).
‡ pair., exp. shows # of pairing and exponentiation computation (in G or GT ), respectively.

7 Concluding Remarks

This paper presented the first results for expressive KP-ABE schemes with
constant-size ciphertexts. In the future, it will be interesting to see if shorter
private keys can be obtained without affecting the expressivity or the size of ci-
phertexts and to construct adaptively secure such schemes. Another challenging
problem is to achieve similar results in the expressive ciphertext-policy setting.
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22. J. Herranz, F. Laguillaumie, C. Ràfols. Constant-Size Ciphertexts in Threshold
Attribute-Based Encryption. In PKC’10, LNCS 6056, Springer, 2010.

17



23. J. Katz, A. Sahai, B. Waters. Predicate Encryption Supporting Disjunctions, Poly-
nomial Equations, and Inner Products. In Eurocrypt’08, LNCS 4965, pp. 146-162.

24. A. Lewko, A. Sahai, B. Waters. Revocation Systems with Very Small Private
Keys. In IEEE Symposium on Security and Privacy (S&P) 2010.

25. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters. Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In Eurocrypt 2010, LNCS series.

26. M. Naor. On Cryptographic Assumptions and Challenges. In Crypto’03, LNCS
2729, pp. 96–109, 2003.

27. M. Naor, B. Pinkas. Efficient Trace and Revoke Schemes. In Financial Cryptogra-
phy 2000, LNCS 1962, pp. 1-20, 2000.

28. R. Ostrovsky, A. Sahai, B. Waters. Attribute-based encryption with non-monotonic
access structures. In ACM CCS’07, pp. 195–203, 2007.

29. A. Sahai, B. Waters. Fuzzy Identity-Based Encryption In Eurocrypt’05, LNCS
3494, pp. 457–473, 2005.

30. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Crypto’84,
LNCS 196, pp. 47–53, 1984.

31. T. Okamoto, K. Takashima, Fully secure functional encryption with general re-
lations from the decisional linear assumption. In CRYPTO’10, LNCS 6223, pp.
191-208, 2010.

32. B. Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In PKC 2011.

33. S. Yamada, N. Attrapadung, G. Hanaoka, N. Kunihiro. Generic Constructions for
Chosen-Ciphertext Secure Attribute Based Encryption. In PKC 2011.

A Variant: KP-ABE with Labeling

We re-formalize the KP-ABE definition of [31] in our context as follows. Intu-
itively, the difference from normal KP-ABE is that an attribute is required to
be labeled with a number j ∈ [1, n] and that each attribute in the set associated
to a ciphertext is required to be labeled uniquely, namely 1 to n. The scheme
of [31] further restricts the maximum repetition allowed for labels in one policy,
which we denote by ϕ in Table 2.

Definition 8 (KP-ABE with labeling). Let U be an attribute space and let
an integer n ∈ N. Define U ′ = {(j, u) | j ∈ [1, n], u ∈ U}. Define the ciphertext
index domain as ΣKP′

e = {{(1, u1), . . . , (n, un)} | u1, . . . , un ∈ U}. A KP-ABE
with labeling for a collection AS ′ of access structures over U ′ is a functional
encryption for RKP′ : AS ′ ×ΣKP′

e → {0, 1} defined by RKP′(A, ω) = 1 iff ω ∈ A
(for ω ∈ ΣKP′

e ,A ∈ AS ′).

We observe that KP-ABE with large universe U = {0, 1}∗, e.g., [20, 28] and
ours, implies KP-ABE with labeling. This is since U ′ ⊂ U , ΣKP′

e ⊂ ΣKP
e , ΣKP′

k ⊂
ΣKP
k , and RKP′ ⇔ RKP holds and the implication comes from the embedding

lemma [10, 4]. To the best of our knowledge, the converse is yet known to hold.
We now briefly propose a KP-ABE that conforms with the normal definition

by modifying [31]. We construct by instantiating the general KP-FE scheme
of [31] with d = 1, and with the inner product relation being instantiated to
IBBE, similarly as we did in section 3.3, and setting the bound ϕ = n.
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