
Efficient Attribute-Based Signatures
for Non-Monotone Predicates

in the Standard Model

Tatsuaki Okamoto1 and Katsuyuki Takashima2

1 NTT, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
okamoto.tatsuaki@lab.ntt.co.jp

2 Mitsubishi Electric, 5-1-1, Ofuna, Kamakura, Kanagawa, 247-8501 Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. This paper presents a fully secure (adaptive-predicate un-
forgeable and private) attribute-based signature (ABS) scheme in the
standard model. The security of the proposed ABS scheme is proven un-
der standard assumptions, the decisional linear (DLIN) assumption and
the existence of collision resistant (CR) hash functions. The admissible
predicates of the proposed ABS scheme are more general than those of
the existing ABS schemes, i.e., the proposed ABS scheme is the first to
support general non-monotone predicates, which can be expressed using
NOT gates as well as AND, OR, and Threshold gates, while the exist-
ing ABS schemes only support monotone predicates. The proposed ABS
scheme is efficient and practical. Its efficiency is comparable to (several
times worse than) that of the most efficient (almost optimally efficient)
ABS scheme the security for which is proven in the generic group model.

1 Introduction

1.1 Background

The concept of digital signatures was introduced in the seminal paper by Diffie
and Hellman in 1976. In this concept, a pair comprising a secret signing key, sk,
and public verification key, pk, is generated for a signer, and signature σ of mes-
sage m generated using sk is verified by the corresponding pk. Hence, the signer
of (m,σ) using sk is identified through pk. Although it is one of the requirements
of signatures, there is no flexibility or privacy in the relationship between signers
and claims attested by signatures due to the tight relation between sk and pk.

Recently, versatile and privacy-enhanced variants of digital signatures have
been studied, where the relation between a signing key and verification key is
more flexible or sophisticated. In this class of signatures, the signing key and
verification key are parameterized by attribute x and predicate v, respectively,
and signed message (m,σ) generated by the signing key with parameter x, skx,
is correctly verified by public-key pk and parameter v, (pk,v), iff predicate v
accepts attribute x, i.e., v(x) holds. The privacy of signers in this class of signa-
tures requires that a signature (for predicate v) generated by skx (where v(x)
holds) release no information regarding attribute x except that v(x) holds.

When predicate v is the equality with parameter v (i.e., v(x) holds iff x = v),
the class of signatures for this predicate is identity-based signatures (IBS) [25].
Here note that there is no room for privacy in IBS, since predicate v uniquely
identifies attribute x of the signer’s secret key, skx, such that x = v.

Group signatures [9] are also in this class of signatures with another type of
predicate v, where v(x) holds iff predicate parameter v is the group identity (or
pkv is a public key identifying group v) and attribute x is a member identity
of group v (or skx is a secret key of member x of group v). Due to the privacy
requirement, signatures generated using skx release no information regarding
member identity x except that x is a member of group v (Note that the concept
of group signatures traditionally requires the privacy-revocation property as well
as the above-mentioned privacy).

Recently, this class of signatures with more sophisticated predicates, attribute-
based signatures (ABS), has been extensively studied [11–13, 16–19, 24, 27], where
x for signing key skx is a tuple of attributes (x1, . . . , xi), and v for verification
is a threshold or access structure predicate. The widest class of predicates in
the existing ABS schemes are monotone access structures [18, 19], where pred-
icate v is specified by a monotone span program (MSP), (M,ρ), along with a
tuple of attributes (v1, . . . , vj), and v(x) holds iff MSP (M,ρ) accepts the truth-
value vector of (T(xi1 = v1), . . . ,T(xij = vj)). Here, T(ψ) := 1 if ψ is true, and
T(ψ) := 0 if ψ is false (For example, T(x = v) := 1 if x = v, and T(x = v) := 0
if x �= v). In general, such a predicate can be expressed using AND, OR, and
Threshold gates.

An example of such monotone predicate v for ABS is (Institute = Univ. A)
AND (TH2((Department = Biology), (Gender = Female), (Age = 50’s)) OR
(Position = Professor)), where TH2 means the threshold gate with threshold
value 2. Attribute xA of Alice is ((Institute := Univ. A), (Department := Biol-
ogy), (Position := Postdoc), (Age := 30), (Gender := Female))), and attribute
xB of Bob is ((Institute := Univ. A), (Department := Mathematics), (Position
:= Professor), (Age := 45) (Gender := Male))). Although their attributes, xA
and xB, are quite different, it is clear that v(xA) and v(xB) hold, and that
there are many other attributes that satisfy v. Hence Alice and Bob can gener-
ate a signature on this predicate, and due to the privacy requirement of ABS,
a signature for v releases no information regarding the attribute or identity of
the signer, i.e., Alice or Bob (or other), except that the attribute of the signer
satisfies v.

There are many applications of ABS such as attribute-based messaging (ABM),
attribute-based authentication, trust-negotiation and leaking secrets (see [18, 19]
for more details).

The security conditions for ABS are given hereafter (see Section 3.2 for the
formal definitions).

Unforgeability: A valid signature should be produced only by a single signer
whose attribute x satisfies the claimed predicate v, not by a collusion of users
who pooled their attributes together. More formally, no poly-time adversary
can produce a valid signature for a pair comprising predicate and message

2

(v,m), even if the adversary adaptively chooses (v,m) after executing secret-
key and signing oracle attacks, provided that x where v(x) holds is not
queried to the secret-key oracle and (v,m) is not queried to the signing
oracle (We simply call this unforgeability “adaptive-predicate unforgeability”
or more simply “unforgeability”).
We can also define a weaker class of unforgeability, ‘selective-predicate un-
forgeability,’ where an adversary should choose predicate v for the forgery
signature before executing secret-key and signing oracle attacks.

Privacy: A signature for predicate v generated using secret key skx releases no
information regarding attribute x except that v(x) holds.
More formally, for any pair of attributes (x1,x2), predicate v and messagem,
for which v(x1) and v(x2) hold simultaneously, the distributions of two valid
signatures σ(m,v, skx1) and σ(m,v, skx2) are equivalent, where σ(m,v, skx)
is a correctly generated signature for (m,v) using correct secret key skx with
attribute x (We simply call this condition “privacy”).

Full Security: We say that an ABS scheme is fully secure if it satisfies adaptive-
predicate unforgeability and privacy.

Maji, Prabhakaran, and Rosulek [18, 19] presented ABS schemes for the
widest class of predicates among the existing ABS schemes, monotone access
structure predicates, which cover threshold predicates as special cases. The
scheme shown in [18] is an almost optimally efficient ABS scheme, but the secu-
rity was only proven in the generic group model. The scheme shown in [19] is the
only existing ABS scheme for which (full) security was proven in the standard
model. It is, however, much less efficient and more complicated than the scheme
in [18] since it employs the Groth-Sahai NIZK protocols [10] as building blocks.

Li, Au, Susilo, Xie and Ren [16], Li and Kim [17], and Shahandashti and
Safavi-Naini [24] presented ABS schemes that are proven to be secure in the stan-
dard model. However, the proven security is not the full security, but a weaker
level of security with selective-predicate unforgeability. Moreover, the admissible
predicates in [17] are limited to conjunction or (n, n)-threshold predicates, and
those of [16, 24] are limited to (k, n)-threshold predicates.

Guo and Zeng [11] and Yang, Cao and Dong [27] presented ABS schemes
for threshold predicates, but their security definitions do not include the privacy
condition of ABS.

Khader [12, 13] presented ABS schemes for monotone access structure predi-
cates. These schemes, however, do not satisfy the privacy condition of ABS, since
they only conceal the identity of the signer. They also reveal the attributes that
the signer used to generate the signature. In addition, the security is proven in
a non-standard model, the random oracle model.

Based on this background, there are two major problems in the existing ABS
schemes.

1. No ABS scheme for non-monotone predicates, which can be expressed using
NOT gates as well as AND, OR and Threshold gates, has been proposed
(even in a weaker security notion or a non-standard model).

3

2. The only fully secure ABS scheme in the standard model [19] is much less
efficient than the (almost optimally efficient) ABS scheme in the generic
group model [18].

Non-monotone predicates should be used in many ABS applications. For ex-
ample, annual review reports in the Mathematics Department of University A
are submitted by reviewers, and these reports are anonymously signed by the re-
viewers through ABS with some predicates. The predicates may be selected freely
by them (signers) except that it should be in the following form: NOT((Institute
= Univ. A) AND (Department = Mathematics)) AND (· · ·).

1.2 Our Results

This paper addresses these problems simultaneously.

– This paper proposes the first fully secure (i.e., adaptive-predicate unforge-
able and perfectly private) ABS scheme for a wide class of predicates, non-
monotone access structures, where x for signing key skx is a tuple of at-
tributes (x1, . . . , xi), non-monotone predicate v is specified by a span pro-
gram (SP) (M,ρ) along with a tuple of attributes (v1, . . . , vj), and v(x) holds
iff SP (M,ρ) accepts the truth-value vector of (T(xi1 = v1), . . . ,T(xij = vj)).
Our scheme can be generalized using non-monotone access structures com-
bined with inner-product relations (see Definition 5 and the remark). More
precisely, attribute x for signing key skx is a tuple of attribute vectors
(e.g., (−→x 1, . . . ,

−→x i) ∈ F
n1+···+ni
q), and predicate v for verification is a non-

monotone access structure or span program (SP) (M,ρ) along with a tuple
of attribute vectors (e.g., (−→v 1, . . . ,

−→v j) ∈ F
n1+···+nj
q), where the component-

wise inner-product relations for attribute vectors (e.g., {−→x iι · −→v ι = 0 or not
}ι∈{1,...,j}) are input to SP (M,ρ). Namely, v(x) holds iff the truth-value
vector of (T(−→x i1 · −→v 1 = 0), . . . ,T(−→x ij · −→v j = 0)) is accepted by SP (M,ρ).
Remark: In our scheme (Section 4), attribute x is expressed by the form
Γ := {(t, xt) | t ∈ T ⊆ {1, . . . , d}} in place of just an attribute tuple
(x1, . . . , xi), where t identifies a sub-universe or category of attributes, and
xt is an attribute in sub-universe t (examples of (t, xt) are (Name, Alice)
and (Age, 38)). Predicate v is expressed by S := (M,ρ), where ρ is abused
as ρ (defined by SP) combined with {(ti, vi) | i = 1, . . . , �} (see Definitions 4
and 5 for the difference regarding ρ in SP and S).

– The proposed ABS scheme is proven to be fully secure under standard as-
sumptions, the decisional linear (DLIN) assumption (over prime order pair-
ing groups) and the existence of collision resistant (CR) hash functions, in
the standard model.

– In contrast to the ABS scheme in [19] that employs the Groth-Sahai NIZK
protocols, our ABS scheme is more directly constructed without using any
general subprotocols like NIZK. Our construction is based on the dual pairing
vector spaces (DPVS) proposed by Okamoto and Takashima [20, 21, 14, 22],
which can be realized from any type of (e.g., symmetric or asymmetric)

4

prime order bilinear pairing groups. See Section 2.1 for the concept and
actual construction of DPVS.

– To prove the security (especially the unforgeability), this paper employs
the techniques for fully secure functional encryption (FE) [14, 22], which
elaborately combine the dual system encryption methodology proposed by
Waters [26] and DPVS.
Note that although the techniques for the FE schemes in [14, 22] can be
employed for ABS, it is still a challenging task to construct a fully secure
ABS scheme, since the security requirements of ABS and FE differ in some
important points, for example, the privacy condition is required in ABS
but there is no counterpart notion in FE. This paper develops several novel
techniques for our ABS scheme. See Section 4.1 for more details.

– The efficiency of the proposed ABS scheme is comparable to that of the most
efficient ABS scheme in the generic group model [18], and better than that
of the only existing fully secure ABS scheme in the standard model [19]. See
Section 4.4 for a comparison.

– This paper also presents an extension, multi-authority (MA) setting, of the
proposed ABS scheme in Section 5. One of the merits of our MA-ABS scheme
is that it is seamlessly extended from the original (single-authority (SA))
setting, in which the signing and verification algorithms of the MA-ABS
scheme are essentially the same as those of the original ABS (SA-ABS)
scheme.
In MA-ABS, each authority called an attribute authority is responsible for
a category of attributes, and a user obtains a part of secret key for each
attribute from an attribute authority responsible for the category of the
attribute. We follow the model of MA-ABS introduced in [18, 19], where a
central trustee in addition to attribute authorities is required but no interac-
tion among attribute authorities (and the trustee) is necessary, and different
attribute authorities may not trust each other, nor even be aware of each
other.
We prove that the proposed MA-ABS scheme is fully secure (in the sense of
the MA-ABS model of [18, 19]) under the DLIN assumption and CR hash
functions in the standard model (see the full version of this paper for the
proof). Our MA-ABS scheme is almost as efficient as the original SA-ABS
scheme.

1.3 Related Works

– Ring and mesh signatures: Ring and mesh signatures [23, 4] are related
to ABS.
In the ring signatures, the claimed predicate on a signature of message m is
that m is endorsed by one of the users identified by the list of public keys
(pk1, pk2, . . .), or the predicate is a disjunction of a list of public keys. A
valid ring signature can be generated by one of the listed users.
The mesh signatures are an extension of ring signatures, where the predicate
is an access structure on a list of pairs comprising a message and public key

5

(mi, pki), and a valid mesh signature can be generated by a person who has
enough standard signatures σi on mi, each valid under pki, to satisfy the
given access structure.
A crucial difference between mesh signatures and ABS is the security against
the collusion of users. In mesh signatures, several users can collude by pool-
ing their signatures together and create signatures that none of them could
produce individually. That is, such collusion is considered to be legitimate
in mesh signatures. In contrast, the security against collusion attacks is one
of the basic requirements in ABS and MA-ABS, as described in Section 1.1
and Section 5.

– Anonymous credentials (ACs): Another related concept is ACs [2, 3, 5–
8]. The notion of ACs also provides a functionality for users to demonstrate
anonymously possession of attributes, but the goals of ACs and ABS differ
in several points.
As mentioned in [19], ACs and ABS aim at different goals: ACs target very
strong anonymity even in the registration phase, whereas under less demand-
ing anonymity requirements in the registration phase, ABS aims to achieve
more expressive functionalities, more efficient constructions and new appli-
cations. In addition, ABS is a signature scheme and a simpler primitive
compared with ACs.

1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x. A function f : N→ R

is negligible in λ, if for every constant c > 0, there exists an integer n such that
f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq \{0} by F
×
q . A vector sym-

bol denotes a vector representation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ F
n
q .

For two vectors −→x = (x1, . . . , xn) and −→v = (v1, . . . , vn), −→x · −→v denotes the
inner-product

∑n
i=1 xivi. The vector

−→
0 is abused as the zero vector in F

n
q

for any n. XT denotes the transpose of matrix X. A bold face letter denotes
an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace gener-
ated by b1, . . . , bn (resp. −→x 1, . . . ,

−→x n). For bases B := (b1, . . . , bN) and B
∗ :=

(b∗
1, . . . , b

∗
N), (x1, . . . , xN)B :=

∑N
i=1 xibi and (y1, . . . , yN)B∗ :=

∑N
i=1 yib

∗
i .

2 Preliminaries

2.1 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,

6

G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of
bilinear pairing groups (q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [20, 21, 14, 22] constructed by using symmetric bilinear pairing groups
given in Definition 1.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V× V→ GT .
The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi,Hi) ∈ GT where x := (G1, . . . ,

GN) ∈ V and y := (H1, . . . ,HN) ∈ V. This is nondegenerate bilinear i.e.,
e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For all
i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) =

0 if k �= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
0, . . . , 0, Gj ,

N−i︷ ︸︸ ︷
0, . . . , 0) where

x := (G1, . . . , GN). We call φi,j “canonical maps”.
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and

outputs a description of paramV := (q,V,GT ,A, e) with security parameter λ and
N -dimensional V. It can be constructed by using Gbpg.

The asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), is given in the full

version of [22]. The above symmetric version is obtained by identifying V = V
∗

and A = A
∗ in the asymmetric version. (For another construction of DPVS using

higher genus Jacobians, see [20].)

2.2 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN Assumption). The DLIN problem is to guess β ∈ {0, 1},
given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ), where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

κ, δ, ξ, σ
U← Fq, Y0 := (δ + σ)G, Y1

U← G,

return (paramG, G, ξG, κG, δξG, σκG, Yβ),

for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for
the DLIN problem as: AdvDLIN

E (λ) :=
∣∣∣Pr

[
E(1λ,
)→1

∣∣∣
 R←GDLIN
0 (1λ)

]
−

7

Pr
[
E(1λ,
)→1

∣∣∣
 R←GDLIN
1 (1λ)

]∣∣∣ . The DLIN assumption is: For any probabilis-

tic polynomial-time adversary E, the advantage AdvDLIN
E (λ) is negligible in λ.

2.3 Collision Resistant (CR) Hash Functions

Let λ ∈ N be a security parameter. A collision resistant (CR) hash function
family, H, associated with Gbpg and a polynomial, poly(·), specifies two items:

– A family of key spaces indexed by λ. Each such key space is a probabil-
ity space on bit strings denoted by KHλ. There must exist a probabilistic
polynomial-time algorithm whose output distribution on input 1λ is equal
to KHλ.

– A family of hash functions indexed by λ, hk
R← KHλ and D := {0, 1}poly(λ).

Each such hash function Hλ,Dhk maps an element of D to an element of F
×
q

with q that is the first element of output paramG of Gbpg(1λ). There must
exist a deterministic polynomial-time algorithm that on input 1λ, hk and

 ∈ D, outputs Hλ,Dhk (
).

Let E be a probabilistic polynomial-time machine. For all λ, we define
AdvH,CR

E (λ) := Pr[(
1,
2) ∈ D2 ∧
1 �=
2 ∧ Hλ,Dhk (
1) = Hλ,Dhk (
2)], where D :=

{0, 1}poly(λ), hk
R← KHλ, and (
1,
2)

R← E(1λ, hk,D). H is a collision resistant
(CR) hash function family if for any probabilistic polynomial-time adversary E ,
AdvH,CR

E (λ) is negligible in λ.

3 ABS for Non-Monotone Predicates

3.1 Span Programs and Non-Monotone Access Structures

Definition 4 (Span Programs [1]). Let {p1, . . . , pn} be a set of variables. A
span program over Fq is a labeled matrix, M̂ := (M,ρ), where M is a (�×r) ma-
trix over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1, . . . ,
¬pn}.

A span program accepts or rejects an input by the following criterion. For
every input sequence δ ∈ {0, 1}n define submatrix Mδ of M consisting of those
rows whose labels are set to 1 by the input δ, i.e., either rows labeled by some
pi such that δi = 1 or rows labeled by some by some ¬pi such that δi = 0.
(i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

Span program M̂ accepts δ if and only if
−→
1 ∈ span〈Mδ〉, i.e., some linear

combination of the rows of Mδ gives the all one vector,
−→
1 . (The row vector has

the value 1 in each coordinate.) A span program computes boolean function f if
it accepts exactly those inputs δ where f(δ) = 1.

8

A span program is called monotone if the labels of the rows are only the posi-
tive literals {p1, . . . , pn}. Monotone span programs compute monotone functions.
(So, a span program in general is “non”-monotone.)

We assume that access structure matrix M (of type �× r) satisfies the con-
dition: Mi �= −→0 for i = 1, . . . , �.

We now introduce a non-monotone access structure with evaluating map γ
by using the inner-product of attribute vectors in a general form. Although we
will show the notion, security definition and security proof of the proposed ABS
scheme in this general form, we will describe the proposed ABS scheme in a
simpler form in Section 4.2. We will show this simpler form of Definition 5 in
the remark.

Definition 5 (Inner-Products of Attribute Vectors and Access Struc-
tures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes,
each of which is expressed by a pair of sub-universe id and nt-dimensional vector,
i.e., (t,−→v), where t ∈ {1, . . . , d} and −→v ∈ F

nt
q \ {

−→
0 }.

We now define such an attribute to be a variable, p, of span program M̂ :=
(M,ρ) i.e., p := (t,−→v). Access structure S is span program M̂ := (M,ρ) along
with variables p := (t,−→v), p′ := (t′,−→v ′), . . ., i.e., S := (M,ρ) such that ρ :
{1, . . . , �} → {(t,−→v), (t′,−→v ′), . . ., ¬(t,−→v),¬(t′,−→v ′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t,−→x t) | −→x t ∈ F
nt
q \ {

−→
0 }, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span
program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if
[ρ(i) = (t,−→v i)] ∧[(t,−→x t) ∈ Γ] ∧[−→v i ·−→x t = 0] or [ρ(i) = ¬(t,−→v i)] ∧[(t,−→x t) ∈ Γ]
∧[−→v i · −→x t �= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff
−→
1 ∈ span〈(Mi)γ(i)=1〉.

Remark: A simpler form of the inner-product relations in the above-mentioned
access structures is a special case when nt = 2 for all t ∈ {1, . . . , d}, and −→x :=
(1, x) and −→v := (v,−1). Hence, (t,−→x t) := (t, (1, xt)) and (t,−→v i) := (t, (vi,−1)),
but we often denote them shortly by (t, xt) and (t, vi). Then, S := (M,ρ) such
that ρ : {1, . . . , �} → {(t, v), (t′, v′), . . . ¬(t, v),¬(t′, v′), . . .} (v, v′, . . . ∈ Fq), and
Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for
span program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1
if [ρ(i) = (t, vi)] ∧[(t, xt) ∈ Γ] ∧[vi = xt] or [ρ(i) = ¬(t, vi)] ∧[(t, xt) ∈ Γ]
∧[vi �= xt]. Set γ(i) = 0 otherwise.

We now construct a secret-sharing scheme for a (non-monotone) access struc-
ture (span program).

Definition 6. A secret-sharing scheme for access structure S := (M,ρ) is:

1. Let M be an � × r matrix, and column vector
−→
f T := (f1, . . . , fr)T

U← F
r
q .

Then, s0 :=
−→
1 · −→f T =

∑r
k=1 fk is the secret to be shared, and −→s T :=

(s1, . . . , s�)T := M · −→f T is the vector of � shares of secret s0 and share si
belongs to ρ(i).

9

2. If access structure S := (M,ρ) accepts Γ , i.e.,
−→
1 ∈ span〈(Mi)γ(i)=1〉 with

γ : {1, . . . , �} → {0, 1}, then there exist constants {αi ∈ Fq | i ∈ I} such
that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these

constants {αi} can be computed in time polynomial in the size of matrix M .

3.2 Definitions and Security of ABS

Definition 7 (Attribute-Based Signatures : ABS). An attribute-based sig-
nature scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter
and format −→n := (d;n1, . . . , nd) of attributes. It outputs public parameters
pk and master key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes,
Γ := {(t,−→x t)|−→x t ∈ F

nt
q \ {

−→
0 }, 1 ≤ t ≤ d}, pk and sk. It outputs signature

generation key skΓ .
Sig This is a randomized algorithm that takes as input message m, access struc-

ture S := (M,ρ), signature generation key skΓ , and public parameters pk
such that S accepts Γ . It outputs signature σ.

Ver This takes as input message m, access structure S, signature σ and public
parameters pk. It outputs boolean value accept := 1 or reject := 0.

An ABS scheme should have the following correctness property: for all (sk, pk)
R← Setup(1λ,−→n), all messages m, all attribute sets Γ , all signing keys skΓ

R←
KeyGen(pk, sk, Γ), all access structures S such that S accepts Γ , and all signatures
σ

R← Sig(pk, skΓ ,m,S), it holds that Ver(pk,m,S, σ) = 1 with probability 1.

Definition 8 (Perfect Privacy). An ABS scheme is perfectly private, if, for
all (sk, pk) R← Setup(1λ, −→n), all messages m, all attribute sets Γ1 and Γ2, all
signing keys skΓ1

R← KeyGen(pk, sk, Γ1) and skΓ2

R← KeyGen(pk, sk, Γ2), all access
structures S such that S accepts Γ1 and S accepts Γ2, distributions Sig(pk, skΓ1 ,m,
S) and Sig(pk, skΓ2 ,m,S) are equal.

For an ABS scheme with prefect privacy, we define algorithm AltSig(pk,

sk,m,S) with S and master key sk instead of Γ and skΓ : First, generate skΓ
R←

KeyGen(pk, sk, Γ) for arbitrary Γ which satisfies S, then σ R← Sig(pk, skΓ , m, S).
return σ.

Since the correct distribution on signatures can be perfectly simulated with-
out taking any private information as input, signatures must not leak any such
private information of the signer.

Definition 9 (Unforgeability). For an adversary, A, we define AdvABS,UF
A (λ)

to be the success probability in the following experiment for any security param-
eter λ. An ABS scheme is existentially unforgeable if the success probability of
any polynomial-time adversary is negligible:

10

1. Run (sk, pk) R← Setup(1λ,−→n) and give pk to the adversary.
2. The adversary is given access to oracles KeyGen(pk, sk, ·) and AltSig(pk, sk, ·, ·).
3. At the end, the adversary outputs (m′,S′, σ′).

We say the adversary succeeds if (m′,S′) was never queried to the AltSig oracle,
S
′ does not accept any Γ queried to the KeyGen oracle, and Ver(pk,m′,S′, σ′) = 1.

4 Proposed ABS Scheme

4.1 Construction Ideas

Here, we will show some basic ideas to construct the proposed ABS scheme. Our
ABS scheme is constructed on a ciphertext policy (CP) functional encryption
(FE) scheme [22], which is adaptively payload-hiding against chosen-plaintext
attacks. The description of the CP-FE scheme is given in the full version of [22].

Roughly speaking, a secret signing key, skΓ , with attribute set Γ and a veri-
fication text, −→c , with access structure S (for signature verification) in our ABS
scheme correspond to a secret decryption key, skΓ , with Γ and a ciphertext, −→c ,
with S in the CP-FE scheme, respectively. No counterpart of a signature, −→s ∗, in
the ABS exists in the CP-FE, and the privacy property for signature −→s ∗ is also
specific in ABS. Signature −→s ∗ in ABS may be interpreted to be a decryption
key specialized to decrypt a ciphertext with access structure S, that is delegated
from secret key skΓ .

The algorithms of the proposed ABS scheme can be described in the light of
such correspondence to the CP-FE scheme:

Setup Almost the same as that in the CP-FE scheme except that {B̂∗
t }t=1,...,d+1

are revealed as a public parameter in our ABS, while they are secret in the
CP-FE scheme. They are published in our ABS for the signature generation
procedure Sig to meet the privacy of signers (for randomization). This implies
an important gap between CP-FE and ABS.

KeyGen Almost the same as that in the CP-FE scheme except that a (7 dimen-
sional) space with basis B

∗
d+1 is additionally introduced in our ABS and two

elements k∗
d+1,1 and k∗

d+1,2 in this space are included in a secret signing key
in order to embed the hash value, Hλ,Dhk (m ||S), of message m and access
structure S in signature −→s ∗.

Sig Specific in ABS. To meet the privacy condition for −→s ∗, a novel technique is
employed to randomly generate a signature from skΓ and {B̂∗

t }t=1,...,d+1.
Ver Signature −→s ∗ in the ABS is an endorsement to message m by a signer with

attributes accepted by access structure S. The signature verification in our
ABS checks whether signature (or specific decryption key) −→s ∗ works as a
decryption key to decrypt a verification text (or a ciphertext) associated
with S and Hλ,Dhk (m ||S).

Security proofs Roughly speaking, the adaptive-predicate unforgeability of
the ABS under the KeyGen oracle attacks can be guaranteed by the adaptive
payload-hiding property of the CP-FE, since a forged signature implies a

11

decryption key specified for the challenge ciphertext to break the payload-
hiding. Note that there are many subtleties in the proof of unforgeability for
the ABS, e.g., the unforgeability should be ensured in the ABS even when
publishing {B̂∗

t }t=1,...,d+1 for the privacy requirement, while they are secret
in the CP-FE. We develop a novel technique to resolve the difficulty. See the
full version of this paper for more details.

4.2 Construction

For simplicity, here, we describe our ABS scheme for a specific parameter −→n :=
(d; 2, . . . , 2) (see the remark of Definition 5). A general form of our ABS scheme
is given in the full version.

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, v) or
ρ(i) = ¬(t, v), where ρ is given in access structure S := (M,ρ). In the proposed
scheme, we assume that ρ̃ is injective for S := (M,ρ). The full version of this
paper shows how to relax the restriction.

Setup(1λ, −→n := (d; 2, . . . , 2)) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

hk
R← KHλ, ψ

U← F
×
q , N0 := 4, Nt := 7 for t = 1, . . . , d+ 1,

for t = 0, . . . , d+ 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (X−1

t)T,
bt,i := (χt,i,1, . . . , χt,i,Nt

)At
, Bt := (bt,1, . . . , bt,Nt

),
b∗
t,i := (ϑt,i,1, . . . , ϑt,i,Nt

)At
, B

∗
t := (b∗

t,1, . . . , b
∗
t,Nt

),

gT := e(G,G)ψ, param−→n := ({paramVt
}t=0,...,d+1, gT),

B̂0 := (b0,1, b0,4), B̂t := (bt,1, bt,2, bt,7) for t = 1, . . . , d+ 1,

B̂
∗
t := (b∗

t,1, b
∗
t,2, b

∗
t,5, b

∗
t,6) for t = 1, . . . , d+ 1,

sk := b∗
0,1, pk := (1λ, hk, param−→n , {B̂t}t=0,...,d+1, {B̂∗

t }t=1,...,d+1, b
∗
0,3).

return sk, pk.

KeyGen(pk, sk, Γ := {(t, xt) | 1 ≤ t ≤ d}) :

δ
U← F

×
q , ϕ0, ϕt,ι, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq for t = 1, . . . , d; ι = 1, 2;
k∗

0 := (δ, 0, ϕ0, 0)B∗
0
,

k∗
t := (δ(1, xt), 0, 0, ϕt,1, ϕt,2, 0)B∗

t
for (t, xt) ∈ Γ,

k∗
d+1,1 := (δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0)B∗

d+1
,

k∗
d+1,2 := (δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0)B∗

d+1
,

T := {0, (d+ 1, 1), (d+ 1, 2)} ∪ {t | 1 ≤ t ≤ d, (t, xt) ∈ Γ},
return skΓ := (Γ, {k∗

t }t∈T).
Sig(pk, skΓ , m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {(t, xt)}, then

compute I and {αi}i∈I such that
∑
i∈I αiMi =

−→
1 , and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]

12

∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi �= xt] },
ξ

U← F
×
q , (βi)

U← {(β1, . . . , β�) |
∑�
i=1 βiMi =

−→
0 },

s∗
0 := ξk∗

0 + r∗
0 , where r∗

0
U← span〈b∗

0,3〉,
s∗
i := γi · ξk∗

t +
∑2
ι=1 yi,ι · b∗

t,ι + r∗
i for 1 ≤ i ≤ �,

where r∗
i

U← span〈b∗
t,5, b

∗
t,6〉, and γi,−→y i := (yi,1, yi,2) are defined as

if i ∈ I ∧ ρ(i) = (t, vi), γi := αi,
−→y i := βi(1, vi),

if i ∈ I ∧ ρ(i) = ¬(t, vi), γi :=
αi

vi − xt ,
−→y i :=

βi
vi − yi (1, yi),

where yi
U← Fq\{vi},

if i �∈ I ∧ ρ(i) = (t, vi), γi := 0, −→y i := βi(1, vi),

if i �∈ I ∧ ρ(i) = ¬(t, vi), γi := 0, −→y i :=
βi

vi − yi (1, yi),

where yi
U← Fq\{vi},

s∗
�+1 := ξ(k∗

d+1,1 + Hλ,Dhk (m ||S) · k∗
d+1,2) + r∗

�+1,

where r∗
�+1

U← span〈b∗
d+1,5, b

∗
d+1,6〉,

return −→s ∗ := (s∗
0, . . . , s

∗
�+1).

Ver(pk, m, S := (M,ρ),−→s ∗) :
−→
f

U← F
r
q ,
−→s T := (s1, . . . , s�)T := M · −→f T,

s0 :=
−→
1 · −→f T, η0, η�+1, θ�+1, s�+1

U← Fq,

c0 := (−s0 − s�+1, 0, 0, η0)B0 ,

for 1 ≤ i ≤ �,
if ρ(i) = (t, vi), return 0 if s∗

i �∈ Vt, else

ci := (si + θivi, −θi, 0, 0, 0, 0, ηi)Bt
, where θi, ηi

U← Fq,

if ρ(i) = ¬(t, vi), return 0 if s∗
i �∈ Vt, else

ci := (si(vi, −1), 0, 0, 0, 0, ηi)Bt
, where ηi

U← Fq,

c�+1 := (s�+1 − θ�+1 · Hλ,Dhk (m ||S), θ�+1, 0, 0, 0, 0, η�+1)Bd+1 ,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1
i=0 e(ci, s

∗
i) = 1, return 0 otherwise.

[Correctness]
∏�+1
i=0 e(ci, s

∗
i)

= e(c0,k
∗
0)
ξ ·∏i∈I e(ci,k

∗
t)
γiξ ·∏�

i=1

∏2
ι=1 e(ci, b

∗
t,ι)

yi,ι · e(c�+1, s
∗
�+1)

= g
ξδ(−s0−s�+1)
T ·∏i∈I g

ξδαisi

T ·∏�
i=1 g

βisi

T · gξδs�+1
T

= g
ξδ(−s0−s�+1)
T · gξδs0T · gξδs�+1

T = 1.

4.3 Security

Theorem 1. The proposed ABS scheme is perfectly private.

13

Theorem 2. The proposed ABS scheme is unforgeable (adaptive-predicate un-
forgeable) under the DLIN assumption and the existence of collision resistant
hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2,h, E2,h+1 (h =

0, . . . , ν1−1), E3,h, E4,h (h = 1, . . . , ν2), whose running times are essentially the
same as that of A, such that for any security parameter λ,

AdvABS,UF
A (λ) ≤ AdvDLIN

E1
(λ) +

∑ν1−1
h=0

(
AdvDLIN

E+
2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2
h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)

)
+ ε,

where ν1 is the maximum number of A’s KeyGen queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d+ 16)ν1 + 18ν2 + 2d+ 18)/q.

The proofs of Theorems 1 and 2 are given in the full version of this paper.

4.4 Performance

In this section, we compare the efficiency and security of the proposed ABS
scheme with the existing ABS schemes in the standard model (two typical in-
stantiations) [19] as well as the ABS scheme in the generic group model [18] (as
a benchmark). Since all of these schemes can be implemented over a prime order
pairing group, the size of a group element can be around the size of Fq (e.g., 256
bits). In Table 1, � and r represent the size of the underlying access structure
matrix M for a predicate, i.e., M ∈ F

�×r
q . For example, some predicate with 4

Table 1. Comparison with the Existing ABS Schemes

MPR08 [18] MPR10 [19] MPR10 [19] Proposed
(Boneh-Boyen

based)
(Waters
based)

Signature size
(# of group elts)

� + r + 2 51� + 2r + 18λ�
36� + 2r
+9λ + 12

7� + 11

Model
generic group

model
standard
model

standard
model

standard
model

Security full full full full

Assumptions CR hash
q-SDH and

DLIN
DLIN

DLIN and
CR hash

Predicates monotone monotone monotone non-monotone

Sig. size example 1
(� = 10, r = 5,

λ = 128)
17 23560 1534 81

Sig. size example 2
(� = 100, r = 50,

λ = 128)
152 282400 4864 711

14

AND and 5 OR gates as well as 10 variables may be expressed by a 10× 5 ma-
trix, and a predicate with 49 AND and 50 OR gates as well as 100 variables may
be expressed by a 100 × 50 matrix (see the appendix of [15]). λ is the security
parameter (e.g., 128).

5 Multi-Authority ABS (MA-ABS)

5.1 Definitions and Security of MA-ABS

We follow the model and security definitions of MA-ABS in [18, 19].

Definition 10 (Multi-Authority ABS : MA-ABS). A multi-authority ABS
scheme consists of the following algorithms/protocols.

TSetup This is a randomized algorithm. The signature trustee runs algorithm
TSetup(1λ) which outputs trustee public key tpk and trustee secret key tsk.

UserReg This is a randomized algorithm. When a user with user id uid regis-
ters with the signature trustee, the trustee runs UserReg(tpk, tsk, uid) which
outputs public user-token tokenuid. The trustee gives tokenuid to the user.

ASetup This is a randomized algorithm. Attribute authority t (1 ≤ t ≤ d) who
wishes to issue attributes runs ASetup(tpk) which outputs attribute-authority
public key apkt and attribute-authority secret key askt. The attribute author-
ity, t, publishes apkt and stores askt.

AttrGen This is a randomized algorithm. When attribute authority t issues user
uid a secret key associated with attribute xt, first it obtains (from the user)
her user-token tokenuid, and runs token verification algorithm TokenVerify(tpk,
uid, tokenuid). If the token is verified, then it runs AttrGen(tpk, t, askt, tokenuid,
xt) that outputs attribute secret key uskt. The attribute authority gives uskt
to the user.

Sig This is a randomized algorithm. A user signs message m with claim-predicate
(access structure) S := (M,ρ), only if there is a set of attributes Γ such
that S accepts Γ , the user has obtained a set of keys {uskt | (t, xt) ∈
Γ} from the attribute authorities. Then signature σ can be generated using
Sig(tpk, tokenuid, {apkt, uskt | (t, xt) ∈ Γ},m,S), where uskt

R← AttrGen(tpk,
t, askt, tokenuid, xt).

Ver To verify signature σ on message m with claim-predicate (access structure)
S, a user runs Ver(tpk, {apkt},m,S, σ) which outputs boolean value accept :=
1 or reject := 0.

The definition of perfect privacy for the multi-authority (MA) ABS is es-
sentially the same as that of the single-authority (SA) ABS (Definition 8). The
major difference of the unforgeability of MA-ABS and SA-ABS is that adversary
A can corrupt an arbitrary subset of attribute authorities provided that adver-
sary A cannot make a trivial forgery attack. These definitions are given in the
full version of this paper.

15

5.2 Construction

The key idea of our construction of MA-ABS scheme is to share Guid := δG1 as
well as G0 and G1 among attribute authorities to generate δb∗

t,i by each authority
t. Hence, G0 and G1 are included in tpk and Guid := δG1 is shared with attribute
authorities through the user’s token tokenuid.

For matrix X := (χi,j)i,j=1,...,N ∈ F
N×N
q and element v in N -dimensional

V, X(v) denotes
∑N,N
i=1,j=1 χi,jφi,j(v) using canonical maps {φi,j} (Definition

2). Similarly, for matrix (ϑi,j) := (X−1)T, (X−1)T(v) :=
∑N,N
i=1,j=1 ϑi,jφi,j(v). It

holds that e(X(x), (X−1)T(y)) = e(x,y) for any x,y ∈ V.
Moreover, (GSIG,S,V) is a (conventional) unforgeable signature scheme.

TSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

hk
R← KHλ, (verk, sigk) R← GSIG(1λ) N0 := 4, Nd+1 := 7, κ, ξ

U← F
×
q ,

for t = 0, d+ 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := (X−1

t)T,
bt,i := κ(χt,i,1, . . . , χt,i,Nt

)At
, Bt := (bt,1, . . . , bt,Nt

),
b∗
t,i := ξ(ϑt,i,1, . . . , ϑt,i,Nt

)At
, B

∗
t := (b∗

t,1, . . . , b
∗
t,Nt

),

G0 := κG, G1 := ξG, gT := e(G,G)κξ,

B̂0 := (b0,1, b0,4), B̂d+1 := (bd+1,1, bd+1,2, bd+1,7),

B̂
∗
d+1 := (b∗

d+1,1, b
∗
d+1,2, b

∗
d+1,5, b

∗
d+1,6),

tsk := (b∗
0,1, sigk),

tpk := (1λ, hk, {paramVt
, B̂t}t=0,d+1, b

∗
0,3, B̂

∗
d+1, gT , G0, G1, verk),

return (tsk, tpk).

UserReg(tpk, tsk, uid) : δ U← F
×
q , ϕ0, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq, Guid := δG1,

k∗
0 := (δ, 0, ϕ0, 0)B∗

0
,

k∗
d+1,1 := (δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0)B∗

d+1
,

k∗
d+1,2 := (δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0)B∗

d+1
,

usk0 := (k∗
0,k

∗
d+1,1,k

∗
d+1,2), σuid := S(sigk, (uid, Guid)),

return tokenuid := (uid, Guid, σuid, usk0).

ASetup(tpk) : uj,i := (0i−1, Gj , 07−i) for j=0, 1; i=1, .., 7, Xt
U← GL(7,Fq),

Bt := (bt,i)i=1,...,7 := (Xt(u0,1), . . . , Xt(u0,7)),
B
∗
t := (b∗

t,i)i=1,...,7 := ((X−1
t)T(u1,1), . . . , (X−1

t)T(u1,7)),

B̂t := (bt,1, bt,2, bt,7), B̂
∗
t := (b∗

t,1, b
∗
t,2, b

∗
t,5, b

∗
t,6),

return (askt := Xt, apkt := (B̂t, B̂∗
t)).

TokenVerify(tpk, uid, tokenuid) holds iff V(verk, (uid, Guid), σuid) = 1.

AttrGen(tpk, t, askt, tokenuid, xt ∈ Fq) : ϕt,1, ϕt,2
U← Fq,

16

k∗
t := (X−1

t)T((Guid, xtGuid, 0, 0, ϕt,1G1, ϕt,2G1, 0)),
that is, k∗

t = (δ, δxt, 0, 0, ϕt,1, ϕt,2, 0)B∗
t
,

return uskt := k∗
t .

Sig(tpk, tokenuid, {apkt, uskt
R← AttrGen(tpk, t, askt, tokenuid, xt) | (t, xt) ∈ Γ},

m,S := (M,ρ)) and Ver(tpk, {apkt}t=1,...,d, m, S := (M,ρ),−→s ∗) are
essentially the same as those in Section 4.2.

5.3 Security

Theorem 3. The proposed MA-ABS scheme is perfectly private.

Theorem 4. The proposed MA-ABS scheme is unforgeable (adaptive-predicate
unforgeable) under the DLIN assumption and the existence of collision resistant
hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2,h, E2,h+1 (h =

0, . . . , ν1−1), E3,h, E4,h (h = 1, . . . , ν2), whose running times are essentially the
same as that of A, such that for any security parameter λ,

AdvMA-ABS,UF
A (λ) ≤ AdvDLIN

E1
(λ) +

∑ν1−1
h=0

(
AdvDLIN

E+
2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2
h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)

)
+ ε,

where ν1 is the maximum number of A’s UserReg queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d+ 16)ν1 + 18ν2 + 2d+ 18)/q.

The proofs of Theorems 3 and 4 are given in the full version of this paper.

References

1. Beimel, A., Secure schemes for secret sharing and key distribution. PhD Thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

2. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer Heidelberg (2009)

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer Heidelberg (2008)

4. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007, LNCS, vol.
4515, pp. 210–227. Springer Heidelberg (2007)

5. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: CCS
2008. pp.345–356. ACM (2008)

6. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optinal anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer Heidelberg (2001)

7. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from
bilinear maps. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72.
Springer Heidelberg (2004)

17

8. Chaum, D.: Security without identification: Transaction systems to make big brother
obsolete. In: CACM, vol. 28 (10), pp. 1030–1044. ACM (1985)

9. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT ’91. LNCS, vol. 547, pp. 257–265. Springer Heidelberg (1991)

10. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer
Heidelberg (2008)

11. Guo, S., Zeng, Y.: Attribute-based signature scheme, In: ISA 08, pp. 509–511.
IEEE (2008)

12. Khader, D.: Attribute based group signatures, ePrint, IACR, http://eprint.

iacr.org/2007/159.
13. Khader, D.: Attribute based group signature with revocation. ePrint, IACR, http:

//eprint.iacr.org/2007/241
14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-

tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption, In Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer Heidelberg (2010)

15. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. ePrint, IACR,
http://eprint.iacr.org/2010/351

16. Li, J., Au, M.H., Susilo, W., Xie, D., Ren. K.: Attribute-based signature and its
application, In: ASIACCS 2010, pp. 60–69. ACM (2010)

17. Li, J., Kim, K.: Attribute-based ring signatures. ePrint, IACR, http://eprint.
iacr.org/2008/394

18. Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: Achiev-
ing attribute-privacy and collusion-resistance. ePrint, IACR, http://eprint.iacr.
org/2008/328

19. Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. To appear in
CT-RSA 2011. Full version is available at http://eprint.iacr.org/2010/595

20. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer Heidelberg (2008)

21. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer
Heidelberg (2009)

22. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer Heidelberg (2010). Full version is available
at http://eprint.iacr.org/2010/563

23. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer Heidelberg (2001)

24. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures
and their application to anonymous credential systems. In: Preneel B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer Heidelberg (2009)

25. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO ’84. LNCS, vol. 196, pp. 47–53. Springer Heidelberg
(1984)

26. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer Heidelberg (2009)

27. Yang, P., Cao, Z., Dong, X.: Fuzzy identity based signature. ePrint, IACR, http:
//eprint.iacr.org/2008/002.

18

