
Homomorphic Network Coding Signatures in
the Standard Model

Nuttapong Attrapadung1 and Benôıt Libert2?

1 Research Center for Information Security, AIST (Japan)
n.attrapadung@aist.go.jp

2 Université catholique de Louvain, Crypto Group (Belgium)
benoit.libert@uclouvain.be

Abstract. Network coding is known to provide improved resilience to
packet loss and increased throughput. Unlike traditional routing tech-
niques, it allows network nodes to perform transformations on packets
they receive before transmitting them. For this reason, packets cannot
be authenticated using ordinary digital signatures, which makes it dif-
ficult to hedge against pollution attacks, where malicious nodes inject
bogus packets in the network. To address this problem, recent works in-
troduced signature schemes allowing to sign linear subspaces (namely,
verification can be made w.r.t. any vector of that subspace) and which
are well-suited to the network coding scenario. Currently known network
coding signatures in the standard model are not homomorphic in that
the signer is forced to sign all vectors of a given subspace at once. This
paper describes the first homomorphic network coding signatures in the
standard model: the security proof does not use random oracles and, at
the same time, the scheme allows signing individual vectors on-the-fly
and has constant per-packet overhead in terms of signature size. The
construction is based on the dual encryption technique introduced by
Waters (Crypto’09) to prove the security of hierarchical identity-based
encryption schemes.

Keywords. Network coding, homomorphic signatures, provable secu-
rity, standard model.

1 Introduction

Network coding [1, 18] is an attractive paradigm that offers an interesting alter-
native to traditional routing mechanisms. Instead of merely storing and forward-
ing packets in transit, intermediate nodes are allowed to modify them: typically,
at each node, outgoing packets contain vectors that are calculated as linear
combinations of vectors conveyed by incoming packets. In random linear net-
work coding, packets are combined using coefficients which each node chooses at
random, independently of its neighbors. Still, receiving nodes are able to recover
? This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-

F.N.R.S.) for his “chargé de recherches” fellowship and the BCRYPT Interuniversity
Attraction Pole.

the original file from any set of, say m > 1, valid packets containing linearly
independent vectors and without a priori knowing the coefficients chosen by
intermediate nodes on the road. This technique has been shown (see [10] for
instance) to provide many advantages such as an improved resilience to random
packet loss or a substantially increased throughput in certain topologies.

Unfortunately, network coding is highly sensitive to pollution attacks, where
malicious nodes inject invalid packets (i.e., nodes outside the linear span of the
received packets) in the network in order to prevent target nodes from recover-
ing the original file. Since network nodes perform linear transformations over all
their incoming packets, even a single faulty packet is likely to contaminate the
entire network and eventually hinder the decoding process. To address this con-
cern, intermediate good nodes need a method to verify the validity of incoming
packets and sieve out bad ones. Obviously, the problem cannot be resolved by or-
dinary digital signatures since transmitted packets are modified by the network
and cannot be merely signed by the source. For this reason, cryptographic ap-
proaches rely on techniques allowing to authenticate packets using homomorphic
hash functions [16, 13, 25] or homomorphic signatures [9, 7, 12]. These primitives
are designed in such a way that a signature (resp. a hash value) of a vector ~v
can be obtained from signatures (resp. hash values) of several vectors that ~v is
a linear combination of.

In contrast to information-theoretic approaches (like [14, 15]) that defend
against network faults by introducing redundancies in packets, cryptographic
techniques do not place restrictions on the adversary’s behavior (e.g. by limiting
his ability to eavesdrop the network or the fraction of nodes he can corrupt):
as long as the receiver obtains sufficiently many correct packets, he can always
recover the file regardless of the number of faults. On the other hand, these
techniques typically require computational assumptions and sometimes appeal
to idealizations such as the random oracle model [4]. This paper aims at making
another step towards eliminating the latter.

Related Work. Homomorphic signatures were first suggested by Johnson,
Molnar, Song and Wagner [20]. Their definition was adapted to the network
coding scenario by Boneh, Freeman, Katz and Waters [7] who designed an effi-
cient homomorphic NCS scheme in the random oracle model using bilinear maps.
At the expense of losing the homomorphic property, they also showed how to
build a network coding signature in the standard model. In [7], signature sizes
were proved asymptotically optimal since a signature on any subspace necessarily
grows with the dimension of that subspace. Recently, Gennaro, Katz, Krawczyk
and Rabin gave a homomorphic signature [12] based on the RSA assumption
(in the random oracle model) and showed how to work with small coefficients
over the integers (instead of finite fields) in networks of bounded size. At the
same time, Agrawal, Boneh, Boyen and Freeman [3] considered the situation of
network nodes mixing packets from multiple distinct sources and described a
multi-source network coding signature (without the homomorphic property) in
the standard model.

In the secret-key setting, Agrawal and Boneh [2] considered how to improve

upon the speed of network coding public key signatures and designed message
authentication codes with homomorphic properties. Assuming that a bounded
number of verifiers may collude, they also showed how intermediate nodes can
verify the integrity of network-coded data. More recently, Li et al. [19] gave a
MAC-based approach supporting in-network verification and resisting an arbi-
trary number of collusions.

Our Contribution. To the best of our knowledge, in the public key setting,
known homomorphic network coding signatures [7, 12] all rely on random ora-
cles in their security proof. Indeed, existing NCS schemes in the standard model
(i.e., the second scheme of [7] and the multi-source system in [3]) can only be
used to sign all the base vectors of a subspace at once. This requires the source
to be aware of the entire file before sending the first packet.

This paper describes the first homomorphic NCS scheme with a security
proof outside the random oracle methodology. Our construction is based on the
dual encryption paradigm, introduced by Waters [24] and developed in [17], the
purpose of which was initially to build fully secure (hierarchical) identity-based
encryption [22, 6] schemes. We pinpoint an intuitive connection between NCS
schemes and the spatial encryption primitive of Boneh and Hamburg [8], where
the receiver’s ability to decrypt is made contingent on his knowledge of a private
key for a subspace containing the vector assigned to the ciphertext. We explain
that such a scheme can be turned into a (not necessarily homomorphic) NCS
scheme when the file identifier can be suitably tied up to the signed subspace.
The homomorphic property is then achieved by carefully re-using the signer’s
random coins across all vectors of the same linear subspace: by deriving these
coins from the file identifier using a pseudorandom function, the signer can start
transmitting packets before the file to be sent is completely known.

In order to prove security in the sense of the definition of Boneh et al. [7],
we use groups of composite order and apply the technique of Lewko and Waters
[17] in the context of signatures. One difficulty to deal with is that, unlike pre-
vious homomorphic NCS schemes [7, 12], the system uses a randomized signing
algorithm and signatures on distinct vectors must be generated using partially
identical randomness in order to be linearly combinable. We thus have to take
special precautions to prevent malicious nodes from re-randomizing signatures
and wrongly accuse the signer of flooding the network with signatures that can-
not be combined.

Since we work in groups of composite order N , vector coordinates and net-
work coefficients must be chosen in a ring ZN instead of a prime field as in
[7]. Nevertheless, the scheme has counterparts in prime order groups. While
Freeman’s framework [11] does not seem to apply (given that it does not apply
to the Lewko-Waters techniques [17], as mentioned in [11]) to generically trans-
form the scheme into an instantiation in prime-order groups, the system can be
adapted in asymmetric pairing-friendly groups of prime order in the same way
as the Lewko-Waters IBE [17]. It is also translatable in groups with symmetric
pairings using the techniques of [24]. In the paper, we chose to describe it in
composite order groups for simplicity.

Organization. In the following, we first review the notion of network coding
signatures in section 2. Our homomorphic scheme and its proof are detailed in
sections 3.1 and 3.2, respectively.

2 Background and Definitions

2.1 Network Coding

This section briefly recalls the idea of linear network coding. Consider a network
with one source node and a subset of nodes called “target nodes”. The purpose
is to have the source transmit a file to all target nodes, where a file is represented
as a matrix containing the m row vectors ~v1, . . . , ~vm ∈ ZkN over a ring or a field
ZN . The source node first creates m augmented vectors ~w1, . . . , ~wm ∈ ZnN , with
n = k +m, by setting

—~w1—
—~w2—

...
—~wm—

 =


—~v1— 1 0 · · · 0
—~v2— 0 1 · · · 0

...
. . .

—~vm— 0 0 · · · 1

 . (1)

The source then sends these augmented vectors to its neighbor nodes.
We notice that the span of row vectors of the above matrix will generate a

vector subspace V ⊂ ZnN of dimension m with the basis ~w1, . . . , ~wm. As defined in
[7], when the basis is in the above form (in the right-hand side of Equation (1)),
it is called a properly augmented basis.

Each honest intermediate node in the network processes the incoming packets
as follows. Upon receiving vectors ~y1, . . . , ~y` ∈ ZnN on its ` incoming edges,
it computes a new vector for each outgoing edge as a linear combination of
the vectors it received. Namely, at the jth outgoing edge, the vector ~zj ∈ ZnN
will have the form ~zj =

∑`
i=1 αi,j~yi, for some (typically random) coefficients

(α1,j , . . . , α`,j) ∈ Z`N .
A target node will recover the file using a set of vectors from its incoming

edges. This can be done if they consist of m vectors {~yi = (~xi||~ui)}mi=1 where
~u1, . . . , ~um are linearly independent (here, ~xi ∈ ZkN , ~ui ∈ ZmN). The original file
is then recovered as

—~v1—
—~v2—

...
—~vm—

 =


—~u1—
—~u2—

...
—~um—


−1

—~x1—
—~x2—

...
—~xm—

 ,

which is computable thanks to to the linear independence of ~u1, . . . , ~um.

2.2 Definitions

We first recall the definition of network coding signatures from [7].

Definition 1. A network coding signature (NCS) scheme consists of a triple of
efficient algorithms Σ = (Keygen,Sign,Verify) with the following specifications.

Keygen(λ, n): is a probabilistic algorithm that takes as input a security param-
eter λ ∈ N and an integer n ∈ poly(λ) denoting the length of vectors to be
signed. It outputs a positive integer N ∈ N, a public key pk, the corresponding
private key sk and the description of an efficiently samplable file identifier
space I.

Sign(sk, id, V): is a (possibly probabilistic) algorithm that takes as input a private
key sk, a file identifier id ∈ I and a vector subspace V (described as a set
of linearly independent vectors ~v1, . . . , ~vm ∈ ZnN) of dimension m < n. It
outputs a signature σ.

Verify(pk, id, ~y, σ): is a deterministic algorithm that takes as input a public key
pk, a file identifier id ∈ I, a vector ~y and a signature σ. It outputs 1 or 0.

Correctness requires that, for all λ ∈ N, all integers n ∈ poly(λ) and all triples
(pk, sk, I) ← Keygen(λ, n), it holds that for all id ∈ I and all vector subspace
V ⊂ ZnN , if σ = Sign(sk, id, V), then Verify(pk, id, ~y, σ) = 1 for all ~y ∈ V .

In what follows, we define homomorphic network coding signature schemes.
Unlike previous homomorphic schemes [7, 12], the construction in this paper
uses a probabilistic signing algorithm. To make it possible to publicly combine
signatures on distinct vectors from the same file, the signer has to re-use part of
his random coins to sign all vectors of the subspace. As long as these signatures
are generated using the appropriate coins, network nodes can always combine
them. However, attention must be paid to the fact that anyone can attempt to
re-randomize signatures so as to prevent them from being combinable later on
and disrupt the system. For this reason, network nodes have to make sure that
valid signatures of vectors from the same file were produced using compatible
randomness before combining them. We thus slightly modify the specification of
homomorphic NCS schemes [7] and add a compatibility-checking algorithm that
allows testing whether signatures are indeed combinable.

Definition 2. A homomorphic network coding signature scheme is a tuple of
efficient algorithms Σ = (Keygen,Sign,CompatibilityCheck,Combine,Verify)

Keygen(λ, n): is a probabilistic algorithm that takes as input a security param-
eter λ ∈ N and an integer n ∈ poly(λ) denoting the length of vectors to be
signed. It outputs a key pair (pk, sk) and the description of a file identifier
space I.

Sign(sk, id, ~v): is a possibly randomized algorithm that takes in a private key sk,
a file identifier id ∈ I and a vector ~v. It outputs a signature σ.

CompatibilityCheck(pk, id, {σi}`i=1): takes as input a public key pk, a file iden-
tifier id and a set of ` signatures {σi}`i=1. It outputs 1 if these signatures are
deemed compatible for combination and 0 otherwise.

Combine(pk, id, {(βi, σi)}`i=1): is a (possibly randomized) algorithm that takes
as input a public key pk, a file identifier id and ` tuples (βi, σi), each one of
which consists of a weight βi and a signature σi. Intuitively, the output is a
signature σ on the vector ~y =

∑`
i=1 βi~vi, where σi is a signature on ~vi.

Verify(pk, id, ~y, σ): is a deterministic algorithm that takes as input a public key
pk, a file identifier id ∈ I, a signature σ and a vector ~y. It outputs 0 or 1.

Correctness is formulated by mandating that, for all security parameters λ ∈ N,
all integers n ∈ poly(λ) and all triples (pk, sk, I) ← Keygen(λ, n), the following
holds.

1. For all id ∈ I and all n-vectors ~y, if σ = Sign(sk, id, ~y), then we necessarily
have Verify(pk, id, ~y, σ) = 1.

2. For all id ∈ I, any ` > 0 and any set of vectors {~vi}`i=1, if σi = Sign(sk, id, ~vi)
for i = 1 to `, then CompatibilityCheck(pk, id, {σi}`i=1) = 1.

3. For all id ∈ I, any ` > 0 and any set of triples {(βi, σi, ~vi)}`i=1, if the following
two conditions are satisfied

a. Verify(pk, id, ~vi, σi) = 1 for each i ∈ {1, . . . , `},
b. CompatibilityCheck(pk, id, {σi}`i=1) = 1,

then it must hold that Verify
(
pk, id,Combine(pk, id, {(βi, σi)}`i=1), σ

)
= 1.

In the following, we say that signatures {σi}`i=1 are compatible if they correspond
to the same id ∈ I and if it holds that CompatibilityCheck(pk, id, {σi}`i=1) = 1.

When {σi}`i=1 is a set of compatible signatures, we say that σ is compatible
with {σi}`i=1 if {σ} ∪ {σi}`i=1 forms a set of compatible signatures. In particu-
lar, when a signature σ̃ of a subspace V consists of signatures (σ1, . . . , σm) on
independent vectors ~v1, . . . , ~vm ∈ V , we say that σ is compatible with σ̃ if it is
compatible with all {σi}mi=1.

Conversion. We recall how a homomorphic network coding signature allows
signing vector subspaces, as noted in [7]. Let scheme Σ2 = (Keygen2,Sign2,
CompatibilityCheck2,Combine2,Verify2) be a homomorphic NCS scheme. An or-
dinary network coding signature Σ1 = (Keygen1,Sign1,Verify1) can be obtained
as follows.

Keygen1(λ, n) = Keygen2(λ, n)

Sign1(sk, id, V) = (σ1, . . . , σm), where σi = Sign2(sk, id, ~vi) for i = 1 to m and
~v1, . . . , ~vm is a properly augmented basis of V ⊆ ZnN .

Verify1(pk, id, ~y, σ) = outputs 1 if and only if{
CompatibilityCheck2(pk, id, {σi}mi=1) = 1
Verify2(pk, id, ~y,Combine2(pk, id, {(yn−m+i, σi)}mi=1)) = 1.

Security. The security definition hereafter slightly generalizes the one of [7].
It requires that it be infeasible to publicly destroy the “combinability” of valid
signatures without rendering them invalid when they are considered individually.
Our goal is to guarantee that, if valid signatures of several vectors from the same
file have incompatible randomness, the signer is necessarily deviating from the
specification of the scheme. When such a bogus or misbehaving signer is detected,
honest network nodes may simply stop processing their packets.

Definition 3. A network coding signature scheme Σ = (Keygen,Sign,Verify)
is secure if no probabilistic polynomial time (PPT) adversary has non-negligible
advantage (as a function of the security parameter λ ∈ N) in the following game:

1. The adversary A chooses an integer n ∈ N and sends it to the challenger
who runs Keygen(λ, n) and obtains (pk, sk) before sending pk to A.

2. On polynomially-many occasions, A chooses a linear subspace Vi ⊂ ZnN of
dimension mi < n. The challenger replies by choosing a file identifier idi ∈ I
from the identifier space I and returns idi and σi = Sign(sk, idi, Vi) to A.

3. A outputs an identifier id?, a signature σ? and a vector ~y ∈ ZnN . The ad-
versary A is deemed successful if Verify(pk, id?, ~y?, σ?) = 1 and either of the
following holds:
◦ (Class i): id? 6= idi for any i and ~y? 6= ~0.
◦ (Class ii): id? = idi for some i ∈ {1, . . . , q} and the signature σ? is not

compatible with σi.
◦ (Class iii): id? = idi for some i ∈ {1, . . . , q} and ~y? 6∈ Vi.

A’s advantage is defined as his probability of victory taken over all coin tosses.
As in [7], a homomorphic NCS scheme Σ′ is said to be secure if the network

coding signature constructed via the conversion presented above is secure.

2.3 Complexity Assumptions

We consider groups (G,GT) of composite order N = p1p2p3 for which a bilinear
map e : G × G → GT is computable. In the following, for each i ∈ {1, 2, 3}, we
denote by Gpi

the subgroup of order pi. Also, for all distinct i, j ∈ {1, 2, 3}, we
call Gpipj

the subgroup of order pipj .
An important property of composite order groups is that pairing two elements

of order pi and pj , with i 6= j, always gives the identity element 1GT
.

In this setting, we rely on the following assumptions introduced in [17].

Assumption 1 Given g R← Gp1 , X3
R← Gp3 , and T , it is infeasible to efficiently

decide if T ∈R Gp1p2 or T ∈R Gp1 .
Assumption 2 Let g,X1

R← Gp1 , X2, Y2
R← Gp2 , Y3, Z3

R← Gp3 . Given a tuple
(g,X1X2, Z3, Y2Y3) and T , it is hard to decide if T ∈R G or T ∈R Gp1p3 .

Assumption 3 Let g R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 and α, s R← ZN .
Given (g, gαX2, X3, g

sY2, Z2), it is infeasible to compute e(g, g)αs.

We note that, while Lewko and Waters rely on the decisional variant of Assump-
tion 3 (according to which e(g, g)αs is indistinguishable from a random element
of GT), its computational counterpart suffices here.

3 Homomorphic NCS Scheme in the Standard Model

Intuitively, the construction is based on an observation that network coding sig-
natures can be seen as an implication of the spatial encryption primitive intro-
duced by Boneh and Hamburg [8] in the same way as identity-based encryption

implies digital signatures (according to an observation by Naor reported in [6]).
In spatial encryption, private keys are associated with affine subspaces while
ciphertexts correspond to vectors. Decryption is possible when the ciphertext’s
vector lies in the subspace of the key. By applying Naor’s transformation to the
spatial encryption scheme of [8], one readily obtains a sort of selectively secure
network coding signature, modulo some twist to bind the file identifier to the
subspace which is being signed. By itself, this transformation does not provide
the homomorphic property that we are after. To obtain it, we need to start from
a specific variant of the NCS scheme derived from the spatial encryption sys-
tem of [8] and carefully re-use the same randomness to separately sign vectors
of the same subspace. Full security (as opposed to selective security [5]) is ob-
tained using the Lewko-Waters techniques to build (hierarchical) identity-based
encryption schemes [17].

More precisely, the public key comprises the description of bilinear groups
(G,GT) of order N = p1p2p3, a number of Gp1 elements (g, u, {hi}ni=0) as well
as e(g, g)α for some α R← ZN . The first two components of each signature form a
selectively-secure Boneh-Boyen signature [5] (σ1, σ2) = (gα · (u · hid

0)r, gr) on the
file identifier id. As implicitly showed in [17], this signature can be proved fully
secure if g, u and h0 live in the subgroup of order p1 and if σ1, σ2 are multiplied
by a random element of Gp3 . This signature (σ1, σ2) is then augmented with an
element σ3 = (

∏n
j=1 h

vj

j)r, where (v1, . . . , vn) ∈ ZnN is the vector to be signed. If
all the vectors of span(~v1, . . . , ~vm) were signed altogether (by introducing one σ3

per base vector), signatures would have nearly the same shape as private keys
in the spatial encryption scheme of [8]: the only difference is the introduction of
a file identifier in σ1. Fortunately, base vectors can be signed separately as long
as they are signed using the same exponent r. In this case, anyone can publicly
compute a signature on any linear combination of ~v1, . . . , ~vm.

To save the signer from maintaining a state and remember which random
exponents were used to sign the vectors of all subspaces, r ∈ ZN can be de-
rived by applying a pseudorandom function to the file identifier id so as to be
re-computable later on. We emphasize that the use of a PRF is not meant to
de-randomize the scheme in an attempt to obtain unique signatures. The goal is
simply to render the signer stateless.

To achieve security in the sense of definition 3, we need to keep signatures
from being publicly re-randomizable in their Gp1 components. A simple solu-
tion is to compute (σ1, σ2) as a signature on a hash value of both id and e(g, g)r,
which prevents from altering the underlying r without invalidating the signature.
Although this simple trick would not work with Waters signatures [23] (because
their security proof would cease to go through), it is compatible with the dual
encryption technique [24, 17] which is used to prove security. In addition, anyone
can detect if vectors of the same file are signed using different values of r and
only the signer can be blamed in such a situation.

3.1 Construction

Keygen(λ, n): given a security parameter λ ∈ N and an integer n ∈ poly(λ),
choose bilinear groups (G,GT) of order N = p1p2p3, where pi > 2λ for each
i ∈ {1, 2, 3}. Choose α R← ZN , g R← Gp1 , Xp3

R← Gp3 , b, ai
R← ZN for i = 0

to n. Then, select a collision-resistant hash function H : {0, 1}∗ → ZN , an
identifier space I and pick a random seed κ R← {0, 1}τ for a pseudorandom
function Ψ : {0, 1}τ × I → ZN , where τ ∈ poly(λ). The private key is
sk :=

(
gα, κ

)
while the public key is

pk :=
(

(G,GT), g, e(g, g)α, u = gb, {hi = gai}i=0,...,n, Xp3 , H
)
.

Sign(sk, id, ~v): on input of a vector ~v = (v1, . . . , vn) ∈ ZnN , a file identifier
id ∈ I and the private key sk =

(
gα, κ

)
, conduct the following steps.

First, compute a pseudorandom scalar r = Ψ(κ, id) ∈ ZN . Then, compute
id′ = H(id, e(g, g)r) ∈ ZN , choose R3, R

′
3, R

′′
3

R← Gp3 and compute a signa-
ture σ = (σ1, σ2, σ3) as

σ1 = gα · (u · hid′

0)r ·R3, σ2 = gr ·R′3, σ3 =
(
hv11 · · ·hvn

n

)r ·R′′3
CompatibilityCheck(pk, id, {σi}`i=1): parses σi as (σi,1, σi,2, σi,3) ∈ G3 for i = 1

to `. The algorithm will return 1 if and only if all σi,2 have the same Gp1

component: for i = 2 to `, it checks if e(σ1,2/σi,2, g) = 1GT
and returns 0

otherwise. If all checks succeed, it returns 1.
Combine(pk, id, {(βi, σi)}`i=1): given pk, a file identifier id and ` tuples (βi, σi),

parse σi as σi = (σi,1, σi,2, σi,3) for i = 1 to `. Set σ1 = σ1,1 ·R3, σ2 = σ1,2 ·R′3
for randomly chosen R3, R

′
3

R← Gp3 . Then, compute σ3 =
∏`
i=1 σ

βi

i,3 ·R′′3 , with
R′′3

R← Gp3 , and output (σ1, σ2, σ3).
Verify(pk, id, ~y, σ): given a public key pk =

(
g, e(g, g)α, u, {hi}ni=0, Xp3

)
, a sig-

nature σ = (σ1, σ2, σ3) and a vector ~y = (y1, . . . , yn) ∈ (ZN)n, compute
id′ = H(id, e(σ2, g)) and return 1 if and only if

e(σ1, g) = e(g, g)α · e(u · hid′

0 , σ2) and e(σ3, g) = e(σ2, h
y1
1 · · ·hyn

n). (2)

Verifying the correctness of the scheme is straightforward since pairing an
element of Gp1 with an element of Gp3 always gives the identity element in GT .

Efficiency. Signatures only consist of 3 group elements. Without optimiza-
tions, verifying individual signatures entails to compute four pairings. However,
when multiple signatures must be checked before being combined, a constant
number of pairing evaluations suffices when randomized batch verification tech-
niques are used.

Indeed, when network nodes process ` signatures {(σi,1, σi,2, σi,3)}`i=1 from
the same file identified by id ∈ I, they can first check that all {σi,2}`i=1 have the
same Gp1 component by testing if e

(∏`
i=2(σ1,2/σi,2)ωi , g

)
= 1GT

for randomly
chosen ω2, . . . , ω`

R← ZN . If this test is satisfied, σ1,2, . . . , σ`,2 all correspond to

the same r, with overwhelming probability, and the same σ1,2 can be used to
verify equations (2) for i = 1 to `. Namely, if σi = (σi,1, σi,2, σi,3) pertains to
~vi = (vi,1, . . . , vi,n), signatures are all valid if e(σi,1, g) = e(g, g)α · e(u ·hid′

0 , σ1,2)
and e(σi,3, g) = e(σ1,2,

∏n
k=1 h

vi,k

k) for i = 1 to `. Then, if the network node picks
randomizers δi, δ′i

R← ZN , for i = 1 to `, all signatures can be batch-verified by
testing if

e
(
g,
∏̀
i=1

σδi
i,1 ·

∏̀
j=1

σ
δ′j
j,3

)
= e(g, g)α·

∑`
i=1 δi · e

(
σ1,2, (u · hid′

0)
∑`

i=1 δi ·
n∏
k=1

h
∑`

j=1 δ
′
jvjk

k

)
.

When verification fails, recent techniques [21] can be adapted to determine which
signatures are bad and which packets should be filtered.

As in earlier standard model constructions [7, 3], the public key size is linear
in the dimension n of vectors. We leave it as an interesting open problem to
avoid this dependency without resorting to random oracles.

Converted Scheme. From the homomorphic network coding signature, one
can obtain an ordinary network coding signature via the generic conversion given
by Boneh et al. [7] (and recalled in section 2.2). Applying this conversion to our
scheme results in the signature of the form {(σi,1, σi,2, σi,3)}mi=1. This scheme
is redundant and we can reuse the first two elements for all i. Indeed to sign
a subspace V where ~v1, . . . , ~vm is the properly augmented basis, the signing
algorithm outputs σ = (σ1, σ2, {σ3,i}mi=1) where

σ1 = gα · (gb+a0id′)r ·R3, σ2 = gr ·R′3, σ3,i = (g〈~a,~vi〉)r ·R′′3,i,

where R3, R
′
3, R

′′
3,i ∈R Gp3 and we denote ~a = (a1, . . . , an). In the next section,

we will prove the security of this scheme instead of the scheme converted with
the generic conversion.

3.2 Security Proof

We first give a simple lemma describing the general form of signatures that are
accepted by the verification of the proposed NCS scheme (with redundancy cut
as mentioned above).

Lemma 1. For any identifier-vector-signature tuple (id, ~y, σ = (σ1, σ2, {σ3,i}mi=1)),
if it holds that Verify(pk, id, ~y, σ) = 1, then we have

σ1 = gα · (gb+a0id′)r · Z1, σ2 = gr · Z2, σ3,i = (g〈~a,~vi〉)r · Z3,i, (3)

where id′ = H(id, e(σ2, g)), for some r ∈ ZN , Z1, Z2, Z3,i ∈ Gp2p3 and some
vectors ~v1, . . . , ~vm ∈ ZnN such that

~a(U(~yR)> − ~y>) = 0, where U =

~v>1 · · · ~v>m
 (4)

where we write ~y = ~yL||~yR with ~yL ∈ Zn−mN , ~yR ∈ ZmN .

Proof. Let an id-vector-signature tuple (id, ~y, σ = (σ1, σ2, {σ3,i}mi=1)) be a valid
tuple, that is Verify(pk, id, ~y, σ) = 1. We will prove that σ will have the form of
equation (3). First, since the tuple is accepted, we have

e(σ1, g) = e(g, g)α · e(gb · (ga0)id′ , σ2) (5)

e(
m∏
i=1

σ
yn−m+i

3,i , g) = e(σ2, g
〈~a,~y〉), (6)

where id′ = H(id, e(σ2, g)). Since σ2 ∈ G, we can write σ2 = grZ2 for some
r ∈ ZN and Z2 ∈ Gp2p3 . Equation (5) then implies σ1 = gα · (gb+a0id′)r · Z1 for
some Z1 ∈ Gp2p3 , as claimed. Similarly, we have σ3,i = (gβi)r · Z3,i for some
βi ∈ ZN . It remains to prove the property of βi. Equation (6) implies that∑
i=1 βiyn−m+i = 〈~a, ~y〉. If we write βi = 〈~a,~vi〉 for some ~vi ∈ ZnN , then the

equation (4) is obtained. This concludes the proof. ut

Theorem 1. The scheme is a secure homomorphic network coding signature if
Ψ is a secure pseudorandom function, if H is a collision-resistant hash function
and if Assumption 1, Assumption 2 and Assumption 3 all hold.

Proof. The proof follows the dual system methodology used in [24, 17]. From
Lemma 1, any valid identifier-vector-signature triple (id, ~y, σ) will have the fol-
lowing generic form:

σ1 = gα · (gb+a0id′)r · gw1
2 ·R1, σ2 = gr · gw2

2 ·R2, (7)

σ3,i = (g〈~a,~vi〉)r · gw3,i

2 ·R3,i, (8)

where id′ = H(id, e(σ2, g)), for some r ∈ ZN , w1, w2, w3,i ∈ ZN , some group
elements R1, R2, R3,i ∈ Gp3 and vectors ~v1, . . . , ~vm ∈ ZnN which satisfied Eq. (4).

We will distinguish two types of signatures as follows.

◦ Type A: (w1, w2, w3,1, . . . , w3,n) = (0, 0, 0, . . . , 0) mod p2.
◦ Type B: (w1, w2, w3,1, . . . , w3,n) 6= (0, 0, 0, . . . , 0) mod p2.

We will call Type A forgery (resp. Type B forgery) a fake signature of Type A
(resp. Type B) which is produced by the forger in the game of definition 3.

The proof considers a sequence of q + 3 games. It starts with the real at-
tack game Gamereal followed by Game1,Game2,Game3,Game4.1, . . . ,Game4.q.
In the following we let V (j) be the j-th query where j ∈ {1, . . . , q} and let
(σ(j)

1 , σ
(j)
2 , {σ(j)

3,i }mi=1) be the answer to the query.

Game1: Replacing r with random. This game is identical to as Gamereal
with the difference that the challenger generates all signatures using truly
random exponents r R← ZN (and care is taken to use the same r to sign all
vectors of the same subspace) instead of pseudorandom values. Clearly, the
security of the PRF implies that Game1 is computationally indistinguishable
from Gamereal.

Game2: Eliminating collision. It is as Game1 but the game will abort if
– Adversary A outputs a class-(i) forgery (i.e., id? 6= idj for any j and
~y? 6= ~0) or a class-(ii) forgery (i.e., id? = idj for some j ∈ {1, . . . , q}
and e(σ?2 , g) 6= e(σ(j)

2 , g)) but for which id′
? = id′j . In other words, the

collision of H occurs as H(id?, e(σ?2 , g)) = H(idj , e(σ
(j)
2 , g)), for some

index j ∈ {1, . . . , q}.
It is straightforward to show that under the collision-resistance of H the
difference between Game1 and Game2 is negligible.

Game3: Restriction modulo p2. It is as Game2 but the game will further
abort if either of the following event occurs.

– Adversary A outputs a class-(i) forgery (i.e., id? 6= idj for any j and
~y? 6= ~0) or a class-(ii) forgery (i.e., for which id? = idj for some j and
e(σ?2 , g) 6= e(σ2,j , g)) but id′

? = id′j mod p2 (even if id′
? 6= id′j) for some

index j ∈ {1, . . . , q}.
– Adversary A outputs a class-(iii) forgery (i.e., id? = idj for some j

and ~y? 6∈ Vj) but for which ~y? mod p2 ∈ Vj mod p2. Here, we denote
by V mod p2 the subspace V reduced in Znp2 . More precisely, for any
subspace V = span(~v1, . . . , ~vm) ⊂ ZnN , the notation V mod p2 denotes
span(~v1 mod p2, . . . , ~vm mod p2) ⊂ Znp2 .

Lemma 2 shows that, under Assumption 1 and Assumption 2, the difference
between Game2 and Game3 is negligible. Then, Lemma 3 shows that, if A
can output a Type B forgery in Game3, Assumption 1 is false.

Game4.0: Simplification. This is a reformulation of Game3 for ease of reading.
The game will accept only the following forgery. (Otherwise, it will abort).
– Adversary A outputs a forgery with id′? 6= id′j mod p2 for any j and
~y? 6= ~0.

– AdversaryA outputs a forgery for which id? = idj , for some j ∈ {1, . . . , q},
and ~y? mod p2 6∈ Vj mod p2.

We note that in this game, as in Gamereal,A is only given Type A signatures.
Game4.k (1 ≤ k ≤ q): Hybrid types. It is as Game0 but the adversary ob-

tains Type B signatures at the first k signing queries whereas the challenger
answers the remaining q−k signing queries by returning Type A signatures.
Lemma 4 shows that, if the adversary has noticeably higher probability to
output a Type A forgery in Game4.(k+1) than in Game4.k, there must be a
breach in Assumption 2.

Game4.q: All type B. The forger A only obtains Type B signatures and it
becomes easy to prove that any Type A forgery allows breaking Assumption
3, as shown by Lemma 5.

Denote negl as a negligible function in λ. Let Wi,W
A
i ,W

B
i be the probability that

the adversary successfully outputs a forgery in game i of either type, type A,
and type B respectively. We then have that |Wreal −W3| ≤ negl guaranteed by
the security of PRF, collision-resistance hash, and Lemma 2. Also WB

3 ≤ negl,

|WA
4,0 − WA

4,q| ≤ negl, and WA
4,q ≤ negl are implied by Lemma 3, 4, and 5,

respectively. Combining the above, we obtain

Wreal ≤ |Wreal −W3|+ WB
3 + |WA

4,0 −WA
4,q|+ WA

4,q ≤ negl,

where we recall that W3 = W4,0 and see that W3 = WA
3 + WB

3 . This concludes
the proof. ut

Lemma 2. Any significant difference between the adversary’s behaviors in Game2

and Game3 contradicts either Assumption 1 or Assumption 2.

Proof. The two games are identical unless the adversary A outputs a forgery
involving a pair (id′?, ~y?) such that either: (1) id′

? = id′j mod p2 whereas we
have id′

? 6= id′j mod N for some j ∈ {1, . . . , q}; (2) there exists j ∈ {1, . . . , q}
such that id′

? = id′j mod N but det(M) = 0 mod p2 and det(M) 6= 0 mod N ,
where M ∈ Zn×nN is the matrix

M =

 Rn×(n−mj−1) ~v>j,1 · · · ~v>j,mj
~y?>

 ,

with mj = dim(Vj) < n, such that Rn×(n−mj−1) is a n × (n − mj − 1) ma-
trix whose columns are orthogonal to span(~vj,1, . . . , ~vj,mj , ~y

?) (such a matrix
can be obtained via the Gram-Schmidt process). The matrix has the desired
properties since ~y? mod p2 ∈ V mod p2 although ~y? 6∈ V . The simulator B can
extract a non-trivial factor of N by computing gcd(id′? − id′j , N) in case (1) or
gcd(det(M), N) in case (2). As shown in [17][Lemma 5], this allows breaking ei-
ther Assumption 1 or Assumption 2 depending on which factor is extracted. ut

Lemma 3. Under Assumption3 1, no PPT adversary can output a Type B
forgery in Game3.

Proof. We show that, if the adversary outputs a Type B forgery in Game3, there
is an algorithm B that, given (g,X3, T), decides if T ∈R Gp1 or T ∈R Gp1p2 .

The distinguisher B sets up the public key pk as e(g, g)α, Xp3 = X3, u = gb,
hi = gai for i = 0 to n. Denote ~a = (a1, . . . , an). It answers all private key
queries according to the specification of the signing algorithm since it knows the
private key.

At the end,A outputs a file identifier id?, a Type-B signature (σ?1 , σ
?
2 , {σ?3,i}mi=1)

and a vector ~y?. The algorithm B then computes

η1 =
σ?1

gα · σ?2
b+a0id′?

, η2 =

∏m
i=1 σ

?
3,i
yn−m+i

σ?2
〈~a,~y?〉 .

The Gp1 components of these terms are necessarily canceled out due to equa-
tions (3)-(4). Recall that a Type-B signature is in the generic form (7) with
3 We note that the lemma holds under a weaker assumption which is the hardness of

finding an element of order p2 or p2p3 given (g, X3).

(w1, w2, w3,1, . . . , w3,n) 6= (0, 0, 0, . . . , 0) mod p2. For this reason, the Gp2 com-
ponents in η1, η2 will be gw1−w2(b+a0id′?)

2 and g
∑m

i=1 w3,iyn−m+i−w2〈~a,~y?〉
2 , respec-

tively. Hence, as long as b, a0,~a mod p2 are information theoretically hidden to
the adversary, there must be an element of Gp2p3 with non-trivial Gp2 com-
ponent among η1, η2. But this is true since b, a0,~a mod p2 is uncorrelated to
b, a0,~a mod p1, which is the only information available from the public key.
Therefore, our distinguisher B can conclude that T ∈ Gp1p2 if and only if ei-
ther e(T, η1) 6= 1GT

or e(T, η2) 6= 1GT
. ut

Lemma 4. The adversary outputs a Type A forgery with negligibly different
probabilities in Game4.k and Game4.(k+1) if Assumption 2 holds.

Proof. Let us assume that a forger A has significantly better probability of
outputting a Type A forgery in Game4.(k+1) than in Game4.k. We outline a
distinguisher B that breaks Assumption 2 with non-negligible advantage.

Algorithm B takes as input (g,X1X2, Z3, Y2Y3, T) and uses its interaction
with A to decide if T ∈ G or T ∈ Gp1p3 . Recall that A must obtain Type
B signatures at her first k signing queries and Type A signatures at the last
q − k − 1 queries. We will simulate the interaction so that the kth-query will
be a Type A signature (hence Game4.k) if T ∈ Gp1p3 and a Type B signature
(hence Game4.(k+1)) if T ∈ G. We then show that the distinguisher B can indeed
distinguish whether A’s forgery will be of Type A or Type B with overwhelming
probability.

To this end, B prepares the public key pk by choosing α, b R← ZN , ai
R← ZN ,

for i = 0 to n, and setting u = gb, hi = gai for i = 0 to n. The public key
pk = {g, e(g, g)α, u, h0, h1, . . . , hn, Z3} is given to A. Then, B answers A’s queries
depending on the index j ∈ {1, . . . , q} of the query.

[Case j < k] To sign the jth vector space V (j) = span(~v(j)
1 , . . . , ~v

(j)
m) chosen

by A, B first chooses a random file identifier idj
R← I and a random exponent

r R← ZN . It then chooses w1, w2, {w3,i}mi=1
R← ZN , Z3, Z

′
3, {Z ′′3,i}mi=1

R← Gp3 . Let
id′j = H(idj , e(g, g)r). It finally computes a Type-B signature (σ1, σ2, {σ3,i}mi=1)
on V (j) as

σ1 = gα · (u · hid′j
0)r · (Y2Y3)w1 · Z3, σ2 = gr · (Y2Y3)w2 · Z ′3,

σ3,i = (g〈~a,~v
(j)
i 〉)r · (Y2Y3)w3,i · Z ′′3,i.

[Case j > k] In this case, A simply computes a Type A signature using the
private key gα as specified by the signing algorithm (except that, as in Game1,
r is chosen at random in ZN rather than as a pseudorandom value).

[Case j = k] To answer the kth private key query V (j) = span(~v(j)
1 , . . . , ~v

(j)
m), B

first picks a random file identifier idj
R← I. It then chooses w1, w2, {w3,i}mi=1

R←
ZN , Z3, Z

′
3, {Z ′′3,i}mi=1

R← Gp3 . It uses its input T to compute a hash value
id′j = H(idj , e(T, g)). It finally computes the signature (σ1, σ2, {σ3,i}mi=1) on the
subspace V (j) as

σ1 = gα · T b+a0id′j · Z3, σ2 = T · Z ′3, σ3,i = T 〈~a,~v
(j)
i 〉 · Z ′′3,i.

It is easy to observe that, in the situation where T ∈R G, if we let gx2 be the
Gp2 component of T for some x ∈ Z∗p2 , we obtain a Type B signature where
w1 = x(b + a0id

′
j) mod p2, w2 = x mod p2, and w3,i = x(〈~a,~v(j)〉) mod p2 for

i = 1 to m. In contrast, if T ∈R Gp1p3 , the above forms a Type A signature.

At the end of the game, A outputs a forgery σ? = (σ?1 , σ
?
2 , {σ?3,i}mi=1) and a

vector ~y? and a file identifier id? such that the property stated in the Game0

holds. That is either

– a forgery with id′? 6= id′j mod p2 for any j and ~y? 6= ~0.
– a forgery with id? = idj for some j and ~y? mod p2 6∈ V (j) mod p2.

At this stage, B halts and checks whether the forgery is of Type A or B. If the
forgery is of Type A, it returns 0 (meaning that T ∈R Gp1p3). If the forgery is
believed to be of Type B, B rather bets on T ∈R Gp1p2p3 and outputs 1.

In order to decide which kind of forgery A comes up with, B uses the input
value X1X2 as follows. The algorithm B computes id′

? = H(id?, e(σ?2 , g)) and

η1 =
σ?1

gα · σ?2
b+a0id′?

, η2 =

∏m
i=1 σ

?
3,i
yn−m+i

σ?2
〈~a,~y?〉 .

The Gp1 component of each term is canceled out due to equations (3)-(4). If
e(X1X2, η1) = 1 and e(X1X2, η2) = 1, then the algorithm B deduces that σ?

is of Type A. Otherwise, it is seen as a Type B signature. To see why this test
works with overwhelming probability, we note that, since σ? properly verifies,
it must be of the form of equation (7) with (w?1 , w

?
2 , w

?
3,1, . . . , w

?
3,m) so that we

have

e(X1X2, η1) = e(X2, g2)w
?
1−w

?
2 (b+a0id′?),

e(X1X2, η2) = e(X2, g2)
∑m

i=1 w
?
3,iyn−m+i−w?

2 (〈~a,~y?〉).

If σ? is of Type B, it can only be interpreted as a Type A signature if and
only if

w?1 − w?2(b+ a0id
′?) = 0 mod p2, and (9)

m∑
i=1

w?3,iyn−m+i − w?2(〈~a, ~y?〉) = 0 mod p2. (10)

We show that this occurs with negligible probability as follows.

– If the forgery is of the first class, that is id? 6= idj for any j ∈ {1, . . . , q},
then b + a0id

′? mod p2 is independent of A’s view which consists only of
b+ a0idk mod p2. Therefore equation (9) occurs with negligible probability.

– If the forgery is of the second class, that is ~y? mod p2 6∈ V (j) mod p2 for any j,
then 〈~a, ~y?〉 mod p2 is independently ofA’s view. Indeed, let us consider what
A knows in the information theoretic sense about the values (a1, . . . , an)

taken modulo p2. It amounts to the right-hand side of the following system
of linear equations:

—~v
(k)
1 —
...

—~v
(k)
m —


a1

...
an

 =

 t1
...
tm

 mod p2,

where we let gti2 be the Gp2 component of σ(k)
3,i . Since ~y? mod p2 6∈ V (k) mod

p2, ~y? is not in the row space of the above matrix. Therefore, 〈~a, ~y?〉 mod p2

is independently of A’s view. ut

Lemma 5. Any PPT algorithm A outputting a Type A forgery in Game4.q al-
lows breaking Assumption 3.

Proof. We outline an algorithm B that takes as input
(
g, gαX2, X3, g

sY2, Z2

)
and aims at computing T = e(g, g)αs using its interaction with A. To this end,
B generates the public key pk =

(
g, e(g, g)α, u, {hi}i=0,...,n, Xp3

)
by choosing

b, a0, . . . , an
R← ZN and setting Xp3 = X3, e(g, g)α = e(gαX2, g) as well as

u = gb and hi = gai for i = 0 to n.
When the forger A makes a private key query V (j) = span(~v(j)

1 , . . . , ~v
(j)
n),

B chooses id R← I, r R← ZN , w1, w2
R← ZN , R3, R

′
3, R

′′
3

R← Gp3 , w3,i
R← ZN ,

R3,i
R← Gp3 , for i = 1 to n. It defines id′ = H(id, e(g, g)r) ∈ ZN and computes

σ1 = (gαX2) · (u · hid′

0)r · Zw1
2 ·R3, σ2 = gr · Zw2

2 ·R′3,

σ3,i = (g〈a,~v
(j)
i 〉)r · Zw3,i

2 ·R3,i

which has the distribution of a Type B signature.
At the end of the game, A outputs a valid tuple of a file identifier id?, a

signature σ = (σ?1 , σ
?
2 , {σ?3,i}mi=1) of Type-A and a vector ~y?. Algorithm B then

computes

T = e
(
gsY2,

σ?1

σ?2
b+a0id′?

)
= e
(
gsY2,

gα · (gb+a0id′?)r · Z1

(grZ2)b+a0id′?

)
= e(g, g)αs.

where the second equation is due to lemma 1 (Z1, Z2 ∈ Gp2p3). Since σ is of Type
A signature, therefore σ?1 , σ

?
2 has no Gp2 component. Hence, the component Y2 is

canceled out in the pairing computation. This yields T = e(g, g)sα. To conclude,
in Game4.q, A’s advantage is thus negligible if Assumption 3 holds. ut

References

1. R. Ahlswede, N. Cai, S. Li, R. Yeung. Network Information Flow. In IEEE Trans.
on Information Theory 46, pp. 1204–1216, 2000.

2. S. Agrawal, D. Boneh. Homomorphic MACs: MAC-Based Integrity for Network
Coding. In ACNS’09, LNCS 5536, pp. 292–305, 2009.

3. S. Agrawal, D. Boneh, X. Boyen, D. Freeman. Preventing Pollution Attacks in
Multi-source Network Coding. In PKC’10, LNCS 6056, pp. 161–176, 2010.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS’93, pages 62–73, 1993.

5. D. Boneh, X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption With-
out Random Oracles. In Eurocrypt’04, LNCS 3027, pp. 223–238, 2004.

6. D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing. In SIAM
Journal of Computing 32(3), pp. 586–615, 2003, earlier version in Crypto’01, LNCS
2139, pp. 213–229, 2001.

7. D. Boneh, D. Freeman, J. Katz, B. Waters. Signing a Linear Subspace: Signature
Schemes for Network Coding. In PKC’09, LNCS 5443, pp. 68–87, 2009.

8. D. Boneh, M. Hamburg. Generalized Identity Based and Broadcast Encryption
Schemes. In Asiacrypt’08, LNCS 5350, pp. 455–470, 2008.

9. D. Charles, K. Jain, K. Lauter. Signatures for Network Coding. In 40th Annual
Conference on Information Sciences and Systems (CISS’06).

10. C. Fragouli, E. Soljanin. Network Coding Fundamentals. Now Publishers Inc.,
Hanover, MA, USA, 2007.

11. D. Freeman. Converting Pairing-Based Cryptosystems from Composite-Order
Groups to Prime-Order Groups. In Eurocrypt’10, LNCS 6110, pp. 44–61, 2010.

12. R. Gennaro, J. Katz, H. Krawczyk, T. Rabin. Secure Network Coding over the
Integers. In PKC’10, LNCS 6056, pp. 142–160, 2010.

13. C. Gkantsidis, P. Rodriguez. Network Coding for Large Scale Content Distribution.
In IEEE INFOCOM, 2005.

14. T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, D. Karger. Byzantine Mod-
ification Detection in Multicast Networks using Randomized Network Coding. In
International Symposium on Information Theory (ISIT) pp. 144–152, 2004.

15. S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Médard, M. Effros. Resilient
Network Coding in the Presence of Byzantine Adversaries. In IEEE Trans. on
Information Theory vol. 54, pp. 2596–2603, 2008.

16. M. Krohn, M. Freedman, D. Mazieres. On-the-fly Verification of Rateless Erasure
Codes for Efficient Content Distribution. In IEEE Symposium on Security and
Privacy, pp. 226–240, 2004.

17. A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In TCC 2010, LNCS 5978, pp. 455-479,
Springer, 2010.

18. S.-Y.-R. Li, R.-W. Yeung, N. Cai. Linear Network Coding. In IEEE Trans. on
Information Theory vol. 49, pp. 371–381, 2003.

19. Y. Li, H. Yao, M. Chen, S. Jaggi, A. Rosen. RIPPLE Authentication for Network
Coding. In IEEE INFOCOM 2010, 2010.

20. R. Johnson, D. Molnar, D. Song, D. Wagner. Homomorphic Signature Schemes.
In CT-RSA’02, LNCS 2271, pp. 244–262, 2002.

21. B. Matt. Identification of Multiple Invalid Signatures in Pairing-Based Batched
Signatures. In PKC’09, LNCS 5443, pp. 337–356, 2009.

22. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Crypto’84,
LNCS 196, pp. 47–53, 1984.

23. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Eurocrypt’05, LNCS 3494, pp. 114–127, 2005.

24. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In Crypto’09, LNCS series, 2009.

25. F. Zhao, T. Kalker, M. Médard, K. Han. Signatures for Content Distribution with
Network Coding. In International Symposium on Information Theory (ISIT), 2007.

