
Identity-Based Aggregate and Multi-Signature
Schemes based on RSA

Ali Bagherzandi and Stanis law Jarecki

Department of Computer Science, University of California, Irvine
{zandi,stasio}@ics.uci.edu.

Abstract. We propose new identity-based multi-signature (IBMS) and
aggregate signature (IBAS) schemes, secure under RSA assumption. Our
schemes reduce round complexity of previous RSA-based IBMS scheme
of Bellare and Neven [BN07] from three to two rounds. Surprisingly, this
improvement comes at virtually no cost, as the computational efficiency
and exact security of the new scheme are almost identical to those of
[BN07]. The new scheme is enabled by a technical tool of independent
interest, a class of zero-knowledge proofs of knowledge of preimages of
one-way functions which is straight-line simulatable, enabling concur-
rency and good exact security, and aggregatable, enabling aggregation of
parallel instances of such proofs into short multi/aggregate signatures.

1 Introduction

A multisignature protocol allows a group of players to sign the same message by
generating a short string, called a multisignature, which can be verified against
the set of the public keys of these players. Aggregate signature is a generaliza-
tion of this notion to the case where each player signs a potentially different
message. Such schemes reduce the bandwidth needed to transmit signatures, the
space needed to store them, and the time needed to verify them, from linear
in the number of the cosigners to a constant. Reducing bandwidth is especially
important for low-energy devices, such as RFID chips and sensors, which com-
municate over energy-consuming wireless channels where data transmision con-
sumes several orders of magnitude more energy than arithmetic operations (see
e.g. [BA03]). Standard multi-/aggregate signatures reduce the space taken by
n signatures from O(n) to O(1), but the verifiers still need the public keys of
n signers. Therefore in applications where bandwidth is a bottleneck it can be
useful to consider identity-based multi-/aggregate signatures where verifiers only
need unique identifiers of signers, e.g. 32-bit IP addresses, instead of public keys.

Identity-Based (Multi-/Aggregate) Signatures: Identity-based cryptog-
raphy [Sha84] simplifies public key management by replacing users’ public keys
with their identity e.g. their names, e-mails or IP addresses. In identity-based
scheme a trusted party, a Private Key Generator (PKG), generates a private key
corresponding to each user’s identity, and messages signed using such keys can
be then verified using the signer’s identity and the PKG’s master public key. In

2 LATEX style file for Lecture Notes in Computer Science – documentation

the case of identity-based multi-/aggregate signatures, if all signers have their
private keys issued by the same PKG then the verifier needs only the PKG’s
master public key and the identities of all signers. Note that in many applica-
tions the identities of signers are often present in the protocol messages, e.g. the
usernames or IP addresses in packet headers, in which case an identity-based
multi-/aggregate signature adds only a constant bandwidth overhead over un-
authenticated messages.

Current State of the Art: Standard signatures imply identity-based signa-
tures following the “certification paradigm”, e.g. [GHK06], i.e. by simply at-
taching signer’s public key and certificate to each signature. However, it is not
clear how to apply this idea to convert standard multi-/aggregate signatures, e.g.
[BN06,BCJ08], into identity-based ones, because it is not clear how to aggregate
n separate public keys and certificates, even if all certificates are signed by the
same CA. (Standard aggregate signatures can be used to eliminate the overhead
of CA’s signatures on the certificates, but this would not eliminate the overhead
due to the public keys.)

The first efficient IBAS/IBMS schemes designed from scratch are due to Gen-
try and Ramzan [GR06]. Their schemes employ a group with a bilinear map,
their security relies, in the Random Oracle Model (ROM), on the hardness of
GapDH problem, the schemes are non-interactive, and both the signing and veri-
fication times take O(1) exponentiations and bilinear map operations. However,
the IBAS scheme of [GR06] requires all cosigners to share a common token for
every set of signatures they want to aggregate, and each cosigner must ensure
that this token has not been previously used in signing a different message, hence
in some applications this scheme will need an extra communication round for the
participants to agree on a fresh common token. In subsequent work, Boldyreva
et. al [BGOY10] (correcting a previous version of this paper) proposed an IBAS
scheme which does not need these unique tokens but it requires sequential com-
munication pattern, and it is based on a more complex bilinear map assumption.
Note that while sequential communication is perfectly suited to some applica-
tions, e.g. secure route discovery [KT05], it introduces unnecessary overhead for
players connected e.g. by a broadcast channel or a tree topology.

Without bilinear maps, Bellare and Neven [BN07] gave an IBMS scheme
which relies on the RSA assumption in ROM. Their scheme also has fast multi-
signature generation and verification, requiring O(1) exponentiations, but it
takes three rounds of interaction. Note that any 3-round IBMS implies a 4-
round IBAS if all cosigners’ messages are broadcast and the IBMS scheme is run
on their concatenation. (Moreover, in the IBMS scheme of [BN07] this broadcast
can be piggybacked on the first protocol round, giving a 3-round IBAS scheme.)
However, such broadcast of all messages to all co-signers imposes bandwidth
usage which might not be otherwise required, and so apart from this generic
transformation it is interesting to consider IBAS schemes which do not require
such broadcast. (As a side remark, we believe that the 3-round IBMS scheme of
[BN07] can be modified to a 3-round IBAS scheme without such broadcast, e.g.
using ideas similar to our IBAS scheme [BJ10].)

LATEX style file for Lecture Notes in Computer Science – documentation 3

IBAS/IBMS Underlying Restr- Number Verification Signing Signature

Schemes Problem(1) ictions(2) of Rounds Time(3) Time(3) Length(4)

[GR06]-IBAS GapDH Stateful 1 3P+nM 5M 2|G1|+ κ
[BGOY10] GapDH Sequential 1 6P+nM 7M 3|G|
OUR IBAS RSA - 2 nE 2E |Z∗n|+ 2κ + log l

[GR06]-IBMS GapDH - 1 3P 3M 2|G1|
[BN07] RSA - 3 1E 2E |Z∗n|+ κ

OUR IBMS RSA - 2 1E 2E |Z∗n|+ 2κ + log l

Fig. 1. (1) All schemes have been given security proofs only in the ROM model; (2)
The IBAS scheme of [GR06] assumes that the players share a unique and common token
for every instance of the IBAS scheme. This requirement can be avoided at the cost of
an additional round of interaction, while the scheme of [BGOY10] requires sequential
aggregation; (3) Signing time is measured per player. In both signing and verification
costs, P is the cost of one pairing operation, M is the cost of scalar multiplication on
an elliptic curve, and E is the cost of (multi-)exponentiation in Z∗n (with about 80-bit
exponents); (4) Signature length is measured in bits where κ is the security parameter,
n is an RSA modulus, l is an upper bound on the number of players, G1 and G2 are
two groups of elliptic curve points with an asymmetric bilinear map, G is a group of
elliptic curve points with a symmetric bilinear map, and |A| stands for the bitsize of
representation of elements in group A. Typical values for these parameters are κ = 160,
|G1| = 160, |G| = 512, log l = 20, and |Z∗n| = 1024 or 2048.

Our Contributions: We propose IBMS and IBAS schemes secure under RSA
assumption in ROM which require only two rounds of communication. This
provides alternatives to IBMS/IBAS schemes based on bilinear maps especially
in applications which intrinsically take two communication rounds, such as au-
thenticated route discovery or aggregation of broadcast acknowledgements. Since
bilinear map operations are still more expensive than RSA exponentiation, our
computational costs are slightly lower in signing and significantly lower in verifi-
cation, compared to e.g. [GR06], although our signatures are longer. A summary
of these comparisons is in Figure 1.

Further Related Work: Gregory Neven introduced two primitives, sequen-
tial aggregate signed data and multi-signed data, corresponding to aggregate sig-
natures and multisignatures respectively, whose goal is to minimize the total
bandwidth consumed by signatures and messages incurred in transmission of
authenticated data originated by multiple sources [Nev08]. His constructions use
message recovery techniques to squeeze message bits into a (multi/aggregate) sig-
nature. Comparing his work to ours, we note that (1) his schemes support only
sequential aggregation when signing different messages; (2) bandwidth savings
depend on message sizes (for small messages the bandwidth can be worse than
with standard signatures); (3) these schemes do not address the overhead due to
public keys, which raises an interesting question whether total bandwidth due to
signatures and messages can be further reduced, perhaps using message-recovery
techniques, with identity-based multi/aggregate signatures. In other related work
Herranz and Galindo et. al [Her06,GHK06] show identity-based signatures which
can be aggregated if they originate from the same signer.

4 LATEX style file for Lecture Notes in Computer Science – documentation

Organization/Roadmap: Section 2 contains a technical overview of our con-
structions. In Section 3 we define IBMS schemes. (We relegate a formal de-
scription of IBAS schemes to [BJ10].) In Section 4 we develop our tools, namely
we introduce structured-instance zero-knowledge (ZK) proofs and Σ-equivocable
commitments and we show that Σ-equivocable commitments suffice to compile a
class of Σ-protocols which includes an RSA-based identification protocol, a proof
of knowledge of e-th root, to straight-line simulatable structured-instance ZK. In
Section 5 we show homomorphic Σ-equivocable commitments secure under RSA.
By the results from Section 4 this implies an aggragatable structured-instance ZK
proof of knowledge of e-th root, which leads to an IBMS scheme construction,
described in Section 6, and an IBAS scheme sketched in Section 7.

2 Technical Overview

Our IBAS/IBMS scheme is a multi-prover version of Guillou-Quisquater signa-
ture [GQ88]. The ID-based version of GQ signature is a non-interactive zero-
knowledge (NIZK) proof of knowledge (PK) of e-th root modulo n (in ROM).
Let y = H(ID) be an element in Z∗n and let x be the e-th root of y, a private
key corresponding to identity ID. (Such private key can be computed the PKG
who knows the factorization of n.) To sign message m, the signer with iden-
tity ID follows the ROM-based NIZK PK of e-th root of y: It computes the
first proof message a = ke for random k in Z∗n, gets challenge c by querying
(m,a) to a hash function (modeled as random oracle), and computes response
z to this challenge as z = kxc. The signature is (a, z) verified by checking if
ze = ayc for c = H(m,a). Due to homomorphic property of exponentiation one
might hope to obtain an IBAS/IBMS scheme by aggregating such ROM-based
NIZK PK’s of e-th root made by several cosigners. For instance, consider the
two-round protocol built along the lines of the DL-based multisignature scheme
of [MOR01]: In the first round each player broadcasts its first message ai. All
players obtain a common challenge c by querying the hash function on input in-
cluding a =

∏
ai and the message being signed. Finally each player broadcasts

its response zi to this challenge. The multi-signature is (a, z) where z =
∏

zi.
Note that if ze

i = aiy
c
i for each i then (a, z) satisfies the verification equation

ze = a(
∏

yi)c where yi = H(IDi). We believe that an adaptation of the security
proof of [MOR01] would show security of this scheme, but the resulting security
argument would have several limitations: (1) The reduction would be only from
expected-time hardness of RSA problem; (2) It would encounter substantial se-
curity degradation due to extensive use of rewindings; (3) It would therefore not
extend to concurrent executions of multiple instances of this scheme.

To explain how we overcome these limitations we need to first explain why
they appear in the above draft scheme. The simulator for the NIZK PK of e-th
root picks a random challenge c and a random z in Z∗n, computes prover’s first
message as a = zey−c and defines the hash of (a,m) as c because it controls
the hash function H. Note that since the adversary has no information about a,
there is only a negligible chance that it queries H on the same (a,m) before the

LATEX style file for Lecture Notes in Computer Science – documentation 5

simulator attempts to define its value as c, and hence the simulator passes with
overwhelming probability. The fundamental difference between this simulation
and the simulation for aggregated proof in the draft scheme above is that in
the aggregated proof corrupt cosigners can choose their contributions ai on the
basis of ai’s broadcasted by the honest cosigners. Consequently, the simulator
can only guess the resulting a value with probability 1/qh where qh is the number
of hash queries the adversary makes. This gives rise to a simulation procedure
which rewinds the adversary expected qh times in each signature instance, which
causes all the limitations listed above: reduction to expected-time hardness, loose
security reduction, and no argument for security of concurrent protocol instances.

Bellare and Neven [BN07] showed how to overcome all these issues in the
ROM model by adding an extra communication round in which each player
first commits to its ai contribution by broadcasting a hash H(ai). By control-
ling the hash function H the simulator can learn the ai’s committed by the
adversary and then decide on the ai’s published on behalf of the honest players.
This way the simulator passes without rewinding with overwhelming probability,
similarly to the NIZK simulation sketched above. The main technical challenge
we handle in this work is how to achieve such straight-line simulation without
introducing such extra communication round, i.e. with only two rounds of in-
teraction. Our technique is a variant of Damgard’s HVZK-to-ZK compilation
[Dam00] which constructs a straight-line simulatable zero-knowledge proof from
any Σ-protocol using an equivocable commitment scheme, but we introduce an
interesting twist: In Damgard’s scheme a signer commits to its ai value using an
equivocable commitment scheme, and the simulator, on any challenge c can open
this commitments to the value ai = ze

i y
−c
i needed for the proof to verify (where

response zi is chosen at random, to match the response distribution in the real
proof). However, to create an IBMS/IBAS scheme by aggregating such proofs
we need this commitment scheme to be multiplicatively homomorphic, and to
the best of our knowledge no efficient commitment scheme is both equivoca-
ble and multiplicatively homomorphic. Instead, we show a commitment scheme
which is multiplicatively homomorphic over Z∗n and satisfies a restricted form
of equivocability which we call Σ-equivocability, and which suffices for straight-
line simulation of Σ-protocol compiled as above. For example, Σ-equivocable
commitment for relation R = {(x, y) | y = xe} allows for equivocation of com-
mitments to messages of the form zey−c for any c and z, and this is exactly the
form of message a which the simulator needs in the above proof.

The idea to use commitments with similarly restricted equivocability ap-
peared before in [BCJ08], where it was used to construct a straight-line simulat-
able and aggregatable proof of DL knowledge, and a DL-based multi-signature
scheme. However, the equivocability notion (and the construction) of [BCJ08]
gives rise to only single-instance zero-knowledge proofs. Intuitively, this suffices
for security of multi-signatures (as opposed to identity-based multi-signatures)
because in multi-signatures the adversary w.l.o.g. corrupts all players except of
one, so the simulator needs to embed its challenge problem in just one public
key, and needs to simulate multi-signature protocol on behalf of only that one

6 LATEX style file for Lecture Notes in Computer Science – documentation

player. Using this form of equivocation in security argument for identity-based
schemes would introduce security degradation by factor of qH , the number of
hash function queries, because the simulator would have to guess the single
identity into which to embed its challenge. Here we define a more general no-
tion of Σ-equivocability which allows for straight-line simulatable “structured
instance” zero-knowledge proofs in the CRS model: In structured-instance zero-
knowledge proofs, formalized in this paper, the simulator can simulate on any
statement in a class of related instances, in contrast to a single statement in
single-instance ZK and any instance in (standard) multi-instance ZK. The class
of instances which is particularly useful in showing a security reduction for an
IBMS/IBAS scheme based on Σ-protocol for proving knowledge of preimage of
function f(x) = xe are instances of the form y = ẙf(δ) where ẙ is the sim-
ulator’s challenge. In this way the simulator can embed its challenge into any
number of identities, picking random δ for each identity, and yet straight-line
simulate the proofs performed on behalf of all these entities in parallel. Thus
our main technical contribution is two-fold: First, we formalize the notion of
Σ-equivocability and apply it to a compilation from Σ-protocols to straight-
line simulatable structured-instance ZKPK (Section 4). Secondly, we construct
a multiplicatively homomorphic and Σ-equivocable commitment scheme based
on the RSA problem (Section 5). Together, these two parts immediately imply
the IBMS and IBAS schemes we present in this paper (Section 6 and Section 7).

3 Identity-Based Multi-/Aggregate Signature Schemes

We define the notion of identity-based multisignature scheme (IBMS) building
on the definitions given by [MOR01,BN06,GR06,BN07]. (Due to lack of space,
we relegate the extension of our definitions to IBAS schemes to the full version of
the paper [BJ10]). Our notion is more flexible than that of [BN07,MOR01,BN06]
because we do not require the set of participants’ identities as input to the
multi-/aggregate signature protocol. The participating players must be aware of
each other in the protocol execution, but this is needed only to ensure proper
communication, and the participant identities are not required as inputs to the
cryptographic protocol. The schemes secure in this setting provide flexibility
to applications of multi-/aggregate signatures because sometimes signers might
care only about the message they are signing and not about the identities of the
cosigners. Otherwise the list of cosigners can always be attached to the message
being signed.

Syntax of an IBMS Scheme: We define an identity-based multisignature as
IBMS = (Setup,KeyDer,MSign,Vrfy) where Setup, KeyDer and Vrfy are proba-
bilistic poly-time algorithms, and MSign is a distributed protocol executed by a
set of parties s.t.

– (mpk, msk) ← Setup(1κ), run by a trusted party, on input the security
parameter κ, generates master public key mpk and corresponding master
secret key msk.

LATEX style file for Lecture Notes in Computer Science – documentation 7

– skId ← KeyDer(msk, Id), run by a trusted party, on input master secret key
msk and an identity Id ∈ {0, 1}∗ provides a secret key skId to the user with
identity Id.

– MSign is a multisignature protocol run by a group of players who intend
to sign the same message m. Player with identity Id executes this protocol
on public inputs mpk and message m and private input skId which is his
own secret key. The local output of the protocol for every participant is a
multisignature denoted σ.

– {0, 1} ← Vrfy(mpk, m, IdSet, σ) verifies whether σ is a valid multisignature
on message m on behalf of the set of the identities IdSet.

In the random oracle model (ROM), KeyDer, MSign and Vrfy procedures addi-
tionally have access to a random oracle H(·) : {0, 1} → D, where D depends
on the scheme. This set of procedures must satisfy the following completeness
properties: For any integer n, any message m, and any (mpk, msk) output by
Setup(1κ), if for i = 1..n, one obtains skIdi ← KeyDer(msk, Idi) and correctly
follows MSign on input m using secret keys skIdi , then assuming all messages are
delivered between players, each player outputs the same string σ which satisfies
Vrfy(mpk, m, {Id1, ..., Idn}, σ) = 1.

Security Notion of an IBMS Scheme: We model the security as existential
unforgeability under an adaptive chosen message and adaptive chosen identity
attack: The adversary participates in a game in which it issues a number of
key derivation and signature queries. In a key derivation query, the adversary
corrupts a player by submitting its identity Id to the key derivation oracle and
receiving its secret key skId. In a signature query the adversary specifies the
message m and the identity Id that it wants to interact with; and the signing
oracle performs MSign protocol on message m on behalf of Id. The adversary
wins the game if it eventually outputs a message m, a multisignature σ and a set
of identities IdSet s.t. Vrfy(mpk, m, IdSet, σ) = 1 and there exists an identity
Id s.t., the adversary never queried the key derivation oracle on Id and never
queried the signing oracle on (m, Id). More formally we define the adversarial
advantage of A against IBMS = (Setup,KeyDer,MSign,Vrfy) as a probability
that experiment Expuu−cma

IBMS (A) described in Figure 2 outputs 1 i.e.

Advuu−cma
IBMS (A) = Pr[Expuu−cma

IBMS (A) = 1]

where the probability goes over the random coins of the adversary and all the
randomness used in the experiment. We call an IBMS scheme (t, ε, n, qK , qS)-
secure if Advuu−cma

IBMS (A) ≤ ε for every adversary A that runs in time at most t,
makes at most qK key derivation queries and at most qS signature queries, and
produces a forgery on behalf of at most n parties. In the random oracle model
we extend this notion to (t, ε, n, qK , qS , qH)-security, where A is additionally
restricted to at most qH hash queries and the probability in the experiment
Expuu−cma

IBMS (A) goes also over random choice of a hash function.

8 LATEX style file for Lecture Notes in Computer Science – documentation

Experiment Expuu−cma
IBMS (A)

− (mpk, msk)← Setup(1κ); MIdLst← ∅; CIdLst← ∅;
−Run A(mpk), and handle A’s key derivation and signature queries as follows:

−On a key derivation query on identity Id, add Id to CIdLst, run KeyDer on input

(msk, Id) and return skId to A.

−On a signing query on pair (m, Id), add (m, Id) to MIdLst, run MSign protocol

on behalf of identity Id on message m forwarding messages to and from A.

−When A halts, parse its output as (m, IdSet, σ).

− If (Vrfy(mpk, m, IdSet, σ)=1)∧(∃ Id∈IdSet s.t. (Id /∈CIdLst)∧((m, Id) /∈MIdLst))

then return 1, otherwise return 0.

Fig. 2. Chosen Message Attack against an Identity-Based Multisignature Scheme

4 Σ-Equivocable Commitments and Structured-Instance
Zero-Knowledge

Homomorphic Σ-Protocols: Σ-protocol, a notion introduced by Cramer,
Damgard and Schoenmakers [CDS94], is a three-move proof system with spe-
cial honest-verifier zero-knowledge (HVZK) and strong soundness properties. Let
R = {(x, y)} be a relation whose membership can be verified in polynomial time.
We consider a special case where X and Y are algebraic groups (for notational
simplicity we use multiplicative notation for both), and R = {(x, f(x)) |x ∈ X}
where f : X → Y is a homomorphic one-way function. We consider a proof of
knowledge system for relation R which we call homomorphic Σ-protocol (for R):
The prover, on input x ∈ X, sends a = f(k) where k

r← X. The verifier, on input
y ∈ Y , creates a challenge c as a random κ-bit string, and the prover responds
with z = kxc. The verifier accepts iff f(z) = ayc. This is a form of several Σ-
protocols for known homomorphic one-way functions, e.g. Guillou-Quisquater
identification scheme [GQ88] for a power function fe,n(x) = xe mod n and
Schnorr’s scheme [Sch89] for exponentiation fg,p(x) = gx mod p. The special
HVZK property of a Σ-protocol says that there exists an efficient simulator
which on input y computes pair (a, z) for any c with the distribution matching
that of the prover. The special strong soundness says that there exists an effi-
cient extractor which computes witness x s.t. (x, y) ∈ R for any y from any pair
of accepting conversations (a, c, z) and (a, c′, z′) s.t. c 6= c′.

Structured-Instance Zero-Knowledge: Multi-instance zero-knowledge (ZK)
(a.k.a. multi-theorem ZK) in common reference string (CRS) model requires a
two-phase probabilistic poly-time simulator s.t. (1) in the first phase, given public
parameters, the simulator outputs the CRS string together with some trapdoor
information; (2) In the second phase, given a statement and the trapdoor, simu-
lator outputs the simulated proof for that statement. In the single-instance ZK,
the simulator knows the statement beforehand and can set the CRS string as a
function of this particular statement. Structured instance zero-knowledge proof
for relation R introduced above is an intermediary notion: The simulator is given

LATEX style file for Lecture Notes in Computer Science – documentation 9

a “core statement” ẙ ∈ Y before it sets the CRS string, and then it can simulate
the proof for statement y = ẙ · f(δ) for any δ ∈ X. Here is the formal definition:

Definition 1. Let X and Y be algebraic groups and f : X → Y be a surjective
homomorphic one-way function, all indexed by a public parameter par. Let Π =
(G,P,V) be a proof system in CRS model for relation R = {(x, y) ∈ X × Y | y =
f(x)} where G is an algorithm that outputs the common reference string. We
say that Π is straight-line ε-structured-instance zero-knowledge if there exist
efficient algorithms S1,S2 s.t. S1 on input par and a core instance ẙ ∈ Y , outputs
the CRS string σ and trapdoor td, while S2 on input td and a “witness-shift”
δ ∈ X outputs a simulated proof π̃ for instance y = ẙf(δ), and for all (̊x, ẙ) ∈
X × Y s.t. f (̊x) = ẙ the following two properties hold:

1. Statistical difference between the following two distributions is at most ε:

{σ | (σ, td)← S1(par, ẙ)}
{σ | σ ← G(par)}

2. ∀ verifier V∗ and ∀δ ∈ X, the following two distributions are identical:

{π̃ | π̃ ← V∗(y, σ)S2(td,δ,σ); (td, σ)← S1(par, ẙ); y ← ẙf(δ)}
{π | π ← V∗(y, σ)P(x,y,σ); σ ← G(par); y ← ẙf(δ); x← x̊δ}

Commitment Schemes: A commitment scheme C in the CRS model consists of
probabilistic poly-time algorithms CSetup, CKG, Com and Open. CSetup on input
the security parameter κ, generates public parameters cpar, which also determine
the commitment message space M. CKG(cpar) generates the commitment key
K , ComK (m) generates the commitment C and the decommitment D on message
m ∈M, and finally OpenK (C, D, m) determines if D is a valid decommitment of
commitment C to message m. A commitment scheme must satisfy that if cpar←
CSetup(1κ), K ← CKG(cpar), and (C, D) ← ComK (m), then OpenK (C, D,m) =
1. Below we define statistical hiding and computational binding properties of
commitments because these will be variants of these notions which our scheme
satisfies.

ε-Hiding: For all cpar ← CSetup(1κ), m0,m1 ∈ M, and K ← CKG(cpar),
there is less than ε statistical difference between the distribution of C’s output
by ComK (m0) and the distribution of C’s output by ComK (m1). A commitment
scheme is perfectly hiding if ε = 0.

(t, ε)-Binding: For any algorithm A running in time t and any cpar output by
CSetup(1κ), the probability of OpenK (C, D0,m0) = OpenK (C, D1,m1) = 1 and
m0 6= m1 is less than ε where (C, D0, D1,m0,m1) is outputted by A on input K
and K ← CKG(cpar) and probability is over the coins of CKG and A.

Notation: In this paper we only deal with the commitment schemes in which
the commitment is a deterministic function of the message and the decommit-
ment. Therefore we assume there exist a decommitment space denoted as R and
the Com procedure picks decommitment D

r← R and computes the commitment
C as the deterministic function of m and D.

10 LATEX style file for Lecture Notes in Computer Science – documentation

Σ-Equivocable Commitments: A commitment scheme is equivocable if there
exists an efficient simulator that generates commitment key K , indistinguishable
from real key, together with a trapdoor td. The trapdoor allows simulator to cre-
ate fake commitments indistinguishable from real ones, and later decommit them
to any message. Using equivocable commitments, one can compile a Σ-protocol
to a multi-instance ZK proof system with straight-line simulation [Dam00]. Here
we define a rather restrictive form of equivocability called Σ-equivocability and
we show that it is sufficient for compiling Σ-protocols into structured-instance
ZK proofs with straight-line simulation. It turns out that structured-instance ZK
is sufficient for our application of ZK proofs to multi-/aggregate signatures and
multi-instance ZK is not required. Moreover the straight-line simulatability of
this system allows us to have multi-/aggregate schemes with concurrency, better
exact security and with improved round complexity.

Definition 2. Let X and Y be algebraic groups and let f : X → Y be a ho-
momorphic one-way function, all indexed by a commitment parameter cpar. We
call a commitment scheme ε-Σ-equivocable for f if there exist probabilistic poly-
time algorithms tdCKG, tdCom, and RstEquiv, where (K , td) ← tdCKG(cpar, ẙ),
(C̃, st) ← tdComK (td), and (D̃, z) ← RstEquivK (td, st, c, δ), s.t. for any cpar
output by CSetup and any ẙ ∈ Y the following properties hold:

1. There is at most ε statistical difference between the distribution of K ’s output
by CKG(cpar) and K ’s output by tdCKG(cpar, ẙ).

2. For all (K , td)← tdCKG(cpar, ẙ), δ ∈ X, and c ∈ {0, 1}κ, if (C̃, st) is output
by tdComK (td) and (D̃, z) is output by RstEquivK (td, st, c, δ) then D̃ is dis-
tributed as random decommitment in R and OpenK (C̃, D̃, f(z)(ẙf(δ))−c)=1.

Intuitively definition 2 says that the equivocation procedure, given (ẙ, c, δ),
can open a fake commitment to a message of the form a = f(z)(ẙf(δ))−c for
some z. This is useful in straight-line simulation of a proof of knowledge for re-
lation R = {(x, y) ∈ X × Y | y = f(x)}. For example, let f : QRn → QRn where
f(z) = ze (mod n). Consider the HVZK simulator of the Σ-protocol for prov-
ing knowledge of e-th root: This simulator picks random c and z and computes
prover’s first message a = zey−c. Below we show that Damgard’s compilation
[Dam00] (see Figure 3 below) transforms such Σ-protocol to structured-instance
zero-knowledge using only such Σ-equivocable commitments, because the simu-
lator can output a fake commitment and then open it to what the Σ-protocol
simulator would output as the prover’s first message i.e. a = zey−c. Definition 2
implies that a fake commitment can be opened to a = ze(ẙδe)−c for any δ and
c. Hence the structured-instance zero-knowledge simulator can use this property
to simulate a proof for any instance y = ẙδe where ẙ is set before the simulator
creates the CRS string (see theorem 1).

Homomorphic Commitments: We call a commitment scheme multiplica-
tively homomorphic if there are efficiently computable operations ⊗ and ⊕ s.t. if
OpenK (C1, D1,m1) = 1 and OpenK (C2, D2,m2) = 1, then OpenK (C, D, m) = 1

LATEX style file for Lecture Notes in Computer Science – documentation 11

for C = C1 ⊗ C2, D = D1 ⊕ D2, and m = m1m2. Accordingly, a commitment
scheme is l-restricted multiplicatively homomorphic if the homomorphic oper-
ation can be applied on only l commitment-decommitment pairs generated by
Com procedure. Our construction is l-restricted multiplicatively homomorphic.

Common Reference String:
Commitment Key K of Σ-Equivocable Commitment Scheme

Prover P (x) s.t. x ∈ X, f(x) = y Verifier V (y) s.t. y ∈ Y

k
r← X, a← f(k)

(C, D)← ComK (a)
C //
coo c

r← {0, 1}κ

z ← kxc
z , D // acc iff OpenK (C, D, f(z)y−c) = 1

Fig. 3. Straight-line simulatable structured-instance ZKPK of pre-image of f

Structured-Instance Zero-Knowledge from Homomorphic Σ-Protocol:
Figure 3 shows a construction of a straight-line simulatable structured-instance

zero-knowledge proof of knowledge system, in the CRS model, from homomor-
phic Σ-protocol and Σ-equivocable commitment. This is an identical construc-
tion to Damgard’s compiler from Σ-protocol to ZKPK proof [Dam00]. Below
we show that using only Σ-equivocable commitments the same compilation pro-
duces structured-instance zero-knowledge proof given homomorphic Σ-protocol.
As in [Dam00] the resulting protocol is an argument of knowledge, subject to
the binding property of the commitment scheme.

Theorem 1. Let X and Y be algebraic groups, f : X ← Y a homomorphic
one-way function, C a Σ-equivocable commitment over message space M ⊆ Y .
Then the protocol in figure 3 is a straight-line simulatable structured-instance
zero-knowledge proof of knowledge of pre-image of f in the CRS model.

Proof. The straight-line simulator S = (S1,S2), for structured-instance zero-
knowledge proof acts as follows: In the first phase, given cpar and ẙ ∈ Y , S1

runs tdCKG(cpar, ẙ) to obtain (td,K) and sets the common reference string σ as
K . In the second phase, given td and witness shift δ ∈ X, S2 runs tdComK (td)
to obtain the fake commitment C̃ and state st and sends C̃ to the verifier. Upon
receiving the challenge c from the verifier, S2 runs RstEquivK (td, st, ẙ, δ) to get
the response z and fake commitment D̃. According to Σ-equivocability property
(definition 2) it immediately follows that S satisfies conditions in definition 4.

12 LATEX style file for Lecture Notes in Computer Science – documentation

5 Aggregatable Zero-Knowledge Proof of Knowledge of
e-th Root

Safe RSA Assumption: Since our construction relies on two related instances
of RSA cryptosystems which share same RSA modulus n but use two different
public exponents e and e′, it is convenient for us to use the following notation for
RSA instance generation: We call an algorithm KGsRSA a safe RSA generator if
on input security parameter κ and a prime e s.t. 2κ ≤ e ≤ 22κ, KGsRSA generates
a pair (n, d) where (1) n = pq s.t. p = 2p′+ 1, q = 2q′+ 1 and p, q, p′ and q′ are
all prime numbers s.t. |p′| = |q′| and p′, q′ > 22κ and (2) d = e−1 mod φ(n). For
later use we define n′ = p′q′. The advantage of an algorithm A in breaking the
RSA(e) problem is defined as

Advow RSA
KGsRSA,A,e(κ) = Pr[xe n≡ y | (n, d) r←KGsRSA(κ, e); y r←Z∗n; x r←A(n, e, y)] (1)

We say algorithm A, (t, ε)-breaks the RSA(e) problem on security parameter κ
if A runs in time at most t and Advow RSA

KGsRSA,A,e(κ) ≥ ε. We say that the RSA(e)
problem is (t, ε)-hard (for security parameter κ) if no algorithm A, (t, ε)-breaks
it. We note that the requirement that p′, q′ > 22κ is just a lower-bound we
introduce to enable any party to choose “secondary” public exponent e′ s.t.
gcd(e′, φ(n)) = 1 and e′ > le where l is a maximum number of participants in
any single instance of the multi-signature scheme.

5.1 RSA-based Multiplicatively Homomorphic Σ-Equivocable
Commitment

Let e and e′ be two prime numbers s.t. 2κ ≤ e, e′ ≤ 22κ and e ≤ e′/l for
some integer l and let (n, d) be output by KGsRSA(κ, e). This assures that both
(n, e) and (n, e′) are safe RSA instances. We describe an efficient commitment
scheme, which is computationally binding under the RSA(e′) assumption, has l-
restricted multiplicatively homomorphic property on message space M = QRn,
and is Σ-equivocable for f(x) = xe (mod n). Curiously, this commitment is
statistically hiding only for the messages picked from a specific subset of the
message space, but in our application of this commitment scheme to straight
line simulatable ZKPK of e-th root, standard hiding property is not necessary,
and Σ-equivocability property for the above function is sufficient.

– CSetup(κ): Pick prime numbers e and e′ s.t. 2κ ≤ e, e′ ≤ 22κ and e ≤ e′/l.
Run KGsRSA on input (κ, e) to obtain (n, d). Set cpar← (n, e, e′).

– CKG(n, e, e′): Pick h
r← QRn and set K ← (n, e, e′, h). Note that it is easy

to sample random elements in QRn by squaring a random element in Z∗n.
– ComK (m): Pick r

r← Ze and set C ← hrme′ and D ← r . (Hence the
decommitment space is Ze.)

– OpenK (C, r,m): Accept iff C = hrme′ and 0 ≤ r < e′.
– tdCKG((n, e, e′), ẙ): Pick γ

r← [n], and set h ← (ẙ)γe′ , K ← (n, e, e′, h), and
td← (γ, ẙ).

– tdComK (td): Pick s
r← Ze and return (C̃, st) where C̃ = (ẙ)e′s and st = s.

LATEX style file for Lecture Notes in Computer Science – documentation 13

– RstEquivK (td, st, c, δ): Compute r = (s + c)γ−1 (mod e) and i = (s + c −
γr)/e (over integers) and return (r, z) where z = (ẙ)i(δ)c.

Statistical Hiding: This commitment scheme is ε-hiding for the messages
picked from M̃ ⊂ QRn where M̃ = {hi(e′)−1 |i ∈ [εe/2]} and h is determined by
the commitment key. To argue this note that the maximum statistical difference
between the distributions of the commitments to m0,m1 ∈ M̃ happens when
they correspond to i = 0 and i = εe/2 respectively. This way the distributions
of the commitments would be {hr}

r
r←[e]

and {hr+εe/2}
r

r←[e]
respectively which

has a statistical difference equal to ε.
Computational Binding: This commitment scheme is (t, ε)-binding if RSA(e′)
problem is (t, ε)-hard. Indeed given the challenge (n, e′, h), one can use the at-
tacker on binding to find the e′-th root of h. The reduction runs the binding at-
tacker to obtain (C, r,m, r′,m′) s.t. OpenK (C, r,m) = OpenK (C, r′,m′) = 1 and
m 6= m′. Since C = hrme′ = hr′m′e

′
it follows that hr−r′ = (m′/m)e′ . Now since

r, r′ < e′, then gcd(e′, r−r′) = 1 and using extended Euclidian algorithm one can
compute α, β s.t. α(r − r′) + βe′ = 1. Thus h = hα(r−r′)+βe′ = ((m′/m)αhβ)e′

and e′-th root of h can be computed as (m′/m)αhβ .
l-Restricted Multiplicative Homomorphism: This commitment scheme is
multiplicatively homomorphic on QRn in the sense that up to l ≤ be′/ec mes-
sages can be combined: If {(Ci, ri)}i=1..l are commitment-decommitment pairs
for messages m1, ...,ml ∈ QRn each computed by the commitment procedure,
then r =

∑l
i=1 ri(over integers) is a valid decommitment for commitment C =∏l

i=1 Ci for message m =
∏l

i=1 mi. Note that by setting e′ ≥ e2κ, homomor-
phism can be used on any feasible set of messages.
Σ-Equivocability: This commitment scheme is 2−2κ-Σ-equivocable for func-
tion (family) f(n,e)(x) = xe (mod n). First note that for every (n, e, e′) output
by CSetup and every ẙ ∈ QRn s.t. ẙ is a generator of QRn, the distributions of
keys generated by CKG(n, e, e′) and tdCKG((n, e, e′), ẙ) are at most 2−2κ apart,
because CKG chooses the key h as a random element in QRn while tdCKG picks
h = (ẙ)e′γ for e′ s.t. gcd(e′, φ(n)) = 1 and γ chosen at random in [n]. More-
over the statistical difference between [n] and [4n′] is equal to 1− 4n′/n < 22κ.
Secondly, if ẙ is a generator of QRn then for every γ ∈ [n], every δ ∈ QRn

and every c ∈ {0, 1}κ, according to the code of tdCom and RstEquiv, r, z satisfy
s+c = γr+ie and z = (ẙ)i(δ)c, therefore for m = ze(ẙ(δ)e)−c we have C̃ = hrme′ ,
and hence Open(C̃, r,m) = 1. Moreover the distribution of the decommitments
in the equivocation process i.e. {r̃|s r← Ze; r̃ ← (s + c)γ−1 (mod e)} is identical
to uniform distribution over Ze.

Corollary 1. Consider prime number 2κ ≤ e ≤ 22κ and let n be a safe RSA
modulus output by KGsRSA on input e and security parameter κ. Consider com-
pilation shown in figure 3 and let the function (family) f be f(n,e) : QRn → QRn

s.t. f(n,e)(x) = xe (mod n) and let the compilation be instantiated with the
commitment scheme described in this section. Then from theorem 1, it imme-
diately follows that the resulting scheme is a straight-line structured-instance
zero-knowledge proof of knowledge of e-th root.

14 LATEX style file for Lecture Notes in Computer Science – documentation

6 Identity-Based Multisignature Scheme Based on RSA

We describe our IBMS scheme based on the RSA assumption. The scheme takes
two communication rounds, requires two double-exponentiations per party for
signing and one triple-exponentiation for verification. The scheme is based on the
GQ ID-based identification protocol [GQ88], which is the Σ-protocol for prov-
ing knowledge of e-th root. Each party simply executes the aggregatable zero-
knowledge proof of e-th root of its (hashed) identity string, using the straight-
line simulatable aggregatable ZKPK of e-th root described in Section 5. Figure 4
contains the Setup, KeyDer, MSign and Vrfy algorithms for this IBMS scheme.

Note on multi-signature length: In Figure 4 the final multi-signature is a tu-
ple (z, C, D) where z ∈ Z∗n and (C, D) ∈ Z∗n×Ze is a commitment-decommitment
pair on message a = ze(ẙ)−c. However this commitment can be computed as a
deterministic function of the committed message a and the decommitment D
(see Section 4). Therefore C can be computed given (z, c, D), and hence one can
use (z, c, D) as the final multi-signature, which reduces the multi-signature size
to |Z∗n|+ |Ze|+ κ < |n|+ 2κ + log l.

Theorem 2. If RSA(e) and RSA(e′) problems are (t′, ε′)-hard, and the IBMS
scheme in figure 4 is instantiated with commitment scheme in section 5, which is
(tB , εB)-binding and εE-Σ-equivocable for function f(n,e)(x) = xe (mod n), then
the resulting IBMS scheme is (t, ε, n, qk, qs, qh)-secure in random oracle model
where

t ≥ 1
2

min(t′, tB)− (3qs + qh)texp

ε ≤ 4qk

√
(ε′ + εB + εE)qh +

(qh

2κ+1

)2

+
qkqh

2κ−1
+ εE

and texp is the time of one exponentiation in Z∗n.

Proof. Let C = (CKG,Com,Open, tdCKG, tdCom,RstEquiv) be a commitment
scheme for public parameters cpar = (n, e, e′) and the message spaceM equal to
QRn. Assume C is l-restricted multiplicatively homomorphic, (tB , εB)-binding
and εE-Σ-equivocable for f(e,n)(x) = xe (mod n). Given a (t, ε, n, qk, qs, qh)-
forger F , consider two simulators B0 and B1 that simulate the role of the honest
player as in the experiment Expuu−cma

IBMS interacting with the forger F . B0 takes
as an input a set {c1, c2, ..., cqh

} where ci’s are in {0, 1}κ and runs Setup proce-
dure to obtain (mpk, msk) and follows the real protocol i.e. answers to forger’s
key derivation queries and signing queries using procedures KeyDer and MSign
respectively. Additionally, B0 answers the forger’s hash queries and performs an
extra finalization process by following the procedures SimHash and Finalize in
Figure 5. The simulator B1, on the other hand, takes as an input an RSA chal-
lenge (n, e, ẙ) and a set {c1, c2, ..., cqh

} where ci’s are in {0, 1}κ and follows the
Init, SimKeyDer, SimMSign, SimHash and Finalize procedures detailed in Figure
5 to perform the initialization, answering to key derivation, signing and hash

LATEX style file for Lecture Notes in Computer Science – documentation 15

1. Setup(1κ):

Let l be the maximum number of players in the IBMS scheme. Pick prime numbers
e and e′ s.t. 2κ ≤ e, e′ ≤ 22κ and 2κ+1l < e < e′/l. Run KGsRSA on input (κ, e) to
obtain (n, d). Note that gcd(e′, φ(n)) = 1 because φ(n) = 4p′q′ where p′, q′ > 22κ.
Run CKG(n, e, e′) to obtain the commitment key K . Set mpk = (n, e, e′,K) and
msk = d. Assume H1 : {0, 1}∗ → QRn and H2 : QRn × {0, 1}∗ ×QRn → {0, 1}κ
are random oracles that every other algorithm in the protocol has access to them.

2. KeyDer(msk, Id):

The PKG computes xId ← (H1(Id))2d(mod n), sets the private key of the user
with identity Id as skId ← xId and sends it back to him via a secure and
authenticated channel.

3. MSign: Let P be the set of players participating in the protocol. Each player
determines P after the first step of MSign. Player with identity Idi on input
(mpk, m, skIdi), performs the following steps:

3.1 Pick ki
r← QRn, ai ← ke

i ; Set (Ci, Di)
r← ComK (ai) and broadcast (Idi, Ci);

3.2 Upon receiving (Idj , Cj) ∀Pj∈ P, Set IdSet← {Idj}Pj∈P and C ←
N

Pj∈P Cj ;

Set c← H2(C, IdSet, m); Compute zi ← ki(xIdi)
c and broadcast (zi, Di);

3.3 Output multisignature σ = (z, C, D), where z =
Q

Pj∈P
zj and D =

L

Pj∈P
Dj .

4. Vrfy(mpk, m, IdSet, σ):

Parse σ as (z, C, D) and mpk as (n, e, e′,K); Set c← H2(C, IdSet, m);
y ←
Q

Idi∈IdSetH1(Idi)
2; If OpenK (C, D, zey−c) = 1 then accept otherwise reject.

Fig. 4. Identity-based multisignature scheme based on RSA

queries and finalization processes, respectively. Intuitively, the simulator B1 uses
Coron’s technique [Cor00] to embed the RSA challenge in the hashes of the ID’s
of the players with some biased probability 1 − ρ hoping that the forgery be
based upon the ID of the player for which the RSA challenge is indeed embed-
ded. This way B1 passes the signing queries on behalf of identity Id just like
real protocol using the procedure MSign if the RSA challenge is not embedded
in the hash of Id and otherwise B1 uses the straight-line structured-instance
zero-knowledge simulator for proof of knowledge of e-th root (see corollary 1) to
simulate the signature protocol on behalf of the identity Id. Both B0 and B1,
after receiving a valid forgery from F , perform a finalization phase in which the
forged multisignature is returned together with the index of the hash responses
upon which they are based. Namely both B0 and B1 return (j, (m, IdSet, σ))
s.t. Vrfy(mpk, m, IdSet, σ) = 1 and there exists at least one uncorrupted Id s.t.
(m, Id) is never queried for signing. The simulators B0 and B1 set up empty
tables H1 and H2 to simulate the hash functions H1 and H2 respectively and use
the set {c1, c2, ..., cqh

} to answer to the hash queries to H2 which enables the
utilization of forking lemma (as formulated e.g. in [BN06,BCJ08]).

Now for I ∈ {0, 1} let’s lower-bound accBI
the probability that BI generates

a “useful” output i.e. an output other than (0, λ). This happens when BI does

16 LATEX style file for Lecture Notes in Computer Science – documentation

not abort in any of the key derivation queries or finalization procedure. Therefore
accBI

≥ ρqK (1− ρ). This function reaches its maximum when ρ = qK/(qK + 1).
Substituting this value of ρ yields:

accBI
≥
(

qK

qK + 1

)qK
(

1− qK

qK + 1

)
≥ 1

qK

(
qK

qK + 1

)qK+1

≥ 1
4qK

For I ∈ {0, 1}, consider FBI
-the forking algorithm associated with BI . The suc-

cess event of FBI
denoted by EBI is that the algorithm BI outputs two tuples

(cj , (x, n1,m, IdSet, σ)) and (c̃j , (x̃, ñ1, m̃, ˜IdSet, σ̃)) s.t. cj 6= c̃j where j is the
index of the hash responses upon which the forged multisignature is based. Since
the random coins of the algorithm BI and the hash responses of the algorithm
BI previous to jth query are the same in the first and second executions, all
the computations and communications and in particular the queries submit-
ted to the hash function H2 before jth query must be the same, too. Thus
the occurrence of EBI implies IdSet = ˜IdSet, C = C̃ and m = m̃. Note that
IdSet = ˜IdSet also implies y = ỹ. This is because y =

∏
Idi∈IdSet (H1(Idi))

2,
ỹ =

∏
Idi∈ ˜IdSet (H1(Idi))

2 and the values for H1(Idi) for all Idi ∈ IdSet is
fixed before the fork. The success event EBI can be partitioned into two cases
(1) event EBI

1 in which EBI happens and zey−c = z̃eỹ−c̃ (2) event EBI
2 in

which EBI happens and zey−c 6= z̃eỹ−c̃. Obviously EBI = EBI
1 ∪EBI

2 and hence
Pr[EBI] ≤ Pr[EBI

1] + Pr[EBI
2]. On the other hand, according to the forking

lemma, EBI can be lower bounded by εBI
, the success probability of the simu-

lator BI :

accBI
.

(
accBI

qh
− 1

2κ

)
≤ Pr[EBI] ≤ Pr[EBI

1] + Pr[EBI
2] (2)

If ci’s are uniformly distributed in {0, 1}κ then F ’s view in interaction with
B0 is identical to the real execution of the protocol. As for B1, since C is εE-Σ-
equivocable, by straight-line structured-instance simulatability of ZKPK of e-th
root, firstly the distributions of the commitment keys in the simulation and in
the real protocol are at most εE apart and secondly the distribution of the tuples
(C1, D1, z1) generated in each signature instance in the interaction between F
and B1 is identical the distributions of the same variables in the real execution.
Thus, since our simulation is straight line, total distance between F ’s view in
interaction with B1 and in real execution is at most εE . This implies in particular
that εB0 = ε, |εB1 − ε| ≤ εE and |Pr[EB0

2]−Pr[EB1
2]| ≤ εE . So ε/4qk ≤ accB0 and

(ε− εE)/4qk ≤ accB0 . Thus equation (2) becomes:

ε− εE

4qk

(
ε− εE

4qkqh
− 1

2κ

)
≤ Pr[EB1

1] + Pr[EB0
2] + εE (3)

The actual reduction algorithm R, runs both FB0 and FB1 . If E1
B1 happens,

then zey−cj = z̃eỹ−c̃j . Substituting y = ỹ = (ẙ)2n1x2e where n1 is the number of
players for whom the reduction has embedded the challenge (see figure 5) yields(

(z/z̃)x2(cj−c̃j)
)e

= (ẙ)2n1(cj−c̃j) (4)

LATEX style file for Lecture Notes in Computer Science – documentation 17

Init(n, e, ẙ):

Pick prime e′ where el ≤ e′ ≤ 22κ and
run tdCKG((n, e, e′), ẙ) to get (td,K),
set mpk as (n, e, e′,K) and run F on
input mpk;

SimKeyDer(Id):

Query H1 on Id and look up H1[Id] to
get (b, δ, y). If b = 0, return δ other-
wise abort the simulation with failure
outputting (0, λ).

SimMSign(m, Id):

Query H1 on Id and look up H1[Id]
to get (b, δ, y). If (b = 0) then run
MSign(m, Id); otherwise:

−(C̃, st)←tdComK (td);
Send (Id, C̃) to F ;
−Upon receiving (Idj , Cj) for Pj ∈ P,

IdSet← {Idj}Pj∈P ; C ←
N

Pj∈P Cj ;

c← H2(C, IdSet, m);
(D̃, z̃)← RstEquivK (td, st, c, δ);
Send (z̃, D̃) to F ;
−z←

Q
Pj∈P zj ; D←

L
Pj∈P Dj ;

Output σ = (z, C, D);

SimHash:

H1(Id): If Id is not previously queried,
pick δ uniformly at random from QRn,
toss a biased coin b so that b = 0 with
probability ρ and b = 1 with probability
1 − ρ. If b = 0, set y ← δe otherwise
set y ← ẙδe. Store (b, δ, y) to H1[Id].
Return H1[Id].

H2(C, IdSet, m): If (C, IdSet, m) is an
ith distinct query of F to H2, then
query H1(Idi) for every Idi ∈ IdSet
and set H2[(C, IdSet, m)] ← ci; Return
H2[(C, IdSet, m)];

Finalize:

Upon receiving a valid forgery
(m, IdSet, σ) from F , parse σ as
(z, C, D) and query H2 on (C, IdSet, m).
Let IdSet0 = {Idi|bi = 0} and
IdSet1 = {Idi|bi = 1}. If IdSet1 = ∅
then abort the simulation with fail-
ure outputting (0, λ). Otherwise set
x ←

Q
Idi∈IdSet(xi), n1 = |IdSet1| and

return (j, (x, n1, m, IdSet, σ)) where j
is the index of c in the hash table H2.

Fig. 5. The procedures SimHash and Finalize that B0 and B1 use and the procedures
Init, SimKeyDer, and SimMSign that B1 uses.

Now since l2κ+1 < e, therefore gcd(e, n1(cj−c̃j)) = 1 and one can easily compute
the e-th root of ẙ using the extended Euclidean algorithm.

If E2
B0 happens, then R immediately translates it into an attack against

binding property of commitment scheme C by returning (c,D, D̃, zey−cj , z̃eỹ−c̃j).
To see this note that as argued before, y = ỹ, C = C̃ and since E2

B0 is oc-
curred, thus zey−cj 6= z̃eỹ−c̃j and due to validity of the forgeries we have
OpenK (C, D, zey−cj) = OpenK (C, D̃, z̃eỹ−c̃j) = 1. Moreover the commitment
key K is outputted by CKG in the execution of B0. Thus Pr[EB1

1] ≤ ε′ and
Pr[EB0

2] ≤ εB and hence equation (3) becomes

ε− εE

4qk

(
ε− εE

4qkqh
− 1

2κ

)
≤ ε′ + εB + εE (5)

The running time tR of the reduction algorithm R is twice the maximum
of running time of the algorithms B0 and B1. But the running time of B0 and
B1 is dominated by the running time of the forger F plus the time spent by
the simulators to answer the hash, signing and key derivation queries. Thus
tR ≤ 2(t + (3qs + qh)texp) where texp is the time required for exponentiation in

18 LATEX style file for Lecture Notes in Computer Science – documentation

Z∗n. On the other hand since R either answers the RSA challenge or returns an
attack against the binding property of the commitment C, it must be true that
min(t′, tB) ≤ tR. Thus:

t ≥ 1
2

min(t′, tB)− (3qs + qh)texp

7 Identity-Based Aggregate Signature Scheme

The construction in the previous section can be easily modified to obtain a 2-
round identity based aggregate signature (IBAS) scheme provably secure under
RSA assumption. For this purpose, one needs to modify the verification algo-
rithm to support the case where different challenges are acquired in step 4.2
of the protocol due to querying H2 on different messages. More precisely, the
resulting IBAS scheme is exactly the same as the scheme described in figure 4
except that its verification algorithm would be as follows: Parse σ as (z, C, D)
and mpk as (n, e, e′,K); Compute R ← ze

∏
Idi∈IdSet (H1(Idi))

2ci where ci is
output of H2 on input (C, IdSet, mi) and check whether OpenK (C, D,R) = 1.

The security proof for this IBAS scheme is similar to the proof given in the
previous section. Namely the reduction runs two simulators; in one simulator the
challenge is embedded in the commitment key and in the other it is embedded in
hashes of IDs. Therefore with high probability, if the forgery happens the reduc-
tion translates it either to either attack the binding property of the commitment
scheme (event E2 in the previous proof) or to find e-th root of the challenge
(event E1 in the previous proof). The security proof of the IBAS scheme is sim-
ilar to the security proof of IBMS scheme described in the previous section. The
most important difference is that in order to find the e-th root of the challenge
we have the following equation instead of equation 4 in the previous proof:

(ẙ)2
P

Idi∈IdSet1
(c̃i−ci) =

(
(z/z̃)

∏
Idi∈IdSet

x
2(c̃i−ci)
i

)e

Therefore to be able to compute e-th root of ẙ, we need gcd(e, 2
∑

Idi∈IdSet1
(c̃i−

ci)) = 1. In particular, the reduction succeeds as long as
∑

Idi∈IdSet1
(c̃i − ci) 6=

0 mod e, i.e. unless the challenges in the two branches of the forking algorithm
sum up to the same value mod e, which happens with only negligible probability.

References

[BA03] Kenneth Barr and Krste Asanovic. Energy aware lossless data compression.
In MobiSys, 2003.

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures
secure under the discrete logarithm assumption and a generalized forking
lemma. In ACM Conference on Computer and Communications Security,
pages 449–458, 2008.

LATEX style file for Lecture Notes in Computer Science – documentation 19

[BGOY10] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum.
Ordered multisignatures and identity-based sequential aggregate signatures,
with applications to secure routing. In Cryptology ePrint Archive, Report
2007/438, Revised 21/02/2010, 2010.

[BJ10] Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-
signature schemes based on RSA. (full version), 2010.

[BN06] Mihir Bellare and Gregory Neven. Mult-signatures in the plain public-
key model and a general forking lemma. In Conference on Computer and
Communications Security, CCS’06, pages 390– 399, 2006.

[BN07] Mihir Bellare and Gregory Neven. Identity-based multi-signatures from rsa.
In CT-RSA, pages 145–162, 2007.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In CRYPTO,
pages 174–187, 1994.

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In
CRYPTO, pages 229–235, 2000.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In EUROCRYPT, pages 418–430, 2000.

[GHK06] David Galindo, Javier Herranz, and Eike Kiltz. On the generic construction
of identity-based signatures with additional properties. In ASIACRYPT,
pages 178–193, 2006.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A ”paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In CRYPTO, pages
216–231, 1988.

[GR06] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In
Public Key Cryptography, pages 257–273, 2006.

[Her06] Javier Herranz. Deterministic identity-based signatures for partial aggrega-
tion. Comput. J., 49(3):322–330, 2006.

[KT05] Jihye Kim and Gene Tsudik. Srdp: Securing route discovery in dsr. In
MobiQuitous, pages 247–260, 2005.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup mul-
tisignatures. In ACM Conference on Computer and Communications Secu-
rity, CCS’01, October 2001.

[Nev08] Gregory Neven. Efficient sequential aggregate signed data. In EURO-
CRYPT, pages 52–69, 2008.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In CRYPTO, pages 239–252, 1989.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO, pages 47–53, 1984.

