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Abstract. Encrypt-and-sign, where one encrypts and signs a message
in parallel, is usually not recommended for confidential message trans-
mission as the signature may leak information about the message. This
motivates our investigation of confidential signature schemes, which hide
all information about (high-entropy) input messages. In this work we
provide a formal treatment of confidentiality for such schemes. We give
constructions meeting our notions, both in the random oracle model
and the standard model. As part of this we show that full domain hash
signatures achieve a weaker level of confidentiality than Fiat-Shamir sig-
natures. We then examine the connection of confidential signatures to
signcryption schemes. We give formal security models for deterministic
signcryption schemes for high-entropy and low-entropy messages, and
prove encrypt-and-sign to be secure for confidential signature schemes
and high-entropy messages. Finally, we show that one can derandomize
any signcryption scheme in our model and obtain a secure deterministic
scheme.

1 Introduction

A common mistake amongst novice cryptographers is to assume that digital
signature schemes provide some kind of confidentiality service to the message
being signed. The (faulty) argument in support of this statement is (a) that
all signature schemes are of the “hash-and-sign” variety, which apply a hash
function to a message before applying any kind of keyed operation, and (b) that
a one-way hash function will hide all partial information about a message. Both
facets of this argument are incorrect. However, it does suggest that notions of
confidentiality for signature schemes are an interesting avenue of research.

The question of confidentiality of hash functions in signature schemes was
previously considered by Canetti [7] as “content-concealing signatures”; however
the original treatment only serves to motivate the concept of perfect one-way
hash functions [7, 8]. We provide a more formal treatment here. The question
of entropic security has been considered by several other authors. Dodis and
Smith studied entropic secure primitives requiring that no function leaks their
input [12]. Russell and Wang [22] consider the security of symmetric encryption



schemes based on high-entropy messages, and several authors have considered the
security of asymmetric encryption schemes based on high-entropy messages [3, 4,
6]. However, we are the first authors to consider the confidentiality of signatures
and signcryption schemes in this scenario.

We believe that the concept of confidential signatures is intrinsically inter-
esting and may prove to be useful in the construction of protocols in which two
entities need to check that they are both aware of a particular message which
(a) contains some confidential information, such as a password, and (b) contains
a high entropy component, such as a confidential nonce.

Defining Confidential Signatures. Our first contribution is to define confidential
signatures. Our starting point are high-entropy messages (signatures for mes-
sages with low entropy inevitably leak through the verification algorithm of the
signature scheme). Our definitions are based on previous efforts for determinis-
tic public-key encryption [3], and yield three models for confidential signature
schemes:

– Weak confidentiality means that no information is leaked to a passive adver-
sary, except possibly for information related to the technical details of the
signature scheme.

– Mezzo confidentiality means that no information is leaked to a passive ad-
versary (in possession of the verification key). Note that this is in contrast
to deterministic public-key encryption where information cannot be hidden
in such circumstances [3].

– Strong confidentiality means that no information is leaked to an active ad-
versary (in possession of the verification key).

Our definitions are general enough to cover probabilistic and deterministic sig-
nature schemes, although we need an additional stipulation in the latter case,
preventing the case where the leaked information is the unique signature itself.

Relation to Anonymous Signatures. There are similarities between confidential
signatures and anonymous signatures [16, 23]. Anonymous signatures hide the
identity of the signer of a high-entropy message, whereas confidential signatures
hide all the information about the message itself. This is relationship between
these two primitives is similar to the relationship between anonymous encryption
and traditional public key encryption.

Constructing Confidential Signatures. We then show how to obtain confidential
signatures. We first introduce the related concept of confidential hash functions,
akin to hiding hash functions [3]. We prove that random oracles are confidential
hash functions, as are perfectly one-way hash functions [7, 8] in a weaker form.

We then show that the use of weakly confidential hash functions in full do-
main hash (FDH) signature schemes yields weakly confidential signatures. We
show that FDH signature schemes and Fiat-Shamir signatures are confidential
in the random oracle model. We also show that strongly secure confidential sig-
natures can be obtained in the standard model via the use of a randomness
extractor [19, 20] (provided the message entropy lies above some fixed bound).



Applications to Signcryption. Secure message transmission is usually performed
via the encrypt-then-sign paradigm, where the sender encrypts the message un-
der the receiver’s public encryption key and then signs the ciphertext with his
own signing key. Signcryption schemes, introduced by [24], aim to gain effi-
ciency by combining the two operations. One consequence of previous security
definitions [1, 2] is that the encrypt-and-sign approach, where one encrypts the
message and signs the message in parallel, does not provide a secure signcryption
in general as the signature may reveal information about the message.

We introduce security notions for (possibly deterministic) signcryption schemes
with high-entropy messages, along the lines of deterministic public-key encryp-
tion and confidential signatures. In case of signcryption schemes, we can also give
a low-entropy-message version and show that this definition is strictly stronger
than the definitions for high-entropy messages. We show that the parallelizable
encrypt-and-sign scheme is high-entropy confidential if the underlying encryption
scheme is IND-CCA2 and the signature scheme is confidential (and determin-
istic). We finally prove that we can derandomize any signcryption scheme to
derive a secure deterministic scheme.

Besides the fact that some of our results require the signcryption scheme to
be deterministic, we also believe that deterministic signcryption schemes may be
intrinsically more secure than many current schemes. The reason is that most of
the current signcryption schemes are based on discrete-logarithm-based digital
signature schemes which are highly sensitive to imperfect randomness [18].

In situations where we have been forced due to size constraints to omit a
theorem’s proof, the proof can be found in the full version of the paper [10].

2 Confidential Signature Schemes

We formalise the notion of a confidential signature in three ways and give con-
structions. These confidentiality notions can be applied to either probabilistic or
deterministic signature schemes.

2.1 Definition of Confidential Signature Schemes

A digital signature scheme is a tuple of efficient algorithms SS = (SS.Setup,
SS.Kg, SS.Sign, SS.Ver). All algorithms (in this article) are probabilistic polynomial-
time (PPT) in the security parameter k (which we assume clear from the con-
text). The parameter generation algorithm produces a set of parameters common
to all users λss

R← SS.Setup(1k); subsequently the key generation algorithm pro-
duces a public/private key pair (pk , sk) R← SS.Kg(λss). (Until Section 4.2 we will
silently assume that λss allows retrieval of k and both pk and sk allow retrieval
of λss , simplifying notation.) The signing algorithm takes a message m ∈ {0, 1}∗
and the private key, and outputs a signature σ R← SS.Sign(sk ,m). The verifica-
tion algorithm takes as input a message, signature and public key, and outputs
either a valid symbol > or an invalid symbol ⊥. This is written SS.Ver(pk ,m, σ).



ExptwSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m0, t0) R← A1(λss)

(m1, t1) R← A1(λss)
σ∗ ← SS.Sign(sk ,mb)

t′ R← ASS.Sign(sk,·)
2 (pk ,σ∗)

If t′ = t0 then output 1
Else return 0

ExptmSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m0, t0) R← A1(pk)

(m1, t1) R← A1(pk)
σ∗ ← SS.Sign(sk ,mb)

t′ R← ASS.Sign(sk,·)
2 (pk ,σ∗)

If t′ = t0 then output 1
Else return 0

ExptsSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m0, t0) R← ASS.Sign(sk,·)
1 (pk)

(m1, t1) R← ASS.Sign(sk,·)
1 (pk)

σ∗ ← SS.Sign(sk ,mb)

t′ R← ASS.Sign(sk,·)
2 (pk ,σ∗)

If t′ = t0 then output 1
Else return 0

Fig. 1. Notions of confidentiality for (a) weakly confidential signature schemes; (b)
mezzo confidential signature schemes; (c) strongly confidential signature schemes. The
signing algorithm is applied to the message vector m component-wise.

The standard notion for signature security is that of unforgeability under chosen
message attacks (see Appendix A.1 for formal definitions).

We present three confidentiality notions for a digital signature scheme —
see Figure 1. These notions are split depending on the adversary’s capabilities,
which corresponds in a natural way to real-life scenarios where it may be possible
to derive some information about a message from a signature which might be
deemed practically useless, e.g., the value of the hash of the message, but leakage
of which cannot be avoided.

In the weak confidentiality model, the attacker should not be able to de-
termine any information about the messages apart from that which can be ob-
tained directly from the signature itself. Mezzo confidentiality models the sce-
nario where the attacker is able to retrieve public keys of the users, but cannot
interact directly with their communication network and obtain signatures of mes-
sages. In the strong model, an active attacker should not be able to determine
any information about the messages apart from the signature itself.

For x ∈ {w,m, s}, the attacker A’s advantage in the xSig game is defined to
be:

AdvxSig
A (k) = |Pr[ExptxSig−0

A (k) = 1]− Pr[ExptxSig−1
A (k) = 1]| .

A signature scheme is weakly confidential (resp. mezzo confidential/strongly con-
fidential) if all PPT attackersA = (A1,A2) have negligible advantage AdvxSig

A (k)
in the wSig (resp. mSig/sSig) security game, subject to the following restraints:

– Pattern preserving: there exist a length function `(k) and equality functions
�ij ∈ {=, 6=} (1 ≤ i, j ≤ `(k)) such that for any admissible input a in the
corresponding game and all possible (m, t) R← A1(a) we have that |m| = `(k)
and mi �ij mj .

– High entropy: the function π(k) = maxm∈{0,1}∗ Pr[mi = m : (m, t) R←
A1(a)] is negligible, where the probability is over A1’s random tape only
(and i ∈ N and all choices of the other algorithms are fixed). The value
µ(k) = − log2 π(k) is termed the adversary’s min entropy.

For deterministic schemes we need the following additional constraint, ruling out
trivial attacks:



SS.Kg′(λss):

r R← {0, 1}k

(pk , sk) R← SS.Kg(λss)
Return (pk‖r, sk‖r)

SS.Sign′(sk‖r,m):
If m = m′‖r

Return SS.Sign(sk ,m)‖m
Else

Return SS.Sign(sk ,m)

SS.Ver′(pk‖r,m, σ):
If m = m′‖r

Parse σ as σ′‖m
σ ← σ′

Return SS.Ver(pk ,m, σ)

Fig. 2. A signature scheme which is weakly confidential but not mezzo confidential.

– Signature free: A1 does not output a message mi ∈m where it has queried
the signature oracle on mi. (This security requirement only affects strongly
confidential signature schemes.)

The latter condition prevents an attacker against a deterministic scheme from
“winning” by setting t ← SS.Sign(sk ,m) — i.e., it prevents the attacker from
“winning” the game simply by determining that the message m has the property
that its unique signature is SS.Sign(sk ,m).

The notions of confidentiality are strictly increasing in strength. If SS is a
weakly confidential signature schemes, then Figure 2 depicts a scheme which
is weakly confidential but not mezzo confidential. Similarly, if SS is a mezzo
confidential signature scheme, then Figure 3 shows a scheme which is mezzo
confidential but not strongly confidential.

SS.Kg′(λss):

(pk , sk) R← SS.Kg(λss)

r R← {0, 1}k
σr ← SS.Sign(sk , 0‖r)
Return (pk , sk‖r‖σr)

SS.Sign′(sk‖r‖σr,m):
If m = m′‖r‖σr

Set σ′ ← SS.Sign(sk , 1‖m)
Return σ = (σ′,m)

Else
Set σ ← SS.Sign(sk , 2‖m)
Return σ = (σ′, r, σr)

SS.Ver′(pk ,m, σ):
If σ = (σ′,m′)

Parse m′ as m′ = m′′‖r′‖σ′r
Return > iff

SS.Ver(pk , 1‖m′, σ′) = >, and
m = m′, and
SS.Ver(pk , 0‖r′, σ′r) = >

If σ = (σ′, r′, σ′r)
Return > iff

SS.Ver(pk , 2‖m,σ′) = >, and
m 6= m′′‖r′‖σ′r for any m′′ ∈ {0, 1}∗,
and SS.Ver(pk , 0‖r′, σ′r) = >

Else return ⊥

Fig. 3. A signature scheme which is mezzo confidential but not strongly confidential.

3 Confidential Hash Functions and Signature Schemes

3.1 Confidential Hash Functions

We recap the notion of a hiding hash function by Bellare et al. [3], but call such
functions confidential here. For our purposes, a hash function H = (H.Kg, H) is



ExptwHash-b
A (k):

H
R← H.Kg(1k)

(x0, t0) R← A1(1k)

(x1, t1) R← A1(1k)
h← H(xb)

t′ R← A2(H,h)
If t′ = t0 then output 1
Else return 0

ExptsHash-b
A (k):

H
R← H.Kg(1k)

(x0, t0) R← A1(H)

(x1, t1) R← A1(H)
h← H(xb)

t′ R← A2(H,h)
If t′ = t0 then output 1
Else return 0

Fig. 4. Notions of confidentiality for (a) weakly confidential hash functions; (b)
strongly confidential hash functions. The hash function is applied to the data vector x
component-wise.

a PPT pair of algorithms for key generation and hashing, respectively. We will
identify the description output by the key generation algorithm H.Kg with the
hash function H itself. The collision-finding advantage Advcol

A of an attacker A
against a hash function H is defined as

Advcol
H,A(k) = Pr

[
H(x; r) = H(x′; r′)

and (x, r) 6= (x′, r′) : (x, x′, r, r′) R← A(H); H R← H.Kg(1k)
]
.

The hash function H is called collision-resistant if all PPT attackers A have
negligible advantage Advcol

H,A(k) (as a function of k). We require that the hash
function is hiding/confidential against an attacker A = (A1,A2) playing one of
the games in Figure 4. For x ∈ {w, s} the attacker’s advantage is defined to be

AdvxHash
H,A (k) = |Pr[ExptxHash-0

A (k) = 1]− Pr[ExptxHash-1
A (k) = 1]| .

A hash function is weakly (resp. strongly) confidential if every PPT attacker
A has negligible advantage in the corresponding game subject to the following
restraints:

– Pattern preserving: there exist a length function `(k) and equality functions
�ij ∈ {=, 6=} (1 ≤ i, j ≤ `(k)) such that for all possible (x, t) R← A1(1k) we
have that |x| = `(k) and xi �ij xj .

– High entropy: the function π(k) = maxx∈{0,1}∗ Pr[xi = x : (x, t) R← A1(a)]
is negligible where the probability is only over A1’s random tape. We define
µ(k) = − log2 π(k) to be the adversary’s minimum entropy.

Note that collision-resistant deterministic hash functions cannot achieve strong
confidentiality because an adversary A1 can set t = H(x) for some message x and
A2 can easily obtain this value from the hash vector h. We also note that for
“unkeyed” hash functions both notions are equivalent and so no unkeyed, deter-
ministic hash function can be considered confidential (unless the hash function
is almost constant).

In the random oracle model, where the adversary is granted oracle access
to the hash function H instead of receiving the description as input, we give



A1 access to the random oracle in the strong case, but deny A1 access to H
in the weak case. It is easy to see that a random oracle thus achieves weak
confidentiality, whereas the above attack on deterministic functions still applies
in the strong case. However, under the additional constraint that A1 does not
query H about any x in its output x (hash-free adversaries) a random oracle is
also strongly confidential:

Proposition 1 (Confidentiality of Random Oracles). For any adversary
A = (A1,A2) where A1 outputs vectors of length `(k) and with min-entropy
µ(k) = − log π(k), and where A2 makes at most qh(k) queries to the random
oracle, we have

AdvxHash
H,A (k) ≤ 2 · qh(k) · `(k) · π(k)

for x ∈ {w, s} where A is assumed to be hash-free (in the strong case).

As for constructions in the standard model, we note that perfectly one-way
functions (POWs) [7, 8] provide a partial solution. POWs have been designed to
hide all information about preimages, akin to our confidentiality notion. How-
ever, all known constructions of POWs are only good for fixed (sets of) input
distributions where the distributions can depend only on the security parameter
but not the hash function description. Furthermore, known POWs usually re-
quire the conditional entropy of any xi to be high, given the other xj ’s. In light
of this, any `(k)-valued perfectly one-way function [8] is a weakly confidential
hash function. Hence, we can build such hash functions based, for example, on
claw-free permutations [8] or one-way permutations [8, 15].

3.2 Full-Domain Hash Signatures

A full-domain hash (FDH) signature scheme FDH for deterministic hash function
H is a signature scheme in which the signing algorithm computes a signature as
σ = f(H(m)) for some secret function f , and the verification algorithm checks
that g(σ) = H(m) for some public function g. More formally (assuming that
FDH.Setup(1k) outputs λss = 1k and that there exists a PPT algorithm which
generates the functions (f, g)← FDH.Kg′(λss)):

FDH.Kg(λss):
(f, g)← FDH.Kg′(λss)
H← H.Kg(1k)
(pk , sk) = ((g, H), (f, H))
Return (pk , sk)

FDH.Sign(sk ,m):
Parse sk as (f, H)
Return σ = f(H(m))

FDH.Ver(pk ,m, σ):
Parse pk as (g, H)
Return > if H(m) = g(σ)
Otherwise return ⊥

Unforgeability of FDH signatures in the ROM has been shown in [5, 9].

Proposition 2 (Weak Confidentiality of FDH). The FDH-signature scheme
FDH for hash function H is weakly confidential if H is weakly confidential. More
precisely, for any adversary A = (A1,A2) against the weak confidentiality of
FDH, where A1 outputs `(k) messages and A2 makes at most qs(k) signature



queries, there exists an adversary B = (B1,B2) against the weak confidentiality
of the hash function such that

AdvwSig
FDH,A(k) ≤ AdvwHash

H,B (k),

where B1’s running time is identical to the one of A1, and B2’s running time is
the one of A2 plus TimeFDH.Kg(k) + (qs + `(k)) · TimeFDH.Sign(k) +O(k).

The proof actually shows that the signature scheme remains confidential for
an adversarially chosen key pair (f, g), i.e., confidentiality only relies on the
confidentiality of the hash function. Moreover, by Proposition 1, we have that
FDH-signature schemes are weakly confidential in the random oracle model.

Proof. Assume that FDH is not weakly confidential and that there exists an
adversary A = (A1,A2) successfully breaking this property. Then we construct
an adversary B = (B1,B2) against the weak confidentiality of the hash function
as follows. Adversary B1 on input 1k runs A1 on input 1k and outputs this
algorithm’s answer (m, t).

Algorithm B2 receives as input a description H of the confidential hash func-
tion and a vector h of hash values. B2 runs (f, g) ← FDH.Kg′(1k), sets pk ←
(g, H) and sk ← (f, H), and computes signatures σ∗ = f(h). It invokes A2 on
(1k, pk ,σ∗) and answers each subsequent signature request for message m by
computing σ = FDH.Sign(sk ,m). When A2 outputs t′ algorithm B2 copies this
output and stops.

It is easy to see that B’s advantage attacking the confidentiality of the hash
function is identical to A’s advantage attacking the confidentiality of the FDH
signature scheme (the fact that A1 preserves pattern and produces high-entropy
messages carries over to B1). ut

No (unforgeable) FDH-signature scheme is mezzo confidential, because a sig-
nature on the message m leaks the value H(m). More formally, an attacker A1

can pick a message m R← {0, 1}k and set t← H(m). Adversary A2 then receives
σ ← f(H(m)) and can recover t = H(m) by computing g(σ).

3.3 Strongly Confidential Signatures in the ROM

Recall from the previous section that FDH signatures leak the hash value of a
message. To prevent this, we make the hashing process probabilistic and compute
(r, H(r,m)) for randomness r. Then A1 cannot predict the hash values of the
challenge messages due to r (which becomes public only afterwards) and A2

cannot guess the hash values due to the entropy in the message m (even though
r is then known). Our instantiation is shown in Figure 5.

Proposition 3 (Random Oracle Instantiation). If H is a hash function
modeled as a random oracle, then the signature scheme SS′ is strongly confi-
dential. That is, for any attacker A = (A1,A2) against the strong confidentiality
of the signature scheme SS′, where A1 outputs a vector of length `(k) and with



Suppose SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver) is a signature scheme. We define a new
signature scheme SS′ as follows (where SS.Setup′ ≡ SS.Setup):

SS.Kg′(λss):
(pk , sk)← SS.Kg(λss)

H
R← H.Kg(1k)

pk ′ ← (pk , H); sk ′ ← (sk , H)
Return (pk ′, sk ′)

SS.Sign′(sk ′,m):
Parse sk ′ as (sk , H)

r R← {0, 1}k
h← H(r,m)
σ′ ← SS.Sign(sk , h)
σ ← (σ′, r)
Return σ

SS.Ver′(pk ′,m, σ):
Parse pk ′ as (pk , H)
Parse σ as (σ′, r)
Return SS.Ver(pk , H(r,m), σ′)

Fig. 5. Construction of a strongly confidential signature scheme in the ROM.

min-entropy µ(k) = − log π(k), and where A2 asks at most qh oracle queries
(signing queries and direct hash oracle queries), we have

Adv sSig
SS′,A(k) ≤ 2 · qh(k) · `(k) · (2−k + π(k)) .

Clearly, the scheme is also (strongly) unforgeable if the underlying signature
scheme is (strongly) unforgeable.

3.4 Fiat-Shamir Signature Schemes

Our second instantiation is based upon the Fiat-Shamir paradigm [14] that turns
every (three-round) identification scheme into a signature scheme. An identifi-
cation scheme (ID scheme) is defined by a triplet (G,S,R), where G is a key
generation algorithm and the sender S wishes to prove his identity to the re-
ceiver R. More formally: G(1k) is an efficient algorithm that outputs a key
pair (ipk, isk). (S(isk), R(ipk)) are interactive algorithms and it is required that
Pr[ (S(isk), R(ipk)) = 1] = 1 (where the probability is taken over the coin tosses
of S,R and G). A canonical ID scheme is a 3-round ID scheme (α;β; γ) in which
α is sent by the sender S, β by the receiver R and consists of R’s random
coins, and γ is sent by the sender. For a sender S with randomness r, we denote
α = S(isk; r) and γ = S(isk, α, β; r). The Fiat-Shamir signature scheme is given
in Figure 6.

In order to prove the confidentiality of this scheme, we need to assume that
the commitment α of the Fiat-Shamir scheme has non-trivial entropy. This can
always be achieved by appending public randomness.

Proposition 4 (Fiat-Shamir Instantiation). If H is a hash function modeled
as a random oracle, then the Fiat-Shamir instantiation SS′′ for non-trivial com-
mitments is strongly confidential. More precisely, for any attacker A = (A1,A2)
against the strong confidentiality of the signature scheme SS′′ where A1 out-
puts a message vector of length `(k) with min-entropy µ(k) = − log π(k), α has
min-entropy µ′(k) = − log π′(k), and A2 asks at most qh oracle queries (signing
queries and direct hash oracle queries), we have

Adv sSig
SS′′,A(k) ≤ 2 · qh(k) · `(k) · (π(k) + π′(k)).



Suppose (G,S,R) is a canonical identification scheme and H is a hash function family.
We define the signature scheme SS′′ = (SS.Setup′′, SS.Kg′′, SS.Sign′′, SS.Ver′′) as follows
(where SS.Setup(1λ) returns λss = 1λ):

SS.Kg′′(λss):
(ipk, isk)← G(λss)

H
R← H.Kg(1k)

pk ′ ← (ipk, H); sk ′ ← (isk, H)
Return (pk ′, sk ′)

SS.Sign′′(sk ′,m):
Parse sk ′ as (isk, H)

r R← {0, 1}k
α← S(isk; r)
β ← H(α,m)
γ ← S(isk, α, β; r)
σ ← (α, β, γ)
Return σ

SS.Ver′′(pk ′,m, σ):
Parse pk ′ as (ipk, H)
Parse σ as (α, β, γ)
β′ ← H(α,m)
Return 1 iff β = β′

and R(ipk, α, β, γ) = 1

Fig. 6. The Fiat-Shamir paradigm that turns every ID scheme into a signature scheme.

3.5 Strongly Confidential Signatures from Randomness Extraction

Our instantiation in the standard model relies on randomness extractors [19, 20]
and is depicted in Figure 7. The main idea is to smooth the distribution of the
message via an extractor, and to sign the almost uniform value h.

Recall that a strong (a, b, n, t, ε)-extractor is an efficient algorithm Ext :
{0, 1}a×{0, 1}b → {0, 1}n which takes some random input m ∈ {0, 1}a (sampled
according to some distribution with min-entropy at least t) and some random-
ness r ∈ {0, 1}b. It outputs h ← Ext(m, r) such that the statistical distance
between (r, h) and (r, u) is at most ε for uniform random values r ∈ {0, 1}b and
u ∈ {0, 1}n.

To ensure unforgeability we need to augment the extractor’s extraction prop-
erty by collision-resistance, imposing the requirement that the extractors be
keyed and introducing dependency of the extractor’s parameters a, b, n, t, ε on
the security parameter k. For a survey about very efficient constructions of such
collision-resistant extractors see [11].

In order to use extractors, we need a stronger assumption on the message
distribution: we assume that the adversary A1 now outputs vectors of messages
such that each message in the vector has min-entropy greater than some fixed
bound µ(k) given the other messages. Observe that the collision-resistance re-
quirement on the extractor implies that µ must be super-logarithmic. We say
that the output has conditional min-entropy µ(k).

Proposition 5 (Extractor Instantiation). If Ext is an (a, b, n, t, ε)-extractor
then the extractor instantiation of SS′′′ is strongly confidential. More specifically,
for any attacker A = (A1,A2) against the strong confidentiality of the signature
scheme SS′′′, where A1 outputs a vector of length `(k) with conditional min-
entropy µ(k) ≥ t(k), we have

Adv sSig
SS′′′,A(k) ≤ 2 · `(k) · ε(k).

Note that our construction of the randomness extractor operates on messages
of a fixed length of a(k) input bits, and the signature length depends on this



Suppose SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver) is a signature scheme. We define a new
signature scheme SS′′′ as follows (where SS.Setup′′′ ≡ SS.Setup):

SS.Kg′′′(λss):
(pk , sk)← SS.Kg(λss)
Choose an extractor Ext
pk ′ ← (pk ,Ext)
sk ′ ← (sk ,Ext)
Return (pk ′, sk ′)

SS.Sign′′′(sk ′,m):
Parse sk ′ as (sk ,Ext)

r R← {0, 1}b
h← Ext(m, r)
σ′ ← SS.Sign(sk , h)
σ ← (σ′, r)
Return σ

SS.Ver′′′(pk ′,m, σ):
Parse pk ′ as (pk ,Ext)
Parse σ as (r, σ′)
Set h← Ext(m, r)
Return SS.Ver(pk , h, σ′)

Fig. 7. Construction of strongly confidential signature scheme based on randomness
extractors.

value a(k). To process larger messages we can first hash input messages with
a collision-resistant hash function, before passing it to the extractor. In this
case, some care must be taken to determine a correct bound for the entropy lost
through the hash function computation.

4 Deterministic Signcryption

Signcryption is a public-key primitive which aims to simultaneously provide mes-
sage confidentiality and message integrity. Signcryption was introduced by Zheng
[24] and security models were independently introduced by An, Dodis and Ra-
bin [1] and by Baek, Steinfeld and Zheng [2]. Similar to public-key encryption,
achieving confidentiality in the formal security models requires that signcryp-
tion is a randomised process; however, we may also consider the confidentiality
of deterministic signcryption schemes on high-entropy message spaces. We will
also see that a practical version of confidentiality may even be achieved by a
deterministic signcryption scheme for low entropy message distributions.

4.1 Notions of Confidentiality for Signcryption Schemes

A signcryption scheme is a tuple of PPT algorithms SC = (SC.Setup, SC.Kgs,
SC.Kgr, SC.SignCrypt, SC.UnSignCrypt). The setup algorithm generates public
parameters λsc

R← SC.Setup(1k) common to all algorithms. We will generally
assume that all algorithms take λsc as an implicit input, even if it is not ex-
plicitly stated. The sender key-generation algorithm generates a key pair for
the sender (pkS , skS) R← SC.Kgs(λsc) and the receiver key-generation algorithm
generates a key pair for a receiver (pkR, skR) R← SC.Kgr(λsc). The signcryp-
tion algorithm takes as input a message m ∈ M, the sender’s private key
skS , and the receiver’s public key pkR, and outputs a signcryption ciphertext
C R← SC.SignCrypt(skS , pkR,m). The unsigncryption algorithm takes as input
a ciphertext C ∈ C, the sender’s public key pkS , and the receiver’s private key
skR, and outputs either a message m R← SC.UnSignCrypt(pkS , skR, C) or an
error symbol ⊥.



It is interesting to consider the basic attack on a deterministic signcryption
scheme. In such an attack, the attacker picks two messages (m0,m1) and receives
a signcryption C∗ of the message mb. The attacker checks whether C∗ is the
signcryption of m0 by requesting the signcryption of m0 from the signcryption
oracle. As in the case of public-key encryption, we may prevent this basic attack
by using a high-entropy message space and so prevent the attacker being able to
determine which message to query to the signcryption oracle. However, unlike the
case of public-key encryption, we may also prevent this attacker by forbidding
the attacker to query the signcryption oracle on m0 and m1. We can therefore
differentiate between the high-entropy case (in which the message distribution
chosen by the attacker has high entropy) and the low-entropy case (in which
the attacker is forbidden from querying the signcryption oracle on a challenge
message).

We give definitions for the high-entropy and low-entropy confidentiality in
Figure 8. In both cases, i.e. for x ∈ {h, l}, the attacker’s advantage is defined as

AdvxSCR
SS,A (k) = |Pr[ExptxSCR−1

A = 1]− Pr[ExptxSCR−0
A = 1]| .

A signcryption scheme is high-entropy confidential if every PPT attacker A has
negligible advantage in the hSCR game subject to the following restrictions:

– Strongly pattern preserving: there exists a length function `(k), message
length functions qi(k), and equality functions �ij ∈ {=, 6=} (1 ≤ i, j ≤ `(k))
such that for all possible (m, t) R← A1(λsc , pk∗S , pk∗R) we have that |m| =
`(k), |mi| = qi(k) and mi �ij mj .

– High entropy: the function π(k) = maxm∈{0,1}∗ Pr[mi = m : (m, t) R← A1(a)]
is negligible where the probability is only over A1’s random tape. The value
µ(k) = − log π(k) is known as the adversary’s minimum entropy.

– Signature free: A1 does not output a message mi ∈m where it has queried
the signcryption oracle on the pair (pk∗R,mi).

– Non-trivial:A2 does not query the unsigncryption oracle on any pair (pk∗S , C)
where C ∈ C∗.

A signcryption scheme is low-entropy confidential if every PPT attacker A has
negligible advantage in the lSCR game subject to the restrictions that A never
queries the encryption oracle on either (pk∗R,m0) or (pk∗R,m1), and A2 never
queries the decryption oracle on (pk∗S , C

∗).

Proposition 6. Any deterministic signcryption scheme SC which is low-entropy
confidential is also high-entropy confidential. In particular, for any adversary A
against high-entropy confidentiality, making at most qs(k) signcryption queries
and where A1 outputs `(k) messages with min-entropy µ(k) = − log π(k), there
exists an adversary Ā such that

AdvhSCR
SC,A (k) ≤ `(k) ·Adv lSCR

SC,Ā (k) + 4 · qs(k) · `(k) · π(k),

where the running time of Ā equals the time of A plus O(k).



ExpthSCR−b
A (k):

λsc
R← SC.Setup(1k)

(pk∗S , sk
∗
S) R← SC.Kgs(λsc)

(pk∗R, sk
∗
R) R← SC.Kgr(λsc)

(m0, t0) R← AO1 (λsc , pk
∗
S , pk

∗
R)

(m1, t1) R← AO1 (λsc , pk
∗
S , pk

∗
R)

C∗ ← SC.SignCrypt(λsc , sk
∗
S , pk

∗
R,mb)

t′ R← AO2 (λsc , pk
∗
S , pk

∗
R,C

∗)
If t′ = t0 then output 1
Else return 0

Expt lSCR−b
A (k):

λsc
R← SC.Setup(1k)

(pk∗S , sk
∗
S) R← SC.Kgs(λsc)

(pk∗R, sk
∗
R) R← SC.Kgr(λsc)

(m0,m1, ω) R← AO1 (λsc , pk
∗
S , pk

∗
R)

C∗ ← SC.SignCrypt(λsc , sk
∗
S , pk

∗
R,mb)

b′ R← AO2 (C∗, ω)
Output b′

Fig. 8. Notions of confidentiality for (a) high-entropy signcryption schemes and (b)
low-entropy signcryption schemes. Note that A1 may pass the state information
ω to A2 in the lSCR game. The attacker’s have access to a signcryption oracle
SC.SignCrypt(sk∗S , ·, ·) and an unsigncryption oracle SC.UnSignCrypt(·, sk∗R, ·).

The proof essentially shows that, since the challenge messages produced by a
high-entropy attacker A1 have min-entropy µ(k), the probability that A2 queries
the signcryption oracle on one of those messages is bounded by 4·qs(k)·`(k)·π(k).
If this does not occur, then a low-entropy attacker can easily run a high-entropy
attacker as a black-box subroutine. The proof holds for deterministic schemes
only. We are not aware if the same is true for probabilistic schemes.

We also have that the low-entropy confidentiality definition is strictly stronger
than the high-entropy confidentiality definition. If SC is a high-entropy confiden-
tial signcryption scheme, then the signcryption scheme SC′ given in Figure 9 is
high-entropy confidential signcryption scheme but not a low-entropy confidential
signcryption scheme.

SC.SignCrypt′(skS , pkR,m):
C ← SC.SignCrypt(skS , pkR,m)

If m = 0k

Return C‖0
Else

Return C‖1

SC.UnSignCrypt′(pkS , skR, C):
Parse C as C′‖c for c ∈ {0, 1}
m← SC.UnSignCrypt(pkS , skR, C

′)

If c = 0 and m 6= 0k

Return ⊥
If c = 1 and m = 0k

Return ⊥
Else

Return m

Fig. 9. A signcryption scheme which is high-entropy secure but not low-entropy secure

4.2 The Encrypt-and-Sign Signcryption Scheme

Initially, it may be thought that high-entropy confidentiality may be easily
achieved through the combination of deterministic encryption and confidential



SC.Setup(1k)

λss ← SS.Setup(1k)

λpke ← PKE.Setup(1k)
λsc ← (λss , λpke)
Return (λsc)

SC.Kgr(λsc)
Parse λsc as (λss , λpke)
(pkR, skR)← PKE.Kg(λpke)
Return (pkR, skR)

SC.Kgs(λsc)
Parse λsc as (λss , λpke)
(pkS , skS)← SS.Kg(λss)
Return (pkS , skS)

SC.SignCrypt(λsc , pkR, skS ,m)
Parse λsc as (λss , λpke)
c← PKE.Enc(λpke , pkR, (pkS ||m))
σ ← SS.Sign(λss , skS , (pkR||m))
Return C = (c, σ)

SC.UnSignCrypt(λsc , skR, pkS , C)
Parse λsc as (λss , λpke)
Parse C as (c, σ)
(pk ′S ||m′)← PKE.Dec(λpke , skR, c)
If pk ′S 6= pkS , reject
Extract pkR from skR
If SS.Ver(λss , pkS , (pkR||m′), σ) = ⊥, reject
Return m′

Fig. 10. The Encrypt-and-Sign signcryption scheme.

signatures. However, many of the classic composition theorems, such as encrypt-
then-sign, fail to achieve high-entropy security even when instantiated with se-
cure components.

However, we can show that the encrypt-and-sign (which is typically inse-
cure as a signcryption scheme) is secure when instantiated with an IND-CCA2
public-key encryption scheme and a strongly confidential signature scheme4. The
construction is given in Figure 10. The scheme can easily be shown to be unforge-
able (in the sense that an attacker cannot obtain a signcryption of any message
which was not previously sent by that sender to that receiver).

Theorem 1. If the signature scheme is deterministic, strongly unforgeable, and
strongly confidential, and the encryption scheme is IND-CCA2 secure, then the
signcryption scheme is confidential in the high-entropy model. In particular, if
there exists an attacker A against the high-entropy security of the signcryption
scheme (asking `(k) challenge messages and making at most qsc(k) signcryption
queries), then there exist attackers Apke , Ass , and Asunf against the IND-CCA2
security of the encryption scheme, against the strong confidentiality of the signa-
ture scheme, and against the strong unforgeability of the signature scheme, such
that

AdvhSCR
E+S,A(k) ≤ `(k) · Advcca2

PKE,Apke
(k) + AdvsSig

SS,Ass
(k) + Advseuf−cma

SS,Asunf
(k) .

where the running times of Apke , Ass , and Asunf equal the one of A plus (qsc(k)+
`(k)) · (TimeSC.SignCrypt(k) + TimeSC.UnSignCrypt(k)) +O(k).

The security of this scheme can be proven in a manner similar to the encryp-
tion/signature composition theorems proven by An et al. [1].
4 Strongly confidential, probabilistic signature schemes are given in Sections 3.3

and 3.4. These can be transformed in a strongly confidential, deterministic signature
schemes using the derandomization techniques discussed in the next section.



4.3 Derandomization

Goldreich [17] presents a technique to turn any probabilistic signature scheme
into a deterministic one. The idea is to include the secret key κ of a pseudoran-
dom function (PRF.Kg, PRF) in the secret signing key and, when signing a message
m, use the random coins r = PRF(κ;m) in this process. Note that the resulting
scheme now yields the same signature if run twice on the same message. A formal
definition of a PRF can be found in Appendix A.

We show that Goldreich’s idea applies to signcryption schemes as well, taking
advantage of the fact that a signcryption scheme involves a secret signing key in
which we can put the key κ of the pseudorandom function. Nonetheless, whereas
a probabilistic signcryption scheme usually hides the fact that the same message
has been encrypted twice, a derandomized version clearly leaks this information.

For a signcryption scheme SC the derandomized version SCPRF based on a
pseudorandom function PRF works according to Goldreich’s strategy:

SC.SetupPRF(1k):
Return λsc ← SC.Setup(1k)

SC.KgsPRF(λsc):
(skS , pkS)← SC.Kgs(λsc)
κ← PRF.Kg(1k)
skPRF
S ← (skS , κ); pkPRF

S ← pkS
Return (skPRF

S , pkPRF
S )

SC.KgrPRF(λsc):
Return (skR, pkR)← SC.Kgr

SC.SignCryptPRF(skPRF
S , pkR,m):

Parse skPRF
S as (skS , κ)

r ← PRF(κ, (pkR,m))
C ← SC.SignCrypt(skS , pkR,m; r)

(i.e. using randomness r)
Return C

SC.UnSignCryptPRF(skR, pkPRF
S , C):

Return SC.UnSignCrypt(skR, pkS , C)

Proposition 7 (Derandomized Signcryption). Let SC be an unforgeable
and high-entropy (resp. low-entropy) confidential signcryption scheme. Then the
scheme SCPRF is a deterministic, unforgeable signcryption scheme which is high-
entropy (resp. low-entropy) confidential. That is, for x ∈ {l, h} and any adver-
sary A = (A1,A2) against xSCR confidentiality, there exist adversaries D and
B = (B1,B2) such that

AdvxSCR
SCPRF,A(k) ≤ 2 ·AdvPRF

D (k) + AdvxSCR
SC,B (k) + 2qsc(k) · `(k) · π(k)

where D’s running time is identical to the time of A, plus TimeSC.Setup(k) +
TimeSC.Kgs(k)+TimeSC.Kgr(k)+(qsc+`(k))·TimeSC.SignCrypt(k)+O(k); the running
time of B equals the time of A plus O(qsc · log qsc).
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A Standard Security Notions

A.1 Signature Schemes

The standard notion for signature security is that of (strong) existential unforge-
ability under chosen message attacks (sEUF-CMA). The strong version is defined
below. Freshness of (m,σ) indicates that σ was never received by A as response
to a signing request on m.

Advseuf−cma
SS,A (k) = Pr

SS.Ver(λss , pk ,m, σ) = >
(m,σ) is fresh :

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)
(m,σ) R← ASS.Sign(λss ,sk ,·)(λpke , pk)

 .



The advantage Adveuf−cma
SS,A (k) of the slightly weaker notion (EUF-CMA) is

defined analogously, but this time m only needs to be fresh.

A.2 Public-Key Encryption

A public key encryption scheme is a tuple of algorithms PKE = (PKE.Setup,
PKE.Kg, PKE.Enc, PKE.Dec). First the common parameters for the given security
level k ∈ N are generated by λpke

R← PKE.Setup(1k) after which a user’s pub-
lic/private keys are generated using (pk , sk) R← PKE.Kg(λpke). Given such a key
pair, a message m ∈ {0, 1}∗ is encrypted by c R← PKE.Enc(λpke , pk ,m); a cipher-
text is decrypted by m R← PKE.Dec(λpke , sk , c). For consistency, we require that
for all messages m ∈ {0, 1}∗, we have that PKE.Dec(sk , PKE.Enc(pk ,m)) = m.

We require a PKE is secure against IND-CCA2 attacks [21, 13], for which the
advantage of an adversary A = (A1,A2) is defined as

Advcca2
PKE,A(k) =

∣∣Pr
[

Exptcca2−0
A = 1

]
− Pr

[
Exptcca−1

A = 1
]∣∣ ,

where (for b ∈ {0, 1}):

Exptcca2−b
A

λpke
R← PKE.Setup(1k)

(pk , sk) R← PKE.Kg(λpke)
(m0,m1, ω) R← APKE.Dec(λpke ,sk ,·)

1 (λpke , pk)
c∗ R← PKE.Enc(λpke , pk ,mb)
b′ R← APKE.Dec(λpke ,sk ,·)

2 (c∗, ω)
Output 1 if b′ = b

The adversary A2 is may not query PKE.Dec(sk , ·) with c∗. A PKE scheme
PKE is IND-CCA2 secure if the advantage function Advcca2

PKE,A(k) is a negligible
function for all probabilistic polynomial-time adversaries A = (A1,A2).

A.3 Pseudo-Random Functions

A pseudo-random function is a pair of algorithms PRF = (PRF.Kg, PRF). The key
generation algorithm outputs a key κ R← PRF.Kg(1k). For our purposes, a pseudo-
random function PRF(κ, ·) takes arbitrary bitstrings as inputs and outputs a
bitstring in a given space R. Let F be the set of all functions from f : {0, 1}∗ →
R. The security of a PRF against a PPT attacker A is defined by the following
two games:

ExptPRF−0
A (k):

κ R← PRF.Kg(1k)
Return APRF(κ,·)(1k)

ExptPRF−1
A (k):

f R← F
Return Af(·)(1k)

The attacker’s advantage is defined to be:

AdvPRF
PRF,A(k) = |Pr[ExptPRF−0

A (k) = 1]− Pr[ExptPRF−1
A (k) = 1]| .


