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Abstract. Sanitizable signatures allow a designated party, called the
sanitizer, to modify parts of signed data such that the immutable parts
can still be verified with respect to the original signer. Ateniese et al. (ES-
ORICS 2005) discuss five security properties for such signature schemes:
unforgeability, immutability, privacy, transparency and accountability.
These notions have been formalized in a recent work by Brzuska et
al. (PKC 2009), discussing also the relationships among the security no-
tions. In addition, they prove a modification of the scheme of Ateniese
et al. to be secure according to these notions.
Here we discuss that a sixth property of sanitizable signature schemes
may be desirable: unlinkability. Basically, this property prevents that one
can link sanitized message-signature pairs of the same document, thus
allowing to deduce combined information about the original document.
We show that this notion implies privacy, the inability to recover the
original data of sanitized parts, but is not implied by any of the other
five notions. We also discuss a scheme based on group signatures meeting
all six security properties.

1 Introduction

For a regular signature scheme any modification of the message makes the sig-
nature for the modified message invalid. In some applications, though, it may
be preferable to support message modifications such that one can still verify the
authenticity of the immutable message part, and that only authorized parties
can make such changes. Signature schemes having this property are called sani-
tizable, as introduced by Ateniese et al. [1]. Related concepts have been discussed
concurrently in [24,23,20].

Ateniese et al. [1] discuss the applicability of sanitizable signatures to anony-
mization of medical data, replacing commercials in authenticated media streams
or updates of reliable routing information. They identified five desirable security
properties for sanitizable signature schemes. Informally, these are:

Unforgeability. Says that no one except for the honest signer and sanitizer
can create valid signatures.

Immutability. Demands that even a malicious sanitizer cannot change message
parts which have not been marked as modifiable by the signer.

Privacy. Prevents an outsider to recover the original data of sanitized message
parts.



Transparency. Covers the indistinguishability of signatures created by the
signer or the sanitizer.

Accountability. Refers to the inability of a malicious signer or sanitizer to
deny authorship.

Brzuska et al. [3] define these five properties with game-based approaches for-
mally and relate them, showing that accountability implies unforgeability and
transparency implies privacy; all other properties are independent. They also
prove a modification of the scheme by Ateniese et al. [1] to be secure according
to these five properties.

Unlinkability. Here we discuss that an additional property may be useful in
some settings. We call this property unlinkability and motivate it by the follow-
ing example (see also Figure 1): Assume that we have signed medical records
and at some point we anonymize the data by redacting the personal information
of the patients like names, addresses etc. At some other time, say for revenues
reasons, we remove the actual medical treatments and leave only the personal
information. Then one should not be able to link these data through the (san-
itized) signatures and therefore reconstruct the full records. However, previous
schemes like the one by Brzuska et al. [3] and, for example, the ones in [21,11,10]
in fact allow such attacks. They are usually based on chameleon hashes which
remain unchanged for the sanitization step and thus allow to identify two sani-
tized signatures derived from the same signature through the hash value. Other
constructions like the one in [23] even come with an explicit document identifier,
allowing to link sanitized messages easily.

Fig. 1: Linkability problem

We hence introduce a formal definition of unlinkability and relate it to the
previously given notions. It turns out that unlinkability is not implied by any of
the other properties, but vice versa implies privacy. The reason is that privacy
prevents an adversary of recovering the original data for sanitized parts, and
violation of this property also enables the adversary to reconstruct and to link
messages easily.



Construction. We then present a construction of a sanitizable signature scheme
obeying all six properties, including unlinkability. The idea is fundamentally
different from previous approaches which usually rely on chameleon hashes. In
our case the signer first signs the fixed parts with a regular signature scheme. For
the modifiable parts the signer and the sanitizer use a group signature scheme
[13], i.e., a signature scheme which allows to sign anonymously on behalf of the
group but such that a group manager can revoke the identity of the user that
has signed [5]. In our case the group only consists of the signer and sanitizer,
and the signer also incarnates the group manager. If the sanitizer later changes
(some of) the modifiable message parts it can create a new group signature and
replace the signer’s group signature.

The anonymity of the group signature scheme in our context guarantees
transparency (the indistinguishability of signatures originating from the signer
and the sanitizer). The possibility to identify a group member by the group
manager (i.e., the signer in our case) supports sanitizer-accountability, i.e., the
ability to provide a proof that the sanitizer has created the signature. Signer-
accountability is provided by the non-frameability of the group signature scheme
which prevents a malicious group manager (i.e., the signer) from falsely accus-
ing the sanitizer to be the source of a signature. Immutability follows from the
unforgeability of the regular signature scheme for the fixed parts, and unlinka-
bility from the fact that the sanitizer signs the entire message from scratch (the
signature for fixed message parts remains unchanged).

We remark that the actual construction needs a careful implementation of the
idea above to make the derived sanitizable signature scheme satisfy all desired
security properties. This is in particular true since proposed group signature
schemes in the literature like [5,9,22,14,18,19] come with varying security fea-
tures and set-up assumptions. In this version we thus present a simple but not
necessarily the most practical approach to turn our idea into a secure sanitizable
scheme, e.g., following the definitions in [3] we do not rely on the fact that pub-
lic keys of the signer or sanitizer are registered, although this is most likely in
practice. In the full version we discuss further variations, e.g., multiple sanitiz-
ers, or using a ring signature scheme instead of a group signature scheme, thus
dropping the accountability requirement for the derived sanitizable scheme.

Our solution shows that, in general, sanitizable signatures can be built from
group signatures, thereby providing a new application for the latter primitive.
This relation also immediately gives a feasibility result for sanitizable signatures:
Since the work by Bellare et al. [5] about group signatures proves that one can
derive them from IND-CCA secure encryption, non-interactive zero-knowledge
proofs and digital signatures, all known to exist given trapdoor permutations,
it follows that one can also build secure sanitizable signatures from trapdoor
permutations.

Organization. In Section 2 we introduce the notion of sanitizable signatures and
the security properties given in [1,3]. In Section 3 we discuss the notion of un-
linkability and its relationship to the other security properties. In Section 4 we



present our construction of a secure sanitizable scheme based on group signa-
tures.

2 Preliminaries

In this section we revisit the notion of sanitizable signatures and the previously
given security properties.

2.1 Sanitizable Signatures

In a sanitizable signature scheme both the signer and the sanitizer hold a key
pair (sksig, pksig), (sksan, pksan) such that the signer can sign messages with its
secret key sksig and “attach” a description of the admissible modifications adm

which are allowed to the sanitizer pksan. The sanitizer can then later change such
a message according to some modification mod and update the signature using
his secret key sksan. In order to settle disputes about the origin of a message-
signature pair the algorithm Proof enables the signer to produce a proof π from
previously signed messages that a signature has been created by the sanitizer.
This proof can then be verified with the help of the Judge algorithm (but which
only needs to decide about the origin in case of a valid message-signature pair
in question; for invalid pairs such decisions are in general impossible).

To model admissible modifications we assume that adm and mod are (de-
scriptions of) efficient deterministic algorithms such that mod maps any message
m to the modified message m′ = mod(m), and adm(mod) ∈ {0, 1} indicates if
the modification is admissible and matches adm, in which case adm(mod) = 1.
For example, for messages m = m[1] . . .m[k] divided into blocks m[i] of equal
bit length t we can let adm contain t and the indices of the modifiable blocks,
and mod then essentially consists of pairs (j, m′[j]) defining the new value for
the j-th block.

For ease of notation we let fixadm be an efficient deterministic algorithm
which is uniquely determined by adm and which maps m to the immutable
message part fixadm(m), e.g., for block-divided messages fixadm(m) is the con-
catenation of all blocks not appearing in adm. To exclude trivial examples we
demand that admissible modifications leave the fixed part of a message un-
changed, i.e., fixadm(m) = fixadm(mod(m)) for all m ∈ {0, 1}∗ and all mod

with adm(mod) = 1. Analogously, to avoid choices like fixadm having empty
output, we also require that the fixed part must be “maximal” given adm, i.e.,
fixadm(m′) 6= fixadm(m) for m′ /∈ {mod(m) | mod with adm(mod) = 1}.

Jumping ahead, we note that for our construction based on group signatures
we make another assumption on adm. This property, denoted modification-
decidability, allows to decide efficiently for given messages m, m∗ and adm

whether m∗ is an admissible modification of m with respect to adm or not.
This property is for example satisfied for the block-based approach. However,
for our definitions of the security properties and their relationships we do not
impose any restriction at this point.

The following definition is taken from [3]:



Definition 1 (Sanitizable Signature Scheme). A sanitizable signature scheme
SanSig consists of seven efficient algorithms (KGensig, KGensan, Sign, Sanit, Verify,
Proof, Judge) such that:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
corresponding public key:

(pksig, sksig)← KGensig(1
n), (pksan, sksan)← KGensan(1n)

Signing. The Sign algorithm takes as input a message m ∈ {0, 1}∗, the secret
key sksig of the signer, the public key pksan of the sanitizer, as well as a
description adm of the admissibly modifiable message parts. It outputs a
signature (or ⊥, indicating an error):

σ ← Sign(m, sksig, pksan,adm).

We assume that adm is recoverable from any signature σ 6=⊥.
Sanitizing. Algorithm Sanit takes a message m ∈ {0, 1}∗, a signature σ, the

public key pksig of the signer and the secret key sksan of the sanitizer. It
modifies the message m according to the modification instruction mod and
determines a new signature σ′ for the modified message m′ = mod(m). Then
Sanit outputs m′ and σ′ (or possibly ⊥ in case of an error).

(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)

Verification. The Verify algorithm outputs a bit d ∈ {true, false} verifying
the correctness of a signature σ for a message m with respect to the public
keys pksig and pksan.

d← Verify(m, σ, pksig, pksan)

Proof. The Proof algorithm takes as input the secret signing key sksig, a mes-
sage m and a signature σ as well a set of (polynomially many) additional
message-signature pairs (mi, σi)i=1,2,...,q and the public key pksan. It outputs
a string π ∈ {0, 1}∗:

π ← Proof(sksig, m, σ, (m1, σ1), . . . , (mq, σq), pksan)

Judge. Algorithm Judge takes as input a message m and a valid signature σ, the
public keys of the parties and a proof π. It outputs a decision d ∈ {Sig, San}
indicating whether the message-signature pair has been created by the signer
or the sanitizer:

d← Judge(m, σ, pksig, pksan, π)

For a sanitizable signature scheme the usual correctness properties should hold,
saying that genuinely signed or sanitized messages are accepted and that a gen-
uinely created proof by the signer leads the judge to decide in favor of the signer.
For a formal approach to correctness see [3].



2.2 Security of Sanitizable Signatures

Here we recall the security notions for sanitizable signatures given by Brzuska
et al. [3]. We note that, there, they show that signer and sanitizer accountability
together imply unforgeability, and that transparency implies privacy. Hence, in
principle it suffices to show immutability, accountability and transparency. We
therefore omit the formal definitions of unforgeability and privacy here and refer
the reader to the full version of the paper.

Immutability. This property demands informally that a malicious sanitizer can-
not change inadmissible blocks. In the attack model below the malicious sani-
tizer A interacts with the signer to receive signatures σi for messages mi, de-
scriptions admi and keys pksan,i of its choice, before eventually outputting a

valid pair (pk∗san, m∗, σ∗) such that message m∗ is not a “legitimate” trans-
formation of one of the mi’s under the same key pk∗san = pksan,i. The lat-

ter is formalized by requiring that for each query pk∗san 6= pksan,i or m∗ /∈
{mod(mi) |mod with admi(mod) = 1} for the value admi in σi, e.g., that for
block-divided messages m∗ and mi differ in at least one inadmissible block. As
the adversary can query the signer for several sanitizer keys pksan, the security
definition also covers the case where the signer interacts with several sanitizers
simultaneously.

Definition 2 (Immutability). A sanitizable signature scheme SanSig is im-
mutable if for any efficient algorithm A the probability that the following exper-
iment Immutability

SanSig
A

(n) returns 1 is negligible (as a function of n).

Experiment Immutability
SanSig
A

(n)
(pksig, sksig)← KGensig(1

n)

(pk∗san, m∗, σ∗)← ASign(·,sksig,·,·),Proof(sksig,...,·)(pksig)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign.
return 1 if

Verify(m∗, σ∗, pksig, pk
∗

san) = true and
for all i = 1, 2, . . . , q we have

pk∗san 6= pksan,i or

m∗ /∈ {mod(mi) |mod with admi(mod) = 1}

Accountability. Accountability says the origin of a (sanitized) signature should
be undeniable. There are the following two types of accountability: sanitizer-
accountability says that, if a message has not been signed by the signer, then
even a malicious sanitizer should not be able to make the judge accuse the
signer. Signer-accountability says that, if a message and its signature have not
been sanitized, then even a malicious signer should not be able to make the judge
accuse the sanitizer.

In the sanitizer-accountability game let ASanit be an efficient adversary play-
ing the role of the malicious sanitizer. Adversary ASanit has access to a Sign and
Proof oracle. Her task is to output a valid message-signature pair m∗, σ∗ together



with a key pk∗san (with (pk∗san, m∗) being different from pairs (mi, pksani) pre-
viously queried to the Sign oracle) such that the proof produced by the signer
via Proof still leads the judge to decide “Sig”, i.e., that the signature has been
created by the signer.

Definition 3 (Sanitizer-Accountability). One calls a sanitizable signature
scheme SanSig sanitizer-accountable if for any efficient ASanit the probability
that the following experiment San-Accountability

SanSig
ASanit

(n) returns 1 is negligible
(as a function of n).

Experiment San-Accountability
SanSig
ASanit

(n)
(pksig, sksig)← KGensig(1

n)

(pk∗san, m∗, σ∗)← A
Sign(·,sksig,·,·),Proof(sksig,...,·)
Sanit (pksig)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign

π ← Proof(sksig, m
∗, σ∗, (m1, σ1), . . . , (mq, σq), pk

∗

san)
return 1 iff

(pk∗san, m∗) 6= (pksan,i, mi) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pksig, pk
∗

san) = true, and
Judge(m∗, σ∗, pksig, pk

∗

san, π) = Sig

In the signer-accountability game a malicious signerASign gets a public sanitizing
key pksan as input. She is allowed to query a sanitizing oracle about tuples
(mi,modi, σi, pksig,i

) receiving answers (m′
i, σ

′
i). Adversary ASign finally outputs

a tuple (pk∗sig, m
∗, σ∗) and is considered to succeed if Judge accuses the sanitizer

for the new key-message pair pk∗sig, m
∗ with a valid signature σ∗.

Definition 4 (Signer-Accountability). A sanitizable signature scheme SanSig

is called signer-accountable if for any efficient ASign the probability that the fol-

lowing experiment Sig-Accountability
SanSig
ASign

(n) returns 1 is negligible (as a function

of n):

Experiment Sig-Accountability
SanSig
ASign

(n)

(pksan, sksan)← KGensan(1n)

(pk∗sig, m
∗, σ∗)← A

Sanit(·,·,·,·,sksan)
Sign (pksan)

letting (m′
i, σ

′
i) for i = 1, 2, . . . , q

denote the answers from oracle Sanit.
return 1 iff

(pk∗sig, m
∗) 6= (pksig,i

, m′
i) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pk∗sig, pksan) = true and
Judge(m∗, σ∗, pk∗sig, pksan, π∗) = San

Transparency. We define transparency by the following adversarial game. We
consider an adversary A with access to Sign, Sanit and Proof oracles with which
the adversary can create signatures for (sanitized) messages and learn proofs. In
addition, A gets access to a Sanit/Sign box which contains a secret random bit
b ∈ {0, 1} and which, on input a message m, a modification information mod

and a description adm



– for b = 0 runs the signer algorithm to create σ ← Sign(m, sksig, pksig,adm),
then runs the sanitizer algorithm and returns the sanitized message m′ with
the new signature σ′, and

– for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the
signing algorithm to create a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable
signature is now said to be transparent if for all efficient algorithms A the prob-
ability for a right guess a = b in the above game is negligibly close to 1

2 . Below
we also define a relaxed version called proof-restricted transparency and discuss
the idea after the definition.

Definition 5 ((Proof-Restricted) Transparency). A sanitizable signature
scheme SanSig is (proof-restricted) transparent if for any efficient algorithm

A the probability that the following experiment Transparency
SanSig
A

(n) returns 1 is
negligibly close to 1

2 .

Experiment Transparency
SanSig
A

(n)
(pksig, sksig)← KGensig(1

n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}

a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...,·),Sanit/Sign(·,·,·,sksig,sksan,pksig,pksan,b)

with input (pksig, pksan)
where oracle Sanit/Sign for input mk,modk,admk

first computes σk ← Sign(mk, sksig, pksan,admk),
then computes (m′

k, σ′
k)← Sanit(mk,modk, σk, pksig, sksan),

then, if b = 1, replaces σ′
k by σ′

k ← Sign(m′
k, sksig, pksan,admk),

and finally returns (m′
k, σ′

k).
return 1 iff

a = b
(and, in the proof-restricted case, A has not queried
any m′

k output by Sanit/Sign to Proof)

The original definition of Brzuska et al. [3] does not consider the proof-
restricted case. Without this restriction, though, achieving transparency at first
seems to be impossible because the adversary can then always submit the replies
of the Sanit/Sign oracle to the Proof oracle and thereby recover the secret bit b.
However, in their construction the Proof algorithm searches in the list of previ-
ously signed messages and only gives a useful answer if it finds a match, enabling
transparency without this restriction. Yet, any solution (like ours here) where
the Proof algorithm is “history-free” can only achieve the proof-restricted ver-
sion. Note that Proof algorithms forgoing the set of previously signed messages
are preferable from an efficiency point of view, of course.

As for the implications among the security notions [3] we note that proof-
restricted transparency only implies a proof-restricted form of privacy, where the
answer messages of the LoRSanit oracle cannot be submitted to the Proof oracle
either. However, since we show in the next section that unlinkability implies full



privacy and our construction achieves unlinkability, our scheme is also private
in the non-restricted sense. We note that all the separation results in [3] remain
valid for proof-restricted transparency.

3 Unlinkability

In this section we define unlinkability formally and discuss its relationship to the
other security notions.

3.1 Definition

As explained in the introduction, unlinkability refers to the impossibility to
use the signatures to identify sanitized message-signature pairs originating from
the same source. Technically, we use an indistinguishability-based approach to
define this property, saying that, given a signature for a sanitized message of two
possible sources, the adversary cannot predict the actual original message better
than by guessing. This should even hold if the adversary herself provides the two
source message-signature pairs and modifications of which one is sanitized. The
stipulation here is that the two modifications yield the same sanitized message.
Else, if for example the sanitized messages still contain some unique but distinct
entry, then predicting the source is easy, of course. This, however, is beyond the
scope of signature schemes: the scheme should only prevent that signatures can
be used to link data.

Formally, we use a game-based approach to define unlinkability, similar to
the other security notions in [3]. The adversary is given access to a signing oracle
and a sanitizer oracle (and a proof oracle since this step depends on the signer’s
secret key and may leak valuable information). The adversary is also allowed to
query a left-or-right oracle LoRSanit which is initialized with a secret random
bit b. In each of the multiple queries to LoRSanit the adversary provides a pair
of tuples, each consisting of a message, a modification and a valid signature,
such that the recoverable description of admissible modifications is identical in
both cases (since we assume that adm is recoverable from a signature providing
distinct descriptions adm would allow a trivial attack; so would the case that only
one signature is valid). Depending on the bit b, the adversary gets the sanitized
message-signature pair of either the left or right input pair. The adversary should
eventually predict the bit b significantly better than with the guessing probability
of 1

2 .

Definition 6 (Unlinkability). A sanitizable signature scheme SanSig is un-
linkable if for any efficient algorithm A the probability that the following exper-
iment Unlinkability

SanSig
A

(n) returns 1 is negligibly close to 1
2 .

Experiment Unlinkability
SanSig
A

(n)
(pksig, sksig)← KGensig(1

n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}



a← ASign(sksig,··· ),Sanit(sksan,··· ),Proof(sksig,··· ),LoRSanit(sksig,sksan,b,··· )(pksig, pksan)
where oracle LoRSanit(·, ·, ·, sksig, sksan, b), on input
(mj,0,modj,0, σj,0,mj,1,modj,1, σj,1) with recoverable admj,0 = admj,1

Verify(mj0 , σj,0, pksig, pksan) = true, Verify(mj1 , σj,1, pksig, pksan) = true,
returns (m′

j , σ
′
j)← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj,0) ≡ (mj,1,modj,1,admj,1),
i.e., are mapped to the same modified message.

return 1 if a = b.

A pictorial description is given in Figure 2. We note that the definition above is
for example robust concerning several sanitization steps in the LoRSanit oracle.
That is, we could allow the adversary in the experiment above to submit ar-
bitrarily long “modification chains” mod1

j,0, . . . ,modm
j,0 and mod1

j,1, . . . ,modm
j,1

such that the two source documents are gradually sanitized with a match in the
resulting documents. Still, predicting b remains hard, as such chains can poten-
tially be simulated by calling the sanitizer oracle for the first m−1 modifications
manually, before entering the final sanitization step into the LoRSanit oracle.

A

pksig, pksan sksig sksan

a

b← {0, 1}

Sign

Proof

Sanit

LoRSanit

mj , admj , pksan

σj

mj, modj , σj , pksig

m′

j , σ′

j

mj , σj , (m, σ), pksan

πj

mj,0,modj,0, σj,0, admj,0

mj,1,modj,1, σj,1,
=

admj,1

m′

j , σ
′

j

Fig. 2: Unlinkability. A wins if it outputs a = b.

Recall the example of medical records which are sanitized twice, one time
basically removing the personal information and the other time removing the
medical data. Our notion of unlinkability can then be used to show that such
sanitized message-signature pairs do not allow to reconstruct the full data better
than by guessing. Assume for simplicity that we only have two records with
entries (name#0, data#0) and (name#1, data#1). Then we create all four possible



combinations (name#a, data#b) for a, b ∈ {0, 1} and ask for signatures for them
(with both parts being admissibly changeable). For each a ∈ {0, 1} we then
insert the pairs (name#a, data#0) and (name#a, data#1) twice into the LoRSanit

oracle, one time cutting off the name-part, the other time removing the data-part.
Altogether we make thus four calls to the LoRSanit oracle, and we hand those
four replies to the adversary. Our unlinkability definition says that one cannot
distinguish the two cases (left or right sanitization) better than by guessing, thus
also disallowing to tell which data belong to whose name.

Our definition above is for unlinkability with respect to message-signature
pairs sanitized by the same sanitizer. One can easily extend the above definition
by demanding that the adversary can also determine different sanitizers for the
left and for the right input data. But then both sanitizers must have been de-
clared to have the permission to sanitize, otherwise one could easily determine
the secret bit of the LoRSanit by picking an invalid sanitizer for one of the input
tuples.

3.2 Relationships of the Security Notions

We first show that unlinkability does not follow from any of the other security re-
quirements. Then we prove that unlinkability implies privacy, and finally discuss
that unlinkability does not imply any of the other properties.

Proposition 1 (Independence of Unlinkability). Assume that there exists
a sanitizable signature scheme (obeying one or more of the properties unforgeabil-
ity, immutability, privacy, (proof-restricted) transparency, signer-accountability
and sanitizer-accountability). Then there exists a sanitizable signature scheme
which is not unlinkable but preserves the other security properties.

The proof follows by simply appending a unique identifier id to each signature.
This does not destroy any of the other security properties but clearly violates
unlinkability. The proof of the following is straightforward as the privacy ex-
periment is essentially the unlinkability experiment with less control for the
adversary:

Proposition 2 (Unlinkability Implies Privacy). Any unlinkable sanitizable
signature scheme is also private.

With the next proposition we show that unlinkability does not imply any of
the other security properties (assuming that we start with a secure sanitizable
signature scheme like the one we construct in the next section):

Proposition 3 (Independence of Other Properties). Assume that there
exists a sanitizable signature scheme which is unforgeable, immutable, private,
(proof-restricted) transparent, signer-accountable, sanitizer-accountable and un-
linkable. Then for any of the properties immutability, transparency, unlinkability,
signer-accountability and sanitizer-accountability, there exists a sanitizable sig-
nature scheme obeying all properties except for the one in question.



Proof. The fact that unlinkability does not follow from the other properties has
already been shown in Proposition 1. For the other properties we remark that
the counterexamples in [3] which seperate immutability, transparency, signer-
accountability and sanitizer-accountability from the other properties also pre-
serve unlinkability in each case (and also hold for proof-restricted transparency).

ut

4 Constructions based on Group Signatures

In this section we present our unlinkable sanitizable signature scheme (which also
satisfies the other security properties). As explained in the introduction, the idea
is to use a group signature scheme for the group consisting of the signer and the
sanitizer, such that the signer signs the immutable message part with a regular
signature scheme and the full message with the group signature scheme. The
sanitizer can then update the full message and only sign this second component.
The signer also takes over the role of the group manager in order to provide
accountability.

4.1 Group Signatures

Group signatures, introduced by Chaum and van Heyst [13], allow a set of users
to sign on behalf of the group such that outsiders cannot distinguish between dif-
ferent signers (anonymity) but such that a group manager can trace the signer’s
identity (traceability). We follow the formal framework of Bellare et al. [5] but
add the non-frameability requirement [9] that even the group manager cannot
sign on behalf of the users. Recall that this is necessary for the accountability
in our sanitizable signature scheme, where the signer acts as the group manager
and should not be able to make the judge falsely accuse the sanitizer.

We briefly recall group signature schemes and their security properties. For
comprehensive definitions see the full version of the paper and [5]. A group
signature scheme GS consists of six efficient algorithms GS = (GKGen, UKGen,
GSig, GVf, Open, GJudge) where

– (skuser, pkuser)← UKGen(1n) generates individual user key pairs,
– (gmsk, gpk, cert) ← GKGen(1n,gpkuser) takes the tuple gpkuser of the

users’ public keys and generates a group manager secret key gmsk, a group
public key gpk and an individual certificate certi for each user, where cert

designates the tuple of all certi,
– σ ← GSig(skuser,i, certi, gpk, m) signs a message m given the user’s secret

data skuser,i, certi and the group’s public key gpk,
– (i, π)← Open(gmsk, m, σ,gpkuser , gpk) on input a message m and signature

σ returns the index i of the alleged signer and a proof π such that
– GJudge(m, σ, i, π, gpk,gpkuser) either confirms the accusation or denies it.

There are three security properties for group signatures [5,9]:



Anonymity. Means that one cannot tell from a group signature who signed a
message, even if one knows the secret data of the user and can ask the group
manager to reveal the identities for other signatures.

Traceability. Refers to the fact that a malicious user cannot falsely accuse
an honest user to be the signer of a message, even if the malicious user is
allowed to see other signatures generated by this honest user and can call
the group manager.

Non-Frameability. Strengthens traceability in the sense that even if the ma-
licious user colludes with the group manager they cannot frame an honest
user.

Definition 7 (Secure Group Signature). We call a group signature scheme
secure if it is anonymous and non-frameable.

Note that we tailor the group signature definitions to our needs thereby adding
non-frameability, making the scheme syntax setup session free and relaxing the
security model concerning some technical issues which are discussed in the full
version of this paper. As for instantiations we remark that the (generic) construc-
tion by Bellare et al. [5] satisfies our adapted definitions. As for more efficient
group signature schemes, we can implement our sanitizable signature scheme
with other group signature schemes like [22,14,18,19]. Yet, these group signa-
ture schemes need additional set-up assumptions like a trusted party generating
common parameters or interactive registration of users. Our sanitizable signature
scheme then inherits these characteristics (recall that, in practice, registration
of signer and sanitizer keys is for example necessary to provide meaningful ac-
countability).

4.2 Construction

In this section we show that the new security requirement of unlinkability can be
achieved in combination with the five established security properties formalized
in [3]. Recall that we sign the entire message, including the modifiable parts, with
the group signature scheme, and —in order to prevent inadmissible changes—
the signer also signs the fixed part with a regular scheme. This requires some care
because if we take an arbitrary signature scheme then the signature itself may
act as a unique identifier, even for messages with identical fixed parts. Thereby,
unlinkability would be violated.

The solution is to use a secure deterministic signature scheme for the fixed
part (such that the signature is identical for messages with the same fixed part).
Alternatively, one can deploy a rerandomizable signature scheme such that the
sanitizer can rerandomize the signature, excising the link to the input signature.
Below we use the “deterministic solution” for simplicity, and since every secure
signature scheme can be easily turned into a deterministic one via pseudorandom
functions [15].

For a formal definition of strongly unforgeable signature schemes see [17].
We need this unforgeability notion (saying that one cannot even find a new



signature for a previously signed message) to provide unlinkability. Examples of
signature schemes achieving this strong notion are [6,12,4,2,8]. Moreover, it is
possible to obtain a strongly unforgeable signature scheme out of any unforgeable
signature scheme applying the transformation of Bellare and Shoup [7]. Applying
the transformation of [15] one can then make such schemes also deterministic.

Recall that the idea behind our scheme is that for each signature the signer
uses a group manager key, creates a certified user key to sign the modifiable
parts, and certifies the sanitizer’s public key as a group member to support
modifications. But since our definition of sanitizable signatures demands state-
free solutions, the signer formally cannot store the group manager key for this
sanitizer and would need to create a new one for each call. We bypass this as
follows: we let the signer for each signing request, including a public key of the
sanitizer pksan, create the group manager’s keys etc. via the corresponding group
signature algorithms, but provide the randomness for these algorithms by apply-
ing a pseudorandom function to pksan (see [16] for a definition of pseudorandom
functions). By this, we end up with (almost) independent keys for different san-
itizers, but use consistent parameters for each sanitizer. For the same reason we
also include the group membership certificate of the sanitizer in the signature,
although it would be given directly to the sanitizer instead. As a side effect, since
the group manager’s public key is tied to the sanitizer in question, we also rely
on group signatures with static joins only.

Construction 1 (Sanitizable Signature Scheme). Let S = (SKGen, SSign,
SVf) be a (regular) signature scheme, let GS = (GKGen, UKGen, GSig, GVf, Open,
GJudge) be a group signature scheme. Let PRF = (KGenprf, PRF) be pseudoran-
dom function. Define the sanitizable signature scheme SanSig = (KGensig, KGensan,
Sign, Sanit, Verify, Proof, Judge) as follows:

Key Generation. First, algorithm KGensig gets the input 1n and runs (ssk, spk)
← SKGen(1n) to create a key pair for the signature scheme, and then also
invokes k ← KGenprf(1

n) to derive a key for the pseudorandom function. It
outputs (sksig, pksig) = ((ssk, k), spk). Algorithm KGensan(1n) generates a key
pair (sksan, pksan) = (gsksan, gpksan) ← UKGen(1n) of the group signature
scheme.

Signing. Algorithm Sign on input m ∈ {0, 1}∗, sksig = (ssk, k), pksan,adm sets
mfix = fixadm(m) for the algorithm fixadm determined by adm. It runs the
user key generation algorithm (gsksig, gpksig)← UKGen(1n; PRF(k, 0‖pksan))
for randomness PRF(k, 0‖pksan) and afterwards the group manager algorithm
to compute

(gmsk, gpk, certsig, certsan)← GKGen(1n, (gpksig, pksan); PRF(k, 1‖pksan))

for randomness PRF(k, 1‖pksan). It computes

σfix = SSign(ssk, (mfix,adm, pksan, gpk)) and

σfull = GSig(gsksig, certsig, (m, pksig), gpk)



using the signing algorithms of the regular and of the group signature scheme.
The algorithm finally returns σ = (σfix, σfull,adm, pksan, certsan, gpk).

Sanitizing. Algorithm Sanit on input a message m, information mod, a sig-
nature σ = (σfix, σfull,adm, pksan, certsan, gpk), keys pksig and sksan first
recovers mfix = fixadm(m). It then checks that mod is admissible according
to adm and that σfix is a valid signature for message (mfix,adm, pksan, gpk)
under key spk. If not, it stops outputting ⊥. Else, it derives the modified
message m′ = mod(m) and computes

σ′
full = GSig(gsksan, certsan, (m′, pksig), gpk)

and outputs m′ together with σ′ = (σfix, σ
′
full,adm, pksan, certsan, gpk).

Verification. Algorithm Verify gets as input a message m ∈ {0, 1}∗, a sig-
nature σ = (σfix, σfull,adm, pksan, certsan, gpk) and public keys pksig = spk
and pksan. It first recovers mfix = fixadm(m). It then checks whether SVf(spk,
(mfix,adm, pksan, gpk), σfix) = 1 and GVf(gpk, (m, pksig), σfull) verifies un-
der the group public key as true, too. If so, it outputs 1, declaring the entire
signature as valid. Otherwise it returns 0, indicating an invalid signature.

Proof. Algorithm Proof gets as input sksig, m and σ = (σfix, σfull,adm, pksan,
certsan, gpk). It parses the key as sksig = (ssk, k) and recomputes

(gmsk, gpk′, cert′sig, cert
′
san) = GKGen(1n, (gpksig, pksan); PRF(k, 1||pksan))

and checks that gpk′ = gpk and cert′san = certsan (and immediately returns ⊥
if not). It next verifies that SVf(spk, (mfix,adm, pksan, gpk), σfix) = 1 and, if
so, computes and outputs (i, π) ← Open(gmsk, (m, pksig), σfull, gpk), where
i ∈ {Sig, San} is the identity returned by the Open algorithm (or, Proof

returns ⊥ if any of the verification steps above fail).
Judge. The judge on input m, σ, pksig, pksan and a proof (i, π) with i ∈ {Sig, San}

parses σ as (σfix, σfull,adm, pksan, certsan, gpk). It derives b← GJudge((m,
pksig), σfull, i, π, gpk) using the judge algorithm of the group signature scheme.
If b = true it outputs i, else it outputs i = Sig.

Completeness of signatures generated by the signer and sanitizer follows eas-
ily from the completeness of the underlying signature schemes and the fact that
fixadm leaves the fixed message parts unchanged for modified messages. There
is a negligible probability that a signature of the signer or the sanitizer also
verifies under the other party’s other key, yielding possibly a wrong answer from
the judge. We ignore this issue here for simplicity.

4.3 Security Proof

We need an additional property of the admissible modifications adm: given
arbitrary messages m, m∗ ∈ {0, 1}∗ (and a security parameter 1n) it should
be efficiently decidable whether m∗ ∈ {mod(m) |mod with adm(mod) = 1} or
not. We call such adm modification-decidable and a sanitizable signature scheme



modification-restricted if it only allows modification-decidable adm. As an exam-
ple consider again block-divided messages where adm describes the block-length
and the indices of changeable blocks. Then it is easy to check whether m∗ has
been changed in admissible blocks only or not.

Theorem 2. Let S be a strongly unforgeable deterministic signature scheme
and let GS be a secure group signature scheme. Assume further that PRF is
a pseudorandom function. Then the modification-restricted sanitizable signature
scheme in Construction 1 is unforgeable, immutable, private, proof-restricted
transparent, accountable and unlinkable.

As unlinkability implies privacy, and as moreover, sanitizer-accountability
and signer-accountability imply unforgeability, it suffices to prove these two
types of accountability as well as with unlinkability, immutability and (proof-
restricted) transparency.

For the proof idea note that we can reduce transparency of our sanitizable
signatures to anonymity of the underlying group signature scheme. Traceability
of the group signature scheme enables the group manager (i.e., the signer) to pro-
vide a proof that a message has indeed been signed by a certain group member.
Thus, if the sanitizer signs a message, the signer can produce evidence that this
signature originates from the sanitizer. This shows sanitizer-accountability. Vice
versa, the unframeability property of group signature scheme assures that the
group manager (i.e., the signer) cannot falsely accuse a group member of having
signed a message. Therefore, signer-accountability follows from unframeability.

The unforgeability of the underlying regular signature scheme assures im-
mutability: If the sanitizer changed admissible parts of a message, she would be
obliged to forge a signature for the fixed part. Unlinkability holds as the sanitizer
creates a new group signature from scratch when sanitizing. Furthermore, the
signature of the regular signature scheme remains unchanged, and is identical
for different documents with the same fixed part because we use a deterministic
scheme. The formal proof follows these ideas and appears in the full paper.

Acknowledgments

We thank the anonymous reviewers for valuable comments. Marc Fischlin, Anja
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