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Abstract. In functional encryption (FE) schemes, ciphertexts and pri-
vate keys are associated with attributes and decryption is possible when-
ever key and ciphertext attributes are suitably related. It is known that
expressive realizations can be obtained from a simple FE flavor called
inner product encryption (IPE), where decryption is allowed whenever
ciphertext and key attributes form orthogonal vectors. In this paper, we
construct (non-anonymous) IPE systems with constant-size ciphertexts
for the zero and non-zero evaluations of inner products. These schemes
respectively imply an adaptively secure identity-based broadcast encryp-
tion scheme and an identity-based revocation mechanism that both fea-
ture short ciphertexts and rely on simple assumptions in prime order
groups. We also introduce the notion of negated spatial encryption, which
subsumes non-zero-mode IPE and can be seen as the revocation analogue
of the spatial encryption primitive of Boneh and Hamburg.

Keywords. Functional encryption, identity-based broadcast encryption,
revocation, efficiency.

1 Introduction

Ordinary encryption schemes usually provide coarse-grained access control since,
given a ciphertext, only the holder of the private key can obtain the plaintext. In
many applications such as distributed file systems, the need for fine-grained and
more complex access control policies frequently arises. To address these concerns,
several kinds of functional public key encryption schemes have been studied.

Functional encryption can be seen as a generalization of identity-based en-
cryption (IBE) [24, 8]. In IBE schemes, the receiver’s ability to decrypt is merely
contingent on his knowledge of a private key associated with an identity that
matches a string chosen by the sender. In contrast, functional encryption (FE)
systems make it possible to decrypt using a private key skx corresponding to a
set x of atomic elements, called attributes, that is suitably related – according to
some well-defined relation R – to another attribute set y specified by the sender.
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The goal of this paper is to describe new (pairing-based) functional encryp-
tion constructions providing short ciphertexts (ideally, their length should not
depend on the size of attribute sets) while providing security against adaptive
adversaries or supporting negation (e.g. decryption should be disallowed to hold-
ers of private keys skx for which R(x,y) = 1).

Related Work. The first flavor of functional encryption traces back to the
work of Sahai and Waters [22] that was subsequently extended in [16, 21]. Their
concept, called attribute-based encryption (ABE), allows a sender to encrypt data
under a set of attributes ω while an authority generates private keys for access
control policies T . Decryption rights are granted to anyone holding a private key
for a policy T such that T (ω) = 1. Identity-based broadcast encryption (IBBE)
[2, 23, 13, 9] and revocation (IBR) [19] schemes can also be thought of as func-
tional encryption systems where ciphertexts are encrypted for a set of identities
S = {ID1, . . . , IDn}: in IBBE (resp. IBR) systems, decryption requires to hold a
private key skID for which ID ∈ S (resp. ID 6∈ S).

The above kinds of functional encryption systems are only payload hiding in
that they keep encrypted messages back from unauthorized parties but cipher-
texts do not hide their underlying attribute set. Predicate encryption schemes
[10, 18, 26, 25] additionally provide anonymity as ciphertexts also conceal the at-
tribute set they are associated with, which enables [7, 1] efficient searches over
encrypted data. In [18], Katz, Sahai and Waters devised a predicate encryption
scheme for inner products: a ciphertext encrypted for the attribute vector ~Y can
be opened by any key sk ~X such that ~X · ~Y = 0. As shown in [18], inner product
encryption (IPE) suffices to give functional encryption for a number of relations
corresponding to the evaluation of polynomials or CNF/DNF formulae.

Our Contributions. While quite useful, the IPE scheme of [18] strives to
anonymize ciphertexts, which makes it difficult to break through the linear com-
plexity barrier (in the vector length n) in terms of ciphertext size. It indeed seems
very hard to avoid such a dependency as long as anonymity is required: for in-
stance, anonymous FE constructions [10, 17] suffer from the same overhead. A
similar problem appears in the context of broadcast encryption, where the only
known scheme [3] that conceals the receiver set also has O(n)-size ciphertexts.

This paper focuses on applications of IPE schemes, such as identity-based
broadcast encryption and revocation systems, where the anonymity property is
not fundamental. Assuming public ciphertext attributes rather than anonymity
may be useful in other contexts. For instance, suppose that a number of cipher-
texts are stored with varying attributes y on a server and we want to decrypt
only those for which R(x,y) = 1. Anonymous ciphertexts require to decrypt all
of them whereas public attributes y make it possible to test whether R(x,y)
(which is usually faster than decrypting) and only decrypt appropriate ones.

At the expense of sacrificing anonymity, we thus describe IPE schemes where
the ciphertext overhead reduces to O(1) as long as the description of the cipher-
text attribute vector is not considered as being part of the ciphertext, which is
a common assumption in the broadcast encryption/revocation applications. In
addition, the number of pairing evaluations to decrypt is also constant, which
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significantly improves upon O(n), since pairings calculations still remain costly.
Our first IPE system achieves adaptive security, as opposed to the selective

model, used in [18], where the adversary has to choose the target ciphertext vec-
tor ~Y upfront. To acquire adaptive security, we basically utilize the method used
in the Waters’ fully secure IBE [27], albeit we also have to introduce a new trick
called “n-equation technique” so as to deal with the richer structure of IPE. Our
system directly yields the first adaptively secure identity-based broadcast en-
cryption scheme with constant-size ciphertexts in the standard model. Previous
IBBE with O(1)-size ciphertexts were either only selective-ID secure [2, 13, 9, 23]
or in the random oracle model [15]. Among IBBE systems featuring compact
ciphertexts (including selective-ID secure ones), ours is also the first one relying
on simple assumptions (i.e., no q-type assumption) in prime order groups.

It is worth mentioning that techniques developed by Lewko and Waters [20]
can be applied to the construction of Boneh and Hamburg [9] to give fully se-
cure IBBE with short ciphertexts in composite order groups. However, it was
not previously known how to obtain such a scheme in prime order groups (at
least without relying on the absence of computable isomorphism in asymmet-
ric pairing configurations). Indeed, despite recent progress [14], there is still no
black-box way to translate pairing-based cryptosystems from composite to prime
order groups. In particular, Freeman’s framework [14] does not apply to [20].

Our second contribution is an IPE system for non-zero inner products: ci-
phertexts encrypted for vector ~Y can only be decrypted using sk ~X if ~X · ~Y 6= 0,
which – without retaining anonymity – solves a question left open by Katz,
Sahai and Waters [18][Section 5.4]. The scheme implies the first identity-based
revocation (IBR) mechanism [19] with O(1)-size ciphertexts. Like the schemes of
Lewko, Sahai and Waters [19], its security is analyzed in a non-adaptive model
where the adversary has to choose which users to corrupt at the outset of the
game3. In comparison with [19] where ciphertexts grow linearly with the num-
ber of revoked users and public/private keys have constant size, our basic IBR
construction performs in the dual way since key sizes depend on the maximal
number of revoked users. Depending on the application, one may prefer one
scheme over the other one. We actually show how to generalize both implemen-
tations and obtain a tradeoff between ciphertext and key sizes (and without
assuming a maximal number of revoked users): the second scheme of [19] and
ours can be seen as lying at opposite extremities of the spectrum.

On a theoretical side, our non-zero IPE realization turns out to be a par-
ticular case of a more general primitive, that we call negated spatial encryption,
which we define as a negated mode for the spatial encryption primitive of Boneh
and Hamburg [9]. Namely, keys correspond to subspaces and can decrypt ci-
phertexts encrypted under points that lie outside the subspace. This generalized
primitive turns out to be non-trivial to implement and we had to use a fully

3 We indeed work in a slightly stronger model, called co-selective-ID, where the adver-
sary chooses which parties to corrupt at the beginning – before seeing the public key
– but is not required to announce the target revoked set until the challenge phase.
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generalized form of our new “n-equation” technique. The proposed scheme is
proven secure under a non-standard assumption defined in [19].

Our Techniques. The core technique of our non-zero IPE scheme will be used
throughout the paper, including in our adaptively secure zero IPE scheme. This
can be viewed analogously to fact that Waters’ fully secure IBE [27] uses the
revocation technique of [19]. Our non-zero IPE also builds on [19]. However, the
fact that non-zero IPE has much richer structure than revocation scheme and
the pursued goal of achieving constant ciphertext size together prevent us from
using their techniques directly. To describe the difficulties that arise, we first
outline the Lewko-Sahai-Waters revocation scheme in its simplified form where
security proof is not provided and where only one user is revoked.

Construction 1. (A simplified revocation scheme)

I Setup: lets (G,GT ) be bilinear groups of prime order p and picks g $← G,
α, α1, α2

$← Zp. The public key is
(
g, gα1 , gα2 , e(g, g)α

)
. The master key is gα.

I KeyGen: chooses t $← Zp and outputs a private key for an identity ID ∈ Zp as
(K0 = gt, K1 = gα+α1t, K2 = gt(α1ID+α2)).

I Encrypt: encrypts M and specifies a revoked ID′ by choosing s
$← Zp and

computing (E0 = M · e(g, g)αs, E1 = gs(α1ID′+α2), E2 = gs).

I Decrypt: decryption computes e(K2, E2)
1

ID−ID′ e(E1,K0)−
1

ID−ID′ = e(g, g)α1ts if
ID 6= ID′. It then computes e(g, g)αs as e(K1, E2)/e(g, g)α1ts = e(g, g)αs.

The scheme can be explained by viewing a key and a ciphertext as forming a
linear system of 2 equations in the exponent of e(g, g) with variables α1ts, α2ts.

MID,ID′

(
α1ts
α2ts

)
:=
(

ID 1
ID′ 1

)(
α1ts
α2ts

)
=
(

log(e(K2, E2))
log(e(E1,K0))

)
.

Computing e(g, g)α1ts amounts to solve the system, which is possible when
det(MID,ID′) 6= 0 (and thus ID 6= ID′, as required). In particular, decryption
computes a linear combination (in the exponent) with coefficients from the first
row of M−1

ID,ID′ which is ( 1
ID−ID′ ,

−1
ID−ID′ ). In [19], this is called “2-equation tech-

nique”. The scheme is extended to n-dimension, i.e., the revocation of n users
{ID′1, . . . , ID

′
n}, by utilizing n local independent systems of two equations

MID,ID′j

(
α1tsj , α2tsj

)>
=
(

log(e(K2, E2,j)), log(e(E1,j ,K0))
)>

for j ∈ [1, n],

that yield 2n ciphertext components (E1,j , E2,j), each one of which corresponds
to a share sj of s such that s =

∑n
1 sj . The decryption at j-th system returns

e(g, g)α1tsi if ID 6= ID′j . Combining these results finally gives e(g, g)α1ts.
We aim at constant-size ciphertexts for non-zero IPE schemes of dimension

n. When trying to use the 2-equation technique with n dimensions, the following
difficulties arise. First, the “decryptability” condition ~X · ~Y 6= 0 cannot be de-
composed as simply as that of the revocation scheme, which is decomposable as
the conjunction of ID 6= ID′j for j ∈ [1, n]. Second, the ciphertext size was O(n).
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Towards solving these, we introduce a technique called “n-equation tech-
nique”. First, we utilize n secret exponents ~α = (α1, . . . , αn)> and let α1 func-
tion as the “master” exponent while α2, . . . , αn serve as the “perturbed” factors.
Intuitively, we will set up a system of n linear equations of the form:

M ~X,~Y (α1ts, . . . , αnts)> =
(

log(e(Ki1 , Ej1)), . . . , log(e(Kin , Ejn))
)> (1)

where {Kik} and {Ejk} are elements of G defined for a key for ~X and a ciphertext
for ~Y respectively. At first, this generalized system seems to require linear-size
ciphertexts (Ej1 , . . . , Ejn). A trick to resolve this is to reuse ciphertext elements
throughout the system: we let Ejk = E2 = gs for k ∈ [1, n− 1]. This effectively
yields a constraint M ~X,~Y =

(
Q>~X R>

)>
, where Q ~X is a (n − 1) × n matrix

parameterized only by ~X and R is a 1 × n matrix. The remaining problem is
then to choose M ~X,~Y in such a way that the system has a solution if ~X · ~Y 6= 0
(the decryptability condition). To this end, we define

M ~X,~Y :=


−x2
x1

1
−x3
x1

1
...

. . .
−xnx1

1
y1 y2 y3 . . . yn

 , (2)

where it holds that det(M ~X,~Y ) = (−1)n+1 ~X · ~Y /x1. By translating this concep-
tual view back into algorithms, we obtain a basic non-zero IPE scheme. From
this, we propose two schemes for non-zero IPE: the first one is a special case of
negated spatial encryption scheme in section 5.1, while the second one is proven
secure under simple assumptions and given in section 5.2.

Organization. In the forthcoming sections, the syntax and the applications of
functional encryption are explained in sections 2 and 3. We describe our zero
mode IPE system in section 4. Our negated schemes are detailed in section 5.

2 Definitions

2.1 Syntax and Security Definition for Functional Encryption

Let R : Σk × Σe → {0, 1} be a boolean function where Σk and Σe denote
“key attribute” and “ciphertext attribute” spaces. A functional encryption (FE)
scheme for R consists of the following algorithms.

◦ Setup(1λ, des) → (pk,msk): takes as input a security parameter 1λ and a
scheme description des (which usually describes the dimension n), and outputs
a master public key pk and a master secret key msk.
◦ KeyGen(x,msk)→ skx: takes as input a key attribute x ∈ Σk and the master

key msk. It outputs a private decryption key skx.
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◦ Encrypt(y,M, pk)→ C: takes as input a ciphertext attribute y ∈ Σe, a message
M ∈M, and public key pk. It outputs a ciphertext C.
◦ Decrypt(C,y, skx,x) → M: given a ciphertext C with its attribute y and the

decryption key skx with its attribute x, it outputs a message M or ⊥.

We require the standard correctness of decryption, that is, for all λ, all
(pk,msk)← Setup(1λ), all x ∈ Σk, all skx ← KeyGen(x,msk), and all y ∈ Σe,

◦ If R(x,y) = 1, then Decrypt(Encrypt(y,M, pk), skx) = M.
◦ If R(x,y) = 0, Decrypt(Encrypt(y,M, pk), skx) = ⊥ with probability nearly 1.

Terminology and Variants. We refer to any encryption primitive A that can
be casted as a functional encryption by specifying its corresponding function
RA : ΣA

k ×ΣA
e → {0, 1}. For a FE primitive A, we can define two variants:

◦ Dual Variant, denoted by Dual(A), is defined by setting ΣDual(A)
k := ΣA

e and
Σ

Dual(A)
e := ΣA

k and RA(x,y) = RDual(A)(y,x). In a dual variant, the roles of
key and ciphertext attributes are swapped from those of its original primitive.
◦ Negated Variant, denoted by Neg(A), is defined by using the same domains

as A and setting RNeg(A)(x,y) = 1⇔ RA(x,y) = 0. The condition is thus the
opposite of the original primitive.

Security Definition. A FE scheme for a function R : Σk×Σe → {0, 1} is fully
secure if no PPT adversary A has non-negligible advantage in this game.

Setup. The challenger runs Setup(n) and hands the public key pk to A.

Query Phase 1. The challenger answers private key queries for x ∈ Σk by
returning skx ← KeyGen(x,msk).

Challenge. A submits messages M0,M1 and a target ciphertext attribute vector
y? ∈ Σe such that R(x,y?) = 0 for all key attributes x that have been queried
so far. The challenger then flips a bit β $← {0, 1} and computes the challenge
ciphertext C? ← Encrypt(y,Mβ , pk) which is given to A.

Query Phase 2. The adversary is allowed to make further private key queries
x ∈ Σk under the same restriction as above, i.e., R(x,y?) = 0.

Guess. The adversary A outputs a guess β′ ∈ {0, 1} and wins if β′ = β. In the
game, A’s advantage is typically defined as AdvA(λ) = |Pr[β = β′]− 1

2 |.

(Co-)Selective Security. We also consider the notion of selective security [11,
4], where A has to choose the challenge attribute y? before the setup phase, but
can adaptively choose the key queries for x1, . . . ,xq. One can consider its “dual”
notion where A must output the q key queries for attribute vectors x1, . . . ,xq
before the setup phase, but can adaptively choose the target challenge attribute
y?. We refer to this scenario as the co-selective security model, which is useful
in some applications such as revocation. By definition, both notions are incom-
parable in general and we do not know about their relation yet.

We shall show how one FE primitive can be obtained from another. The
following useful lemma from [9] describes a sufficient criterion for implication.
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Proposition 1 (Embedding Lemma [9]). Consider encryption primitives
A,B that can be casted as functional encryption for functions RA, RB, respec-
tively. Suppose there exists efficient injective mappings fk : ΣA

k → ΣB
k and

fe : ΣA
e → ΣB

e such that RB(fk(x), fe(y)) = 1⇔ RA(x,y) = 1. Let ΠB be a con-
struction for primitive B. We then construct ΠA for primitive A from ΠB by ap-
plying mappings fk, fe to all key attributes and ciphertext attributes, respectively.
More precisely, we use exactly the same setup algorithm and define key genera-
tion and encryption procedures as ΠA.KeyGen(x,msk) := ΠB.KeyGen(fk(x),msk)
and ΠA.Encrypt(y,M, pk) := ΠB.Encrypt(fe(y),M, pk), respectively. Then, if ΠB

is secure, so is ΠA. This holds for adaptive, selective, co-selective security models.
We denote this primitive implication by B

fk,fe−→ A.

We immediately obtain the next corollary stating that the implication applies
to the negated (resp. dual) variant with the same (resp. swapped) mappings.

Corollary 1. B
fk,fe−→ A implies Dual(B)

fe,fk−→ Dual(A) and Neg(B)
fk,fe−→ Neg(A).

2.2 Complexity Assumptions in Bilinear Groups

We consider groups (G,GT ) of prime order p with an efficiently computable map
e : G×G→ GT such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z
and e(g, h) 6= 1GT whenever g, h 6= 1G. In these groups, we assume the hardness
of the Decision Bilinear Diffie-Hellman and Decision Linear [5] problems.

Definition 1. The Decision Bilinear Diffie-Hellman Problem (DBDH) in
(G,GT ) is, given elements (g, gθ1 , gθ2 , gθ3 , η) ∈ G4 ×GT with θ1, θ2, θ3

$← Zp, to
decide whether η = e(g, g)θ1θ2θ3 or η ∈R GT .

Definition 2. The Decision Linear Problem (DLIN) in G consists in, given
a tuple (g, f, ν, gθ1 , fθ2 , η) ∈ G6 with θ1, θ2

$← Zp and f, g, ν
$← G, deciding

whether η = νθ1+θ2 or ν ∈R G.

3 Functional Encryption Instances and Their Implications

3.1 Inner Product Encryption and Its Consequences

We underline the power of IPE by showing its implications in this section. Each
primitive is defined by describing the corresponding boolean function R. We
then show how to construct one primitive from another by explicitly describing
attribute mappings. In this way, correctness and security are consequences of the
embedding lemma. Basically, the approach follows exactly the same way as [18].
A new contribution is that we also consider the negated variant of primitives,
which will be useful for non-zero polynomial evaluation and revocation schemes.
The implication for negated variants follows from Corollary 1.

Inner Product. An inner product encryption (IPE) scheme over Znp , for some
prime p, is defined as follows. Both attribute domains are ΣIPEn

k = ΣIPEn
e = Znp .
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We consider two distinct IPE modes here. The first one is zero-mode IPE where
RZIPEn( ~X, ~Y ) = 1 iff ~X · ~Y = 0. The other one is its negated primitive, which we
call the non-zero-mode IPE, where RNIPEn( ~X, ~Y ) = 1 iff ~X · ~Y 6= 0.

Polynomial Evaluation. Functional encryption for the zero evaluation of poly-
nomials of degree ≤ n is defined as follows. The ciphertext and key attribute
domains are defined as Σ

ZPoly≤n
e = Zp and Σ

ZPoly≤n
k = {P ∈ Zp[x] | deg(P ) ≤ n},

respectively. The relation is defined by RZPoly≤n(P, x) = 1 iff P (x) = 0. The non-
zero evaluation mode can be defined as its negated primitive Neg(ZPoly≤n).

Given an IPE scheme over Zn+1
p , one obtain a functional encryption system

for polynomial evaluation via the following embedding. For the key attribute,
we map the polynomial P [X] = ρ0 + ρ1X + · · · + ρnX

n to ~Xp = (ρ0, . . . , ρn).
Regarding ciphertext attributes, each element w ∈ Zp is mapped onto a vector
~Yw = (1, w, w2, . . . , wn). Correctness and security hold since P (w) = 0 whenever
~Xp · ~Yw = 0. The non-zero evaluation case can be analogously derived from the
non-zero-mode IPE using the same mappings, due to Corollary 1.

We can also consider other variants such as a scheme that supports multi-
variate polynomials and a dual variant, where the key attribute corresponds to a
fixed point and the ciphertext attribute corresponds to a polynomial, as in [18].

OR, AND, DNF, CNF Formulae. We now consider a FE scheme for some
boolean formulae that evaluate disjunctions, conjunctions, and their extensions
to disjunctive or conjunctive normal forms. As an example, a functional encryp-
tion scheme for boolean formula ROR≤n : Z≤nN × ZN → {0, 1} can be defined
by ROR≤n((I1, . . . , Ik), z) 7→ 1 (for k ≤ n) iff (z = I1) or · · · or (z = Ik). This
can be obtained from a functional encryption for the zero evaluation of a uni-
variate polynomial of degree smaller than n by generating a private key for
fOR,I1,...,Ik(z) = (z − I1) · · · (z − Ik), and letting senders encrypting to z.

Other fundamental cases can be considered similarly as in [18] and are shown
below. In [18] only non-negated policies (the first three cases below and their
extensions) were considered. Schemes supporting negated policies (the latter
three cases below and their extensions) are introduced in this paper. The negated
case can be implemented by IPE for non-zero evaluation. One can combine these
cases to obtain DNF, CNF formulae. Below, r $← Zp is chosen by KeyGen.4

Policy Implementation
(z = I1) or (z = I2) fOR,I1,I2(z) = (z − I1)(z − I2) = 0

(z1 = I1) or (z2 = I2) fOR,I1,I2
(z1, z2) = (z1 − I1)(z2 − I2) = 0

(z1 = I1) and (z2 = I2) fAND,I1,I2(z1, z2) = (z1 − I1)r + (z2 − I2) = 0
(z1 6= I1) or (z2 6= I2) fNOR,I1,I2(z1, z2) = (z1 − I1)r + (z2 − I2) 6= 0
(z 6= I1) and (z 6= I2) fNAND,I1,I2(z) = (z − I1)(z − I2) 6= 0

(z1 6= I1) and (z2 6= I2) fNAND,I1,I2
(z1, z2) = (z1 − I1)(z2 − I2) 6= 0

ID-based Broadcast Encryption and Revocation. Let I be an identity
space. An ID-based broadcast encryption scheme (IBBE) for maximum n re-
4 As noted in [18], the AND (and NOR) case will not work in the adaptive security

model since the information on r leaks.
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ceivers per ciphertext is a functional encryption for RIBBE≤n : I×2I → {0, 1} de-
fined by RIBBE≤n : (ID, S) 7→ 1 iff ID ∈ S. An IBBE system can be constructed by
a functional encryption for RDual(OR≤n). To encrypt a message for the receiver set
S = {ID1, . . . , IDk}, one encrypts using the policy (z = ID1) or · · · or (z = IDk).

Likewise, identity-based revocation (IBR) [19] for at most n revocations per
ciphertext can be casted as a negated IBBE, i.e., RIBR≤n : (ID, R) 7→ 1 iff ID 6∈ R.

3.2 Spatial Encryption

We now recall the concept of spatial encryption [9]. For a n × d matrix M of
which elements are in Zp and a vector ~c ∈ Znp , we define its corresponding affine
space as Aff(M,~c) = {M ~w+~c | ~w ∈ Zdp}. Let Vn ⊆ 2(Znp ) be the collection of all
affine spaces inside Znp . That is, Vn = {Aff(M,~c) | M ∈ Mn×d, c ∈ Znp , d ≤ n},
where Mn×d is the set of all n× d matrices in Zp.

A spatial encryption in Znp is a functional encryption for a relation RSpatial :
Vn × Znp → {0, 1} defined by RSpatial : (V, ~y) 7→ 1 iff ~y ∈ V .

The notion of spatial encryption was motivated by Boneh and Hamburg [9]. It
has many applications as it notably implies broadcast HIBE and multi-authority
schemes. Nevertheless, its connection to inner-product encryption has not been
investigated so far. In section 4.1, we prove that spatial encryption implies inner
product encryption by providing a simple attribute mapping.

As a result of independent interest, we also consider the negated spatial
encryption primitive (namely, FE that is defined by RNeg(Spatial) : (V, ~y) 7→ 1
iff ~y 6∈ V ) and provide a construction in section 5.1. From this scheme and
Corollary 1 together with our implication result of zero-mode IPE from spatial
encryption, we then obtain a non-zero-mode IPE construction.

4 Functional Encryption for Zero Inner-Product

4.1 Warm-up: Selectively Secure Zero IPE from Spatial Encryption

We first show that spatial encryption implies zero IPE. For the key attribute,
we map ~X = (x1, . . . , xn)> ∈ Znp to an (n − 1)-dimension affine space V ~X =

Aff(M ~X ,
~0n) = {M ~X ~w +~0n | ~w ∈ Zn−1

p } with the matrix M ~X ∈ Zn×(n−1)
p

M ~X =
(
−x2
x1
,−x3

x1
, · · · ,−xnx1

In−1

)
. (3)

For any ~Y = (y1, . . . , yn)> ∈ Znp , we then have ~X · ~Y = 0 ⇔ ~Y ∈ V ~X since
~X · ~Y = 0 ⇔ y1 = y2 · (−x2

x1
) + · · ·+ yn · (−xnx1

)⇔ ~Y = M ~X · (y2, . . . , yn)> ⇔
~Y ∈ V ~X . By the embedding lemma, we can therefore conclude its implication.

In [9], Boneh and Hamburg described a selectively secure construction of
spatial encryption that achieves constant-size ciphertexts (by generalizing the
Boneh-Boyen-Goh HIBE [6]). We thus immediately obtain a selectively secure
zero IPE scheme with constant-size ciphertext as shown below.
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We give some notations here. For a vector ~a = (a1, . . . , an)> ∈ Znp , we write
g~a to denote (ga1 , . . . , gan)>. Given g~a, ~z, one can easily compute (g~a)~z := g〈~a,~z〉,
where 〈~a, ~z〉 denotes the inner product ~a · ~z = ~a>~z.

Construction 2. (Selectively secure zero IPE)
I Setup(1λ, n): chooses bilinear groups (G,GT ) of prime order p > 2λ with
a generator g $← G. It chooses α, α0, . . . , αn

$← Zp. Let ~α = (α1, . . . , αn). The
public key is pk =

(
g, gα0 , ~H = g~α, Z = e(g, g)α

)
. The master key is msk = gα.

I KeyGen( ~X,msk, pk) : chooses t $← Zp and parses ~X as (x1, . . . , xn) and returns
⊥ if x1 = 0. It outputs the private key as sk ~X = (D0, D1,K2, . . . ,Kn) where

D0 = gt, D1 = gα+α0t, {Ki = (g−α1
xi
x1 gαi)t}i=2,...,n.

I Encrypt(~Y , pk): the encryption algorithm first picks s $← Zp. It parses ~Y as
(y1, . . . , yn) and computes the ciphertext as

E0 = M · e(g, g)αs, E1 = (gα0g〈~α,
~Y 〉)s, E2 = gs.

I Decrypt(C, ~Y , sk ~X , ~X, pk) : to decrypt, the algorithm computes the message

blinding factor as e(D1K
y2
2 ···K

yn
n ,E2)

e(E1,D0)
= e(g, g)αs.

The selective security of this scheme is a consequence of a result given in [9].

Theorem 1. Construction 2 is selectively secure under the n-Decisional Bilin-
ear Diffie-Hellman Exponent assumption (see [9] for a description of the latter).

4.2 Adaptively Secure Zero IPE under Simple Assumptions

We extend the above selectively secure zero IPE to acquire adaptive security
by applying the Waters’ dual system method [27]. However, we have to use our
“n-equation technique” as opposed to 2-equation technique used for IBE in [27].
The reason is that we have to deal with the difficulties arising from the richer
structure of IPE and the aggregation of ciphertexts into a constant number of
elements, analogously to what we described in section 1.

The scheme basically goes as follows. A ciphertext contains a random tag tagc
in the element E1 while each key contains n−1 tags (tagki for each Ki element)
that are aggregated into tagk =

∑n
i=2 tagkiyi upon decryption of a ciphertext

intended for ~Y . The receiver can decrypt if tagk 6= tagc (and ~X · ~Y = 0).

Construction 3. (Adaptively secure zero IPE)
I Setup(1λ, n): chooses bilinear groups (G,GT ) of prime order p > 2λ. It then
picks generators g, v, v1, v2

$← G and chooses α, α0, α1, . . . , αn, a1, a2, b
$← Zp.

Let ~α = (α1, . . . , αn) and ~H = (h1, . . . , hn) = g~α. The public key consists of

pk =

(
g, w = gα0 , Z = e(g, g)α·a1·b, ~H = g~α, A1 = ga1 , A2 = ga2 , B = gb,

B1 = gb·a1 , B2 = gb·a2 , τ1 = v · va1
1 , τ2 = v · va2

2 , T1 = τ b1 , T2 = τ b2

)

10



The master key is defined to be msk = (gα, gαa1 , v, v1, v2).

I Keygen( ~X,msk, pk): parses ~X as (x1, . . . , xn) and returns ⊥ if x1 = 0. Oth-
erwise, it picks r1, r2

$← Zp, z1, z2 $← Zp, tagk2, . . . , tagkn
$← Zp, sets r = r1 + r2

and generates sk ~X = (D1, . . . , D7,K2, . . . ,Kn, tagk2, . . . , tagkn) by computing

skcore =
{
Ki =

(
g−α1

xi
x1 · gαi · gα0·tagki

)r1}
i=2,...,n

,

skadapt =

(
D1 = gαa1 · vr, D2 = g−α · vr1 · gz1 , D3 = B−z1 , D4 = vr2 · gz2 ,
D5 = B−z2 , D6 = Br2 , D7 = gr1

)
.

I Encrypt(~Y ,M, pk): to encrypt M ∈ GT under ~Y = (y1, . . . , yn) ∈ (Zp)n, pick
s1, s2, t, tagc

$← Zp and compute C = (C1, . . . , C7, E0, E1, E2, tagc) where

Ccore =
(
E0 = M · Zs2 , E1 = (gα0·tagc · g〈~α,~Y 〉)t, E2 = gt

)
,

Cadapt =

(
C1 = Bs1+s2 , C2 = Bs11 , C3 = As11 , C4 = Bs22 ,

C5 = As22 , C6 = τs11 · τ
s2
2 , C7 = T s11 · T

s2
2 · w−t

)
.

I Decrypt(C, ~Y , sk ~X , ~X, pk): computes tagk = tagk2y2 + · · ·+ tagknyn and then
W1 =

∏5
j=1 e(Cj , Dj) · (

∏7
j=6 e(Cj , Dj))−1 = e(g, g)α·a1·b·s2 · e(g, w)r1t, as well

as W2 =
(
e(K

y2
2 ···K

yn
n ,E2)

e(E1,D7)

) 1
tagk−tagc

= e(g, w)r1t. It finally recovers the plaintext as

M = E0/Z
s2 = E0/e(g, g)α·a1·b·s2 ← E0 ·W2 ·W−1

1 .

The correctness of W2 is shown in appendix A.1, while the rest follows from
[27]. As we can see, ciphertexts have the same size as in the IBE scheme of [27],
no matter how large the vector ~Y is. Also, decryption entails a constant number
of pairing evaluations (whereas ciphertexts cost O(n) pairings to decrypt in [18]).

Theorem 2. Construction 3 is adaptively secure under the DLIN and DBDH
assumptions.

Proof. The proof uses the dual system methodology similar to [27], which in-
volves ciphertexts and private keys that can be normal or semi-functional.
◦ Semi-functional ciphertexts are generated by first computing a normal ci-

phertext (C ′0, C
′
1, . . . , C

′
7, E

′
1, E

′
7, tagc′) and then choosing χ

$← Zp before
replacing (C ′4, C

′
5, C

′
6, C

′
7), respectively, by

C4 = C ′4 · gba2χ, C5 = C ′5 · ga2χ, C6 = C ′6 · v
a2χ
2 , C7 = C ′7 · v

a2bχ
2 . (4)

◦ From a normal key (D′1, . . . , D
′
7,K

′
2, . . . ,K

′
n, tagk′2, . . . , tagk′n), semi-functional

keys are obtained by choosing γ $← Zp and replacing (D′1, D
′
2, D

′
4) by

D1 = D′1 · g−a1a2γ , D2 = D′2 · ga2γ , D4 = D′4 · ga1γ . (5)

The proof proceeds with a game sequence starting from GameReal, which is the
actual attack game. The following games are defined below.
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Game0 is the real attack game but the challenge ciphertext is semi-functional.
Gamek (for 1 ≤ k ≤ q) is identical to Game0 except that the first i private key

generation queries are answered by returning a semi-functional key.
Gameq+1 is as Game q but the challenge ciphertext is a semi-functional encryp-

tion of a random element of GT instead of the actual plaintext.
We prove the indistinguishability between two consecutive games under some
assumptions. The sequence ends in Gameq+1, where the challenge ciphertext is
independent of the challenger’s bit β, hence any adversary has no advantage. ut

The indistinguishability of GameReal and Game0 as well as that of Gameq and
Gameq+1 can be proved exactly in the same way as in [27] and the details are
given in the full version of the paper.

Lemma 1. If DLIN is hard, Game0 is indistinguishable from GameReal.

Lemma 2. For any 1 ≤ k ≤ q, if an adversary A can distinguish Gamek from
Gamek−1, we can build a distinguisher for the DLIN problem.

This lemma is the most non-trivial part in the theorem. The main issue is that,
in order to enable adaptive security, the reduction must be done in such a way
that the simulator B can create semi-functional keys for any vector ~X, including
those for which ~X · ~Y ? = 0. However, the crucial point is that we must prevent
B from directly deciding whether the kth queried private key is normal or semi-
functional by generating a semi-functional ciphertext for itself. Indeed, if this
were possible, the reduction from A would not be established.

To resolve this, we use a secret exponent vector ~ζ ∈ Znp and embed the
DLIN instance so that B can simulate only the key at kth query for ~X with tags
(tagk2, . . . , tagkn) and the challenge ciphertext for ~Y ? with tagc? that obey the
relation: (tagk2, . . . , tagkn, tagc?)> = −M ~X,~Y ?

~ζ, where M ~X,~Y is the n×n matrix
defined in Eq.(2). We thereby conceptually use the n-equation technique here.
A particular consequence is that if we have ~X · ~Y ? = 0 then it holds that

tagk =
n∑
i=2

tagkiy
?
i = ζ1

n∑
i=2

xi
x1
y?i −

n∑
i=2

ζiy
?
i = ζ1 · (−y?1)−

n∑
i=2

ζiy
?
i = tagc?,

which is the exact condition that hampers the decryption, thus B cannot test
by itself, as desired. We are now ready to describe the proof of Lemma 2.

Proof. The distinguisher B receives (g, f, ν, gθ1 , fθ2 , η) and decides if η = νθ1+θ2 .

Setup. Algorithm B picks α, a1, a2, δv1 , δv2
$← Zp and sets g = g, Z = e(f, g)αa1 ,

A1 = ga1 , A2 = ga2 , B = gb = f, v1 = νa2 · gδv1

B1 = gba1 = fa1 , B2 = gba2 = fa2 , v = ν−a1a2 , v2 = νa1 · gδv2 ,
τ1 = vva1

1 = gδv1a1 , τ2 = vva2
2 = gδv2a2 , τ b1 = fδv1a1 , τ b2 = fδv2a2 .

Next, B chooses δw
$← Zp, ~ζ = (ζ1, . . . , ζn) $← Znp , ~δ = (δ1, . . . , δn) $← Znp , then

defines w = gα0 = f · gδw , and hi = gαi = fζi · gδi for i = 1, . . . , n. Note that, as
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in the proof of lemma 2 in [27] , B knows msk = (gα, gαa1 , v, v1, v2).

Key Queries. When A makes the jth private key query, B does as follows.
[Case j > k] It generates a normal key, using the master secret key msk.
[Case j < k] It creates a semi-functional key, which it can do using ga1a2 .
[Case j = k] It defines tagk2, . . . , tagkn as tagki = ζ1 · xix1

− ζi for i = 2, . . . , n,

which implies that (h−xi/x1
1 ·hi ·wtagki) = g−δ1(xi/x1)+δi+δwtagki , for i = 2, . . . , n.

Using these tags, it generates a normal private key (D′1, . . . , D
′
7,K

′
2, . . . ,K

′
n)

using random exponents r′1, r
′
2, z
′
1, z
′
2

$← Zp. Then, it sets

D1 = D′1 · η−a1a2 , D2 = D′2 · ηa2 · (gθ1)δv1 , D3 = D′3 · (fθ2)δv1 ,

D4 = D′4 · ηa1 · (gθ1)δv2 , D5 = D′5 · (fθ2)δv2 , D6 = D′6 · fθ2 ,

as well as D7 = D′7 ·(gθ1) and Ki = K ′i ·(gθ1)−δ1(xi/x1)+δi+δwtagki for i = 2, . . . , n.

If η = νθ1+θ2 , sk ~X = (D1, . . . , D7,K2, . . . ,Kn, tagk2, . . . , tagkn) is easily seen
to form a normal key where r1 = r′1 + θ1, r2 = r′2 + θ2, z1 = z′1 − δv1θ2,
z2 = z′2−δv2θ2 are the underlying random exponents. If η ∈R G, it can be written
η = νθ1+θ2 · gγ for some γ ∈R Zp, so that sk ~X is distributed as a semi-functional
key. We note that tagk2, . . . , tagkn are independent and uniformly distributed
since ζ1, . . . , ζn (which are the solutions of a system of n − 1 equations with n
unknowns) are uniformly random and perfectly hidden from A’s view.

Challenge. A outputs M0,M1 ∈ GT along with a vector ~Y ? = (y?1 , . . . , y
?
n).

B flips a coin β
$← {0, 1} and computes the tag tagc? = −〈~Y ?, ~ζ〉 for which B

will be able to prepare the semi-functional ciphertext. To this end, B first com-
putes a normal encryption (C ′0, C

′
1, . . . , C

′
7, E

′
1, E

′
2, tagc?) of Mβ using exponents

s′1, s
′
2, t
′. It then chooses χ $← Zp and computes

C4 = C ′4 · fa2·χ, C5 = C ′5 · ga2·χ, C7 = C ′7 · ν−δw·a1·a2·χ · fδv2 ·a2·χ,

C6 = C ′6 · v
a2·χ
2 , E2 = E′2 · νa1·a2·χ, E1 = E′1 · (νδw·tagc?+〈~Y ?,~δ〉)a1·a2·χ.

We claim that (C ′0, C
′
1, C

′
2, C

′
3, C4, C5, C6, C7, E1, E2, tagc?) is a semi-functional

ciphertext with underlying exponents χ, s1 = s′1, s2 = s′2 and t = t′+logg(ν)a1a2χ.
To prove this, we observe that

C7 = T s11 · T
s2
2 · w−t · v

a2bχ
2 = T s11 · T

s2
2 · w−t

′−logg(ν)a1a2χ · (νa1 · gδv2 )a2bχ

= T s11 · T
s2
2 · w−t

′
· (f · gδw)− logg(ν)a1a2χ · (νa1 · gδv2 )a2bχ

= C ′7 · ν−δwa1a2χ · fδv2a2χ,

where the unknown term in va2bχ
2 is canceled out by w−t. Also,

E1 = E′1 ·
(
h
y?1
1 · · ·h

y?n
n · wtagc?

)logg(ν)a1a2χ

= E′1 ·
(
(fζ1gδ1)y

?
1 · · · (fζngδn)y

?
n · (fgδw)−〈~Y

?,~ζ〉)logg(ν)a1a2χ

= E′1 · (ν〈
~Y ?,~δ〉+δw·tagc?)a1a2χ,
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where the unknown f logg(ν) vanishes due to our definition of tagc?. It then re-
mains to show that tagc?, tagk2, . . . , tagkn are still n-wise independent. But this
holds since their relations form a system

M · ~ζ :=


−x2
x1

1
−x3
x1

1
...

. . .
−xnx1

1
y?1 y?2 y

?
3 . . . y

?
n




ζ1
ζ2
...

ζn

 = −


tagk2

tagk3
...

tagkn
tagc?

 ,

which has a solution in ~ζ whenever det(M) = (−1)n+1 ~X · ~Y ?/x1 6= 0.
Eventually, A outputs a bit β′ and B outputs 0 if β = β′. As in [27], we see

that A is playing Gamek−1 if η = νθ1+θ2 and Gamek otherwise. ut

Lemma 3. If DBDH is hard, Gameq and Gameq+1 are indistinguishable.

5 Functional Encryption for Non-Zero Inner-Product

5.1 Negated Spatial Encryption

We begin this section by providing a co-selectively-secure construction of negated
spatial encryption, which is motivated by its implication of non-zero IPE. At a
high-level, our scheme can be viewed as a “negative” analogue of the Boneh-
Hamburg spatial encryption [9], in very much the same way as the Lewko-Sahai-
Waters revocation scheme [19] is a negative analogue of the Boneh-Boyen IBE [4].
The intuition follows exactly from section 1, where we have to use “n-equation
technique”. In spatial encryption, we have to deal with, in general, how we can
set up a system of n equations similarly to Eq.(1). To this end, we confine
the vector subspaces that we can use as follows. Our construction is a FE for
RNeg(Spatial) :Wn ×Znp → {0, 1}, where we define a collection Wn ⊆ Vn of vector
subspaces in Znp as Wn = {Aff(M,~0) ∈ Vn | rank(M(−1)) = n − 1}, where we
denote M(−1) as the matrix obtained by deleting the first row M1 ∈ Z1×d

p of M .

Construction 4. (Co-selectively secure negated spatial encryption)
I Setup(1λ, n): chooses a bilinear group G of prime order p > 2λ with a random
generator g $← G. It randomly chooses α, α1, . . . , αn

$← Zp. Let ~α = (α1, . . . , αn).
The public key is pk =

(
g, g~α, gα1~α, e(g, g)α

)
. The master key is msk = (α, ~α).

I KeyGen(V,msk, pk): suppose that V = Aff(M,~0), from a matrix M ∈ (Zp)n×d.
The algorithm picks t $← Zp and outputs skV = (D0, D1, ~K) ∈ Gd+2 where

D0 = gt, D1 = gα+tα2
1 , ~K = gtM

>~α.

I Encrypt(~y,M, pk): picks s $← Zp and computes (C0, C1, C2, C3) as

C0 = M · e(g, g)αs, C1 = gsα1〈~y,~α〉, C2 = gs, C3 = gα1s.
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I Decrypt(C, ~y, skV , V, pk): the algorithm first obtains M from V . We also recall
the the notation of M1, which is the vector of the first row of M . It first solves
the system of equations in ~w from M(−1) ~w = (y2, . . . , yn)>, which it can do since
V ∈ Wn. It computes the message blinding factor e(g, g)αs as

e(D1, C2) ·

(
e(C1, D0)

e( ~K ~w, C3)

) 1
M1 ~w−y1

= e(gα+tα2
1 , gs) ·

(
e(gsα1〈~y,~α〉, gt)
gt~w>M>~α, gα1s)

) 1
M1 ~w−y1

.

Computability. We claim that the decryption can be computed if y 6∈ V .
Indeed, we prove that if y 6∈ V then M1 ~w − y1 6= 0 (and the above equation is
well-defined). To prove the contrapositive, suppose that M1 ~w − y1 = 0. Then,
we must have ~y ∈ V since M ~w =

[
M1

M(−1)

]
~w =

[
M1 ~w

M(−1) ~w

]
= ~y.

Correctness. We verify that decryption is correct as follows. First, we note
that due to our definition of ~w, we have 〈M ~w−~y, ~α〉 = (M1 ~w−y1)α1. Therefore,
the correctness follows from the fact that(

e(gsα1〈~y,~α〉, gt)
e(gt~w>M>~α, gα1s)

) 1
M1 ~w−y1

=
(

1
e(g, g)tsα1〈M ~w−~y,~α〉

) 1
M1 ~w−y1

= e(g, g)−stα
2
1 .

Theorem 3. Construction 4 is co-selectively secure under the q-Decisional Multi-
Exponent Bilinear Diffie-Hellman assumption (q is the number of key queries).
(The proof is given in the full paper where the assumption [19] is also recalled).

Implications. For a vector ~X ∈ Znp , the embedding V ~X = Aff(M ~X ,
~0n) defined

in Eq.(3) is easily seen to be in the limited domain Wn since (M ~X)(−1) is an
identity matrix of size n−1 and hence rank((M ~X)(−1)) = n−1. Therefore, from
Corollary 1, the above scheme implies non-zero IPE.

5.2 Non-Zero IPE under Simple Assumptions

We prove the co-selective security of our negated spatial encryption scheme under
a non-standard q-type assumption introduced in [19]. Here, we show that the
dual system technique [27] makes it possible to rest on simple assumptions such
as DBDH and DLIN. The scheme is very similar to the zero IPE scheme of
section 4.2 and we only state the differences. The intuition again follows exactly
from section 1 and the security proof uses similar techniques as in [19].

Construction 5. (Co-selectively secure non-zero IPE)
I Setup(1λ, n): outputs pk exactly as in the construction 3 except that we define
w = gα1(= h1) in this scheme, instead of gα0 .

I Keygen( ~X,msk, pk): outputs sk ~X = (skadapt, skcore) where skadapt is the same as

in the construction 3 (with w = gα1) and skcore = {Ki =
(
g−α1

xi
x1 ·gαi

)r1}i=2,...,n.

I Encrypt(~Y ,M, pk): outputs C = (Cadapt, Ccore) where Cadapt is as in the con-
struction 3 (with w = gα1) and Ccore =

(
E0 = M ·Zs2 , E1 = (g〈~α,~Y 〉)t, E2 = gt

)
.
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I Decrypt(C, ~Y , sk ~X , ~X, pk): computes W1 as in the construction 3 and W2 as

W2 =
(
e(K

y2
2 ···K

yn
n ,E2)

e(E1,D7)

)− x1
~X·~Y = e(g, w)r1t. (See appendix A.2).

Theorem 4. Construction 5 is co-selectively secure under the DLIN and DBDH
assumptions. (The proof is deferred to the full version of the paper.)

5.3 A Generalization of the Scheme and Its Application

Extended Ciphertext Attribute Domain. The above scheme for the rela-
tion RNIPEn : Znp × Znp → {0, 1} can be extended so as to support relations of
the form RNIPE∗n : Znp × (Znp )d → {0, 1}, for some d ∈ poly(λ), and defined as
RNIPE∗n( ~X, (~Y1, . . . , ~Yd)) = 1 iff for all i = 1, . . . , d: ~X · ~Yi 6= 0.

We construct this extended system by setting up exactly the same public
and private keys (for ~X) as in the original scheme. To encrypt to (~Y1, . . . , ~Yd),
the scheme generates C0, . . . , C7 as usual with the underlying exponents s1, s2, t.
Then, it chooses t1, . . . , td ∈ Zp so that t = t1+· · ·+td and for i = 1, . . . , d, parses
~Yi = (yi,1, . . . , yi,n) and computes E1,i = (g〈~α,~Yi〉)ti = (hyi,11 · · ·hyi,nn )ti and
E2,i = gti , in such a way that the ciphertext is (C0, . . . , C7, {E1,i, E2,i}i=1,...,d).
Decryption requires to first compute

W2,i =
(
e(Kyi,2

2 · · ·Kyi,n
n , E2,i)

e(E1,i, D7)

)− x1
~X·~Yi

= e(g, w)r1ti ,

for i = 1, . . . , d, from which the receiver obtains W2 = W2,1 · · ·W2,d = e(g, w)r1t.
The rest is then done as usual and we explain in the full version of the paper
how the security proof must be adapted.

Applications. We can obtain an identity-based revocation scheme with param-
eter tradeoff from the aforementioned extension. The instantiation of ID-based
revocation scheme (IBR≤n) from our non-zero inner-product system NIPEn+1

yields a construction with O(1)-size ciphertexts and O(n)-size private keys,
where n denotes the maximal number of revoked users.

From our extended scheme NIPE∗n+1, we can obtain an ID-based revocation
scheme IBRpoly(λ), without a fixed maximal number of revoked users. To revoke
the set R where |R| = r, we divide it into a disjointed union R = R1∪· · ·∪Rr/n,
where |Ri| = n for all i (we assume that n divides r). We then simply construct
the vector ~Yi from the revocation subset Ri for each i ∈ [1, r/n], in the same
way as we use NIPEn+1 to instantiate IBR≤n. We then finally encrypt using the
set of vectors (~Y1, . . . , ~Yr/n). The correctness and security properties hold since
RIBR≤n(ID, R) = 1 ⇔ RIBRpoly(λ)(ID, (R1, . . . , Rr/n)) = 1. The construction has
O(r/n)-size ciphertexts and O(n)-size private keys. Interestingly, we note that
the second scheme described by Lewko, Sahai and Waters [19] (which indeed
inspires ours) can be viewed as a special case of our scheme where n = 1.
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A Verifying Correctness in Decryption
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W2 =
(
e(
∏n
i=2K

yi
i , E2)

e(E1, D7)

) 1
tagk−tagc

=

e
(∏n

i=2(g−α1
xi
x1 gαiwtagki)r1yi , gt

)
e
((
g〈~α,~Y 〉 · wtagc

)t
, gr1

)


1
tagk−tagc

=

e
(

(g−α1
x2y2+···+xnyn

x1 gα2y2+···+αnynwtagk2y2+···+tagknyn)r1 , gt
)

e
((
gα1y1+α2y2+···+αnyn · wtagc

)t
, gr1

)


1
tagk−tagc

= e
(
g−α1(

x2y2+···xnyn
x1

+y1)w(tagk−tagc), g
) r1t

tagk−tagc

= e
(
g−α1

~X·~Y
x1 w(tagk−tagc), g

) r1t
tagk−tagc

= e(g, w)r1t.

A.2 For the Non-Zero IPE Scheme of Section 5.2
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