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Abstract. Proxy re-encryption (PRE) is a cryptographic application proposed by
Blaze, Bleumer, and Strauss. It is an encryption system with a special property in
which the semi-honest third party, the proxy, can re-encrypt ciphertexts for Alice
into other ciphertexts for Bob without using Alice’s secret key. We can classify
PRE into bidirectional and unidirectional schemes. Canetti and Hohenberger for-
malized the semantic security under chosen ciphertext attack for PRE, the PRE-
CCA security. Several schemes satisfy the PRE-CCA security as a bidirectional
or unidirectional scheme. However, some PRE schemes need a bilinear map in the
standard model, and the other PRE schemes are PRE-CCA secure in the random
oracle model before our work. In this paper, we construct a bidirectional PRE-
CCA proxy re-encryption without bilinear maps in the standard model. We study
lossy trapdoor functions (LTDFs) based on the decisional Diffie-Hellman (DDH)
assumption proposed by Peikert and Waters. We define a new variant of LTDFs,
re-applicable LTDFs, which are specialized LTDFs for PRE, and use them for
our scheme.

1 Introduction

1.1 Background

Proxy re-encryption (PRE) is a cryptographic application proposed by Blaze, Bleumer,
and Strauss [4]. It is an encryption system with a special property in which the semi-
honest third party, the proxy, can re-encrypt ciphertexts for Alice into other ciphertexts
for Bob without using Alice’s secret key. In the other words, if the proxy has a re-
encryption key rkA↔B from Alice to Bob, the proxy can translate a ciphertext CA under
Alice’s public key pkA into another ciphertext CB under Bob’s public key pkB. This
translation requires only rkA↔B and keeps the message m secret for the proxy. There are
many PRE cryptographic applications, such as email-forwarding, secure file systems,
DRM, and secure mailing lists [2, 4, 11, 21].

Ivan and Dodis classified PRE into two types, bidirectional and unidirectional [10].
The former means that, if the proxy has the re-encryption key rkA↔B, the proxy cannot
only re-encrypt ciphertexts from Alice to Bob, but also in the opposite direction. That
is, we can assume that the re-encryption key rkA↔B from Alice to Bob is identical to
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rkB↔A from Bob to Alice. On the other hand, the latter means that, the re-encryption
key rkA→B from Alice to Bob never helps re-encryption of the opposite direction. They
also considered the notions of single-hop and multi-hop. The former means that a re-
encrypted ciphertext cannot be further re-encrypted. In contrast, the later means that a
ciphertext can be re-encrypted from Alice to Bob to Carol and so on. We discuss only
bidirectional schemes in this paper.

The PRE-CCA Security. The security notion of indistinguishability against chosen
cipher text attacks (IND-CCA) on encryption systems was proposed by Naor and
Yung [15]. Many IND-CCA secure encryption systems have been proposed.

Canetti and Hohenberger applied the notion of IND-CCA to PRE for the bidirec-
tional scheme [6]. They formalized the security notion as the (bidirectional) PRE-CCA
security. They also investigated simulation-based security definitions that guarantee
universally composable security. They constructed a bidirectional and multi-hop PRE-
CCA scheme based on the decisional bilinear Diffie-Hellman (DBDH) assumption,
which requires bilinear maps. Later, some research groups proposed bidirectional or
unidirectional PRE-CCA schemes with bilinear maps or in the random oracle model [7,
12, 20, 22].

1.2 Our Contribution

We construct a bidirectional and multi-hop PRE-CCA scheme without bilinear maps in
the standard model. All previous PRE-CCA secure schemes in the standard model use
bilinear maps. Our scheme is constructed in three steps.

First, we define a new cryptographic primitive, re-applicable lossy trapdoor func-
tions (re-applicable LTDFs), which are specialized lossy trapdoor functions for PRE.
They consist of nine algorithms and a set of tags, (ParGen, LossyGen, LossyEval,
LossyInv, ReIndex, ReEval, PrivReEval, Trans, FakeKey) and T . Second, we con-
struct a bidirectional PRE-CCA scheme by using re-applicable LTDFs. We modify the
original Peikert and Waters encryption scheme on several points. Third, we construct
re-applicable LTDFs based on the decisional Diffie-Hellman (DDH) assumption.

Our Techniques. As stated above, we modify the original Peikert and Waters encryp-
tion scheme on several points for PRE. Our PRE scheme uses an index of all-but-one
functions as the public parameter. The original scheme uses this index as a part of a
public key. Our scheme generates a signature of a part of a ciphertext (c2, c3) in the
encryption scheme. The original scheme generates a signature of all the main parts of
a ciphertext (c1, c2, c3) in the encryption process. The most different point is that our
scheme re-encrypts c1 from pkA to pkB by using rkA↔B.

We modify LTDFs proposed by Peikert and Waters on one point for construction of
re-applicable LTDFs. It is that an injective index is not Encpk(I), but Encpk(τI), where τ
is a tag and I is the identity matrix. This modification is a technical change that satisfies
the definition of re-applicable LTDFs.
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The Peikert and Waters Encryption. Peikert and Waters proposed LTDFs and con-
structed an IND-CCA public-key encryption by using LTDFs [17]. We briefly review
their encryption scheme. Let fs and fs′ be functions with a domain {0, 1}n, where fs is
an injective function with a trapdoor td, and fs′ is a lossy function of which the size of
a range is 2n−k at most. LTDFs have the following property: Given f , the distinguisher
cannot distinguish whether f is fs or fs′ . They constructed them as fs(x) = xEncpk(I)
and fs′ (x) = xEncpk(0) where I and 0 is the identity and the zero matrix, and Enc is a
homomorphic matrix encryption. From the homomorphism of Enc, we obtain fs(x) =
xEncpk(I) = Encpk(xI) = Encpk(x) and fs′ (x) = xEncpk(0) = Encpk(x0) = Encpk(0).
We can reconstruct x from fs(x) with a secret key sk. On the other hand, we never ob-
tain x from fs′ (x) information-theoretically. They also proposed all-but-one trapdoor
functions which have similar property to LTDFs. Let gs′,b∗ be a function with a domain
B×{0, 1}n, where B is a finite set and b∗ ∈ B. For every b , b∗, gs′,b∗ (b, ·) is an invertible
function with a trapdoor td. On the other hand, gs′,b∗ (b∗, ·) is a lossy function.

Peikert and Waters constructed their IND-CCA encryption scheme by using fs and
gs′,b∗ as follows. The encryption algorithm randomly chooses x ∈ {0, 1}n and selects a
key pair of a one-time signature (vk, skσ). Then, it computes a ciphertext as

C = (vk, c1, c2, c3, σ) = (vk, fs(x), gs′,b∗ (vk, x), h(x) ⊕ m,SigSign(skσ, c1, c2, c3)),

where h is a pair-wise independent hash and SigSign is a signing algorithm in a signa-
ture scheme. They proved that this scheme satisfied the IND-CCA security.

Observation of the Peikert and Waters Encryption: Free Part for Signature. The above
encryption algorithm must sign all (c1, c2, c3) and make the signature σ. The signa-
ture σ and vk guarantees that (c1, c2, c3) is signed with the signing key skσ. That is,
(c1, c2, c3) is fixed by σ and vk. For this fixed (c1, c2, c3), the Peikert and Waters encryp-
tion achieves the IND-CCA security.

However, we find that it is not necessary to sign all (c1, c2, c3) in order to achieve
the IND-CCA security. Moreover, we find that it does not need to sign c1. The reason
is as follows. If (c1, c2, c3) is fixed by σ and vk, randomness x and a message m also are
fixed because of the injectivity of fs and gs′,b∗ . That is, we can consider σ as a signa-
ture of x and m as well as (c1, c2, c3). In addition, if x and m are determined, (c1, c2, c3)
is determined. We understand that it is necessary to sign x and m, not (c1, c2, c3). We
replace a signature of (c1, c2, c3) with a signature of (c2, c3). A pair of x and m is fixed
similarly to the case of (c1, c2, c3) because of the injectivity of gs′,b∗ . That is, the signa-
ture of (c2, c3) performs tasks of a signature of (c1, c2, c3). We do not need the signature
of c1 to achieve the IND-CCA security. This free c1 is very important in constructing
our proposed scheme, which satisfies the bidirectional PRE-CCA security.

Remarks on Our Scheme. We discuss two points of our scheme: 1. Comparison of
efficiency and 2. Construction based on other assumptions.

Our scheme uses an index of re-applicable LTDFs as a public key. We represent this
key as an n × n matrix, which has n2 group elements. The public parameter contains
n × n matrix as well as public keys since all-but-one trapdoor functions are based on
the DDH assumption. One ciphertext and one re-encryption key have O(n) group ele-
ments. However, in most of the previous schemes, they consist of a constant number of
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group elements. For example, one public key is one group element, and one ciphertext
consists of five group elements, a verification key, and a signature in the Canetti and
Hohenberger’s bidirectional scheme, which satisfies the PRE-CCA security as well as
ours [6]. Time complexity as well as space complexity are larger than others. Therefore,
future work is to construct more efficient schemes.

LTDFs are constructed from various assumptions. Therefore, one may think that
we can construct PRE-CCA secure schemes from other assumptions. However, we do
not know how to construct PRE-CCA secure schemes from other assumptions now.
Factoring, quadratic residue, RSA, or Paillier-based LTDFs do not clearly satisfy the
definition of re-applicable lossy trapdoor functions. One might think that decision linear
or lattice-based LTDFs work in our proposal, but this is not clear. In other words, they
do not guarantee several properties of re-applicable LTDFs. However, we might be able
to use LTDFs based on them with other techniques for PRE.

1.3 Related Work

We review previous work on PRE and LTDFs.

Proxy Re-Encryptions. Mambo and Okamoto first proposed the concept of proxy en-
cryption, which delegates the ability of decryption through an interaction [13]. Based on
their concept, Blaze, Bleumer, and Strauss proposed the notion of proxy cryptography.
PRE is one concept in proxy cryptography [4]. Their construction is nearly similar to the
ElGamal encryption and satisfies the CPA security. A re-encryption key is made from
the division of secret keys in the scheme. Later, Ivan and Dodis point out that Blaze
et.al.’s scheme is bidirectional and multi-hop. Ateniese, Fu, Green, and Hohenberger
proposed the first unidirectional scheme, which was single-hop and satisfied the CPA
security with a bilinear map [2]. Deng, Weng, Liu, and Chen constructed a bidirectional
and single-hop PRE scheme without a bilinear map in the random oracle model [7].
Libert and Vergnaud discussed the unidirectional PRE-CCA security and constructed
an unidirectional and single-hop PRE-RCCA3 scheme with a bilinear map [12]. Shao
and Cao proposed an unidirectional and single-hop PRE-CCA scheme in the random
oracle model [20]4. Weng, Chow, Yang, and Deng improved Shao and Cao’s scheme,
and their scheme also is in the random oracle model [22]. We put this previous work in
chronological order in Figure 1. ROM stands for the random oracle model.

Hohenberger, Rothblum, shelat, and Vaikuntanathan argued the existence of obfus-
cators with PRE and practically constructed an obfuscator as a PRE scheme [9]. Their
scheme is CPA-secure.

Recently, Ateniese, Benson, and Hohenberger introduced an additional property on
PRE, which is key-privacy (or anonymous) [1]. It is desirable to have this property, if

3 This security notion is truly weaker than the CCA security and stronger than the CPA security.
An adversary can use a decryption oracle in a restricted way. If he sends messages (m0,m1) to
the challenger and obtains a challenge c, the adversary cannot query ciphertexts of challenge
messages m0 and m1 to the decryption oracle.

4 Two research groups posed questions on the security model of this paper and published their
discussions on ePrint Archive [22, 23]. However, they do not effect our results and we do not
mention this in this paper.
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Authors Direction Hop Assumption Security Bilinear Map ROM
Blaze et.al. [4] ↔ multi DDH on Gp PRE-CPA no no

Ateniese et.al. [2] → single eDBDH PRE-CPA yes no
Canetti and Hohenberger [6] ↔ multi DBDH PRE-CCA yes no

Libert and Vergnaud [12] → single 3-wDBDHI PRE-RCCA yes no
Deng et.al. [7] ↔ single mCDH on Gp PRE-CCA no yes

Shao and Cao [20] → single DDH on ZN2 PRE-CCA no yes
Weng et.al. [22] → single CDH on Gp PRE-CCA no yes

This paper ↔ multi DDH on Gp PRE-CCA no no

Fig. 1. Comparison of our work with previous work.

the proxy can freely re-encrypt ciphertexts. Our scheme does not have the key-private
property. They constructed a key-private scheme with bilinear maps in the standard
model, which satisfies the PRE-CPA security, not CCA.

Lossy Trapdoor Functions. We review previous work related to LTDFs. Peikert and
Waters proposed notions of LTDFs [17]. They showed cryptographic applications based
on LTDFs, such as a (ordinary) trapdoor function, a collision-resistant hash function,
an oblivious transfer, and an IND-CCA encryption scheme. They also showed the con-
structions of LTDFs based on the DDH assumption and the LWE assumption. They
mentioned that the Paillier encryption realized LTDFs by the similar methodology to
the construction based on the DDH assumption. Later, Rosen and Segev noted that the
Damgård-Jurik encryption scheme simply satisfied the definition of LTDFs because of
its number-theoretic property [18]. The Damgård-Jurik encryption scheme is considered
as a generalized Paillier encryption. In addition to [18], Freedman, Goldreich, Kiltz,
Rosen, and Segev proposed more constructions of LTDFs [8]. They are based on the d-
Linear assumption and the QR assumption. Mol and Yilek showed that slightly LTDFs
are sufficient for constructing a IND-CCA secure public-key encryption scheme [14].
Slightly LTDFs lost a (1 − ω(log n)) fraction of all its input bits.

Other applications of LTDFs have been proposed. Rosen and Segev proposed a new
primitive, a one-way function under correlated products [19]. They showed the con-
struction of a one-way function under correlated products from LTDFs and the IND-
CCA secure encryption by using this primitive. Boldyreva, Fehr, and O’Neill applied
LTDFs to the construction of deterministic encryption [5]. They constructed a CCA-
secure deterministic encryption scheme in the standard model, where the CCA security
meant the sense of the semantic security on a message, not indistinguishability of mes-
sages. Bellare, Hofheinz, and Yilek formalized a new security notion of encryption,
selective opening attack, which meant that it kept secret even if an adversary selectively
obtained messages and randomness of ciphertexts [3]. They used LTDFs for the above
purpose. Nishimaki, Fujisaki, and Tanaka used all-but-one trapdoor functions for the
universally composable commitment scheme [16]. They first proposed a non-interactive
string-commitment scheme, which is universally composable.
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Organization

In Section 2, we show preliminaries to describe our scheme. In Section 3, we define re-
applicable LTDFs. In Section 4, we review the definition of bidirectional PRE schemes,
propose our scheme, and describe a sketch of a proof of it. In Section 5, we construct
re-applicable LTDFs based on the DDH assumption.

2 Preliminaries

In this section, we show preliminaries to describe our scheme.

2.1 Notation

Let S be a finite set. s ∈R S denotes that the element s is chosen from S uniformly at
random. For probabilistic algorithm A, y ← A(x) denotes that A outputs y on input x
with uniform randomness. If A runs in time polynomial in the security parameter, then
A is a probabilistic polynomial-time (PPT) algorithm. We say that function f : N →
[0, 1] is negligible in λ ∈ N if for every constant c ∈ N there exists kc ∈ N such that
f (λ) < λ−c for any λ > kc. We say that function g : N → [0, 1] is overwhelming in
λ ∈ N if function f (λ) = 1 − g(λ) is negligible in λ ∈ N. Let Xλ and Yλ denote random
variables over a finite set Zλ ⊂ {0, 1}λ, where λ ∈ N is the security parameter. We say
that Xλ and Yλ are (computationally) indistinguishable if, for every distinguisher D,
|Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]| is negligible in λ ∈ N. We say that Xλ and Yλ are
statistically indistinguishable if

∑
z∈Zλ |Pr[Xλ = z] − Pr[Yλ = z] is negligible in λ ∈ N.

2.2 DDH Assumption

We review the DDH assumption. Let G be an algorithm that takes as input a security
parameter λ and outputs a tuple (p,G, g), where p is a prime with 2λ−1 ≤ p < 2λ, G is a
cyclic group of prime order p, and g is a generator of G.

Assumption 1 (The Decisional Diffie-Hellman Assumption) For any PPT adversary
A, the advantage AdvA(k) is negligible in the security parameter k.

AdvA(k) = |Pr[A((p,G, g), ga, gb, gab) = 1] − Pr[A((p,G, g), ga, gb, gc) = 1]|

The probability is over the random choices of (p,G, g)← G(λ) , the random choices of
a, b, c ∈ Zp and the random coin of A.

2.3 All-But-One Trapdoor Functions

We review all-but-one trapdoor functions to describe our scheme. All-but-one trapdoor
functions are made from the DDH assumption[17].

Definition 1 (All-but-one trapdoor functions) A collection of (n, k)-all-but-one trap-
door functions is a tuple of PPT algorithms (Gabo,Fabo,F−1

abo) and sequence of branch
sets B = {Bλ} such that:
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All-but-one property: Given a lossy branch b∗ ∈ Bλ, the algorithm Gabo(1λ, b∗) out-
puts a pair (s, td). For every b ∈ Bλ\{b∗}, the algorithm Fabo(s, b, ·) computes an
injective function fs,b(·) over {0, 1}n, and F−1

abo(td, b, ·) computes f −1
s,b (·). For the

lossy branch b∗, Fabo(s, b∗, ·) computes a lossy function fs,b∗ (·) over {0, 1}n, where
| fs,b∗ ({0, 1}n)| ≤ 2n−k.

Indistinguishability: For every b∗1 and b∗2 ∈ Bλ, the first output s0 of Gabo(1λ, b∗0) and
the first output s1 of Gabo(1λ, b∗1) are computationally indistinguishable.

3 Re-Applicable Lossy Trapdoor Functions

In this section, we propose a new primitive, re-applicable LTDFs, which is an ex-
tension of LTDFs. Peikert and Waters proposed LTDFs and all-but-one functions in
STOC’08 [17].

For our purpose, we transform LTDFs in several points. First, we add one algorithm,
the parameter-generation algorithm ParGen. This algorithm generates public parame-
ters which is common to every algorithm and applied in every evaluation. We introduce
ParGen since PRE schemes are used in the multi-user setting, not single-user setting. In
addition, the validity checks of ciphertexts require that each ciphertext of the ElGamal
encryption in an index of LTDFs has common randomness for every user.

Second, we modify LTDFs so that the function-generation algorithm receives a tag
in a set of tags T , not injective or lossy commands. For every tag τ, except one special
lossy tag τlos, the function-generation algorithm outputs an index that represents an in-
jective function. On the other hand, the function-generation algorithm given τlos outputs
an index that represents a lossy function.

Third, we define five new algorithms ReIndex,ReEval,PrivReEval,Trans, and
FakeKey. ReIndex, ReEval, PrivReEval, and Trans are deterministic, and FakeKey
is probabilistic. We apply ReIndex for generating re-encryption keys, ReEval for eval-
uation of re-encryption, and PrivReEval for a validity check of ciphertexts. The algo-
rithms Trans and FakeKey are only used in the proof. The algorithm Trans guarantees
the transitivity between re-encryption keys. In other word, we can make a re-encryption
key rk j↔k from rki↔ j and rki↔k. The algorithm FakeKey generates a pair of public and
re-encryption keys (pk j, rki↔ j) from another public key pki. Moreover, even if pki rep-
resents a lossy function, FakeKey always outputs pk j, which represents an injective
function. This property is necessary for the last modification in our proof. We introduce
T to provide this property.

We call this new primitive, a collection of re-applicable LTDFs. They are special-
ized LTDFs for PRE. If we unify ParGen and LossyGen, ignore the other new algo-
rithms, and define T = {τinj, τlos}, we can consider this new primitive as (ordinary)
LTDFs proposed by Peikert and Waters.

Definition 2 (Re-applicable LTDFs with respect to function indices) Let (ParGen,
LossyGen, LossyEval, LossyInv, ReIndex, ReEval, PrivReEval, Trans, FakeKey) be
a tuple of PPT algorithms, and T be a set of tags that contains one lossy element τlos.
The algorithm ParGen(1λ) outputs a public parameter par. The other algorithms ap-
ply the parameter par to their computations. Hereafter, we omit the input of the public
parameter par for the algorithms.
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A collection of re-applicable (n, k)-lossy trapdoor functions with respect to function
indices is a tuple of the PPT algorithms (ParGen, LossyGen, LossyEval, LossyInv,
ReIndex, ReEval, PrivReEval, Trans, FakeKey) such that:

Injectivity; For every public parameter par ← ParGen(1λ) and every tag τ ∈
T\{τlos}, LossyGen(τ) outputs a pair of a function index and its trapdoor
(s, td), LossyEval(s, ·) computes an injective function fs,τ(·) over {0, 1}n, and
LossyInv(td, τ, ·) computes f −1

s,τ (·).
(We represent the function fs,τ, not fs, in order to clarify a tag τ. If we do not need
to clarify a tag, we represent a function as fs,?)

Lossiness: For every public parameter par ← ParGen(1λ), the algorithm
LossyGen(τlos) outputs (s,⊥) and LossyEval(s, ·) computes a function fs,τlos (·) over
{0, 1}n, where | fs,τlos ({0, 1}

n)| ≤ 2n−k.
Indistinguishability between injective and lossy indices: Let Xλ denote the distribu-

tion of (par, sinj, τ), and let Yλ denote the distribution of (par, slos, τ
′), where par is

a public parameter from ParGen(1λ), τ and τ′ are random elements in T , and the
function indices sinj and slos are the first element outputs from LossyGen(τ) and
LossyGen(τlos). Then, {Xλ} and {Yλ} are computationally indistinguishable.

Re-applying with respect to function indices: Let τi and τ j be any tags with τi , τlos
and τ j , τlos. The algorithm ReIndex(tdi, td j) outputs si↔ j, where tdi and td j are the
second elements of LossyGen(τi) and LossyGen(τ j). Then, for every x ∈ {0, 1}n,
x = LossyInv(td j, τi,ReEval(si↔ j, LossyEval(si, x))). We remark that LossyInv
takes τi as one of the inputs, not τ j.

Generating proper outputs: Let c be an output from ReEval(si↔ j, LossyEval(si, x)),
where si↔ j and si have the same meaning as that in the above paragraph. Then,
PrivReEval(x, τi, τ j, s j) outputs the same c, where x, τi, τ j, and s j have the same
meaning as that in the above paragraph. That is, ReEval(si↔ j, LossyEval(si, ·))
and PrivReEval(·, τi, τ j, s j) are equivalent as a function (i.e. Any output of
ReEval(si↔ j, LossyEval(si, ·)) is independent of si.).

Transitivity: Let (si, tdi), (s j, td j) and (sk, tdk) be outputs from LossyGen(τi),
LossyGen(τ j), and LossyGen(τk), and let si↔ j and si↔k be outputs from
ReIndex(tdi, td j) and ReIndex(tdi, tdk), respectively. Then, Trans(si↔ j, si↔k) out-
puts s j↔k which is the same output from ReIndex(td j, tdk).

Statistical indistinguishability of the fake key: The algorithm FakeKey(si, τi) out-
puts (s′j, s

′
i↔ j, τ

′
j), where si is the first element of an output from LossyGen(τi).

Let Xλ denote the distribution of (par, si, s j, si↔ j, τi, τ j), and let Yλ denote the dis-
tribution of (par, si, s′j, s

′
i↔ j, τi, τ

′
j), where each par, s j, si↔ j, and τ j has the same

meaning as that in the above paragraph. Then, {Xλ} and {Yλ} are statistically indis-
tinguishable.

Generation of injective functions from lossy functions: Let s be the first element of
an output from FakeKey(slos, τ), where τ is a tag and slos is the first element of
an output from LossyGen(τlos). Then, for every τ, LossyEval(s, ·) represents an
injective function fs,? with overwhelming probability, where a random variable is
the randomness of FakeKey(slos, τ). (We do not require other properties of index s
if fs,? is injective. The function fs,? cannot have any trapdoor information.)
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4 Bidirectional and Multi-Hop PRE-CCA Scheme

In this section, we first review the definition of a bidirectional PRE scheme. Then, we
describe our scheme and show a sketch of the proof.

A bidirectional PRE scheme consists of six algorithms Π = (Setup, KeyGen, Enc,
Dec, ReKeyGen, and ReEnc) as follows. PP← Setup(1λ): Given a security parameter
1λ, the setup algorithm outputs a public parameter PP. This algorithm is executed by
a trusted third party. (pk, sk) ← KeyGen(PP): Given a public parameter PP, the key
generation algorithm outputs a public key pk and a secret key sk. C ← Enc(PP, pk,m):
Given a public key pk and a message m ∈ M, the encryption algorithm outputs a
ciphertext C, where M is a message space. rki↔ j ← ReKeyGen(PP, ski, sk j): Given
a pair of secret keys ski, sk j, where i , j, this algorithm outputs a re-encryption key
rki↔ j. We call rki↔ j the re-encryption key between i and j. C j ← ReEnc(PP, rki↔ j,Ci):
Given a re-encryption key rki↔ j between i and j and a ciphertext Ci for i, this algorithm
outputs another ciphertext C j for j or the error symbol ⊥. m ← Dec(PP, sk,C): Given
a public key sk and a ciphertext C, the decryption algorithm outputs a message m or the
error symbol ⊥.

If the following two conditions holds, we say that the PRE scheme Π satisfies cor-
rectness. For every PP which is output from Setup(1λ), every (pk, sk) which is output
from KeyGen(PP) and every message m ∈ M, the probability Pr[C ← Enc(PP, pk,m) :
Dec(PP, sk,C) = m] is overwhelming. For every natural number n ∈ N, every PP
which is output from Setup(1λ), every (pk1, sk1) . . . (pkn, skn) which are outputs from
KeyGen(PP), every message m ∈ M, and every rk1↔2 . . . rkn−1↔n which are out-
puts from ReKeyGen(rki, rki+1) for each i ∈ [1, n − 1], the probability Pr[C1 ←

Enc(PP, pk1,m) : Dec(PP, skn,ReEnc(PP, rkn−1↔n, . . .ReEnc(PP, rk1↔2,C1) . . .)) =
m] is overwhelming.

4.1 Bidirectional and Multi-Hop PRE-CCA Security

We prove that our scheme satisfies the PRE-CCA security in the full version of this
paper. This security notion was proposed by Canetti and Hohenberger [6].

Definition 3 (Bidirectional and Multi-Hop PRE-CCA Security) Let λ be the secu-
rity parameter, A be an oracle TM, representing the adversary, and ΓU and ΓC be date
structures. Date structures ΓU and ΓC are first initialized as empty in the game. The
game consists of an execution of A with the following oracles, which can be invoked
multiple times in any order, subject to the constraint below:

Setup Oracle: This oracle can be queried first in the game only once. This oracle
makes a public parameter as PP← Setup(1λ). A is given PP.

Uncorrupted key generation: This oracle generates a new key pair (pk, sk) ←
KeyGen(PP) and adds pk in ΓU , where PP is generated from the setup oracle.
A is given pk.

Corrupted key generation: This oracle generates a new key pair (pk, sk) ←

KeyGen(PP) and adds pk in ΓC , where PP is generated from the setup oracle.
A is given (pk, sk).
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Challenge oracle: This oracle can be queried only once. On input (pk∗,m0,m1), the
oracle chooses a bit b ← {0, 1} and returns C∗ = Enc(PP, pk∗,mb). We call pk∗

the challenge key and C∗ the challenge ciphertext. (We require the challenge key
pk∗ ∈ ΓU for A to win.)

Re-encryption key generation: On input (pki, pk j) from the adversary, this oracle re-
turn the re-encryption key rki↔ j = ReKeyGen(ski, sk j), where ski and sk j are the
secret keys that correspond to pki and pk j, respectively.
We require that pki and pk j are in ΓC , or alternatively both are in ΓU . We do not
allow for re-encryption key generation queries between a corrupted key and an
uncorrupted key.

Re-encryption oracle: On input (pki, pk j,Ci), if pk j ∈ ΓC and (pki,Ci) is a deriva-
tive of (pk∗,C∗), then return a special symbol ⊥, which is not in the do-
main of messages or ciphertext. Else, return the re-encrypted ciphertext C j =

ReEnc(ReKeyGen(ski, sk j),C j). Derivatives of (pk∗,C∗) are defined inductively
as follows.

– (pk∗,C∗) is a derivative of itself.
– If (pk,C) is a derivative of (pk∗,C∗), and (pk′,C′) is a derivative of (pk,C),

then (pk′,C′) is a derivative of (pk∗,C∗).
– If A has queried the re-encryption oracle on input (pk, pk′,C) and obtained

response C′, then (pk′,C′) is a derivative of (pk,C).
– If A has queried the re-encryption key generation oracle on input (pk, pk′) or

(pk′, pk), and C′ = ReEnc(ReKeyGen(sk, sk′),C), then (pk′,C′) is a deriva-
tive of (pk,C), where sk and sk′ are the secret keys that correspond to pk and
pk′, respectively.

Decryption oracle: On input (pk,C), if the pair (pk,C) is a derivative of the challenge
key and ciphertext (pk∗,C∗), or pk is not in ΓU ∪ ΓC , then return a special symbol
⊥ which is not in the domain of messages. Else, return Dec(sk,C), where sk is the
secret key that corresponds to pk.

Decision oracle: This oracle can be queried at the end of the game. On input b′: If
b′ = b and the challenge key pk∗ ∈ ΓU , then output 1. Else, output 0:

We describe the output of the decision oracle in the above game as Exptbid-PRE-CCA
Π,A (λ) =

b for an adversary A and a scheme Π . We define the advantage of adversary A as

Advbid-PRE-CCA
Π,A (λ) def

=

∣∣∣∣∣Pr[Exptbid-PRE-CCA
Π,A (λ) = 1] −

1
2

∣∣∣∣∣ ,
where the probability is over the random choices of A and oracles. We say that the
scheme Π is secure under the bidirectional PRE-CCA attack, if, for every adversary A,
Advbid-PRE-CCA

Π,A (λ) is negligible in the security parameter λ.

4.2 Description of Our Scheme

We next describe our scheme. Let λ be the security parameter, and let n, k, k′, k′′ and
v be parameters depending on λ. Let (SigGen,SigSign,SigVer) be a strongly unforge-
able one-time signature scheme where verification keys are in {0, 1}v. Let (ParGen,
LossyGen, LossyEval, LossyInv, ReIndex, ReEval, PrivReEval, Trans, FakeKey) be
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a collection of re-applicable (n, k)-LTDFs and T be a set of tags. Let (Gabo,Fabo,F−1
abo)

be a collection of (n, k′)-ABO trapdoor functions with branches Bλ = {0, 1}v, which
contains the set of signature verification keys. Let H be a family of pairwise indepen-
dent hash functions from {0, 1}n to {0, 1}k

′′

. We require that the above parameters are
(k + k′) − (k′′ + n) ≥ δ = δ1 + δ2 for some δ1 = ω(log λ) and δ2 = ω(log λ). Our
cryptosystem has message space {0, 1}k

′′

.
The algorithm Setup generates a public parameter PP = (sabo, par, h), and the al-

gorithm KeyGen makes a pair of keys (pk, sk) = ((srltdf , τ), (tdrltdf , srltdf , τ)). Except a
tag τ, we can consider that both Setup and KeyGen are the same algorithm as the key
generation algorithm in the Peikert and Waters encryption. The algorithm Enc is also
the same algorithm as the encryption algorithm in the Peikert and Waters encryption,
except that c1 is not signed for the re-encryption. The algorithm ReKeyGen makes a re-
encryption key, and the ReEnc re-encrypts a ciphertext into another ciphertext. These
algorithms only use ReIndex and ReEval in re-applicable LTDFs. The algorithm Dec
is the same algorithm as the decryption algorithm in the Peikert and Waters encryption,
expect that, if a ciphertext is re-encrypted, it applies PrivReEval for the validity check
of ciphertexts.

Setup(1λ): Setup(1λ) first generates an index of all-but-one trapdoor functions with
lossy branch 0v: (sabo, tdabo) ← Gabo(1λ, 0v). Then, it generates a public parameter
of re-applicable LTDFs: par ← ParGen(1λ). Finally, it chooses a hash function
h← H . It outputs a public parameter as PP = (sabo, par, h).
(The algorithm Setup erases the trapdoor tdabo because the following algorithms
do not use tdabo.)

KeyGen(PP): KeyGen takes PP = (sabo, par, h) as input. It chooses a tag τ ∈
T\{τlos} and generates an injective index of re-applicable LTDFs: (srltdf , tdrltdf) ←
LossyGen(τ). A public key consists of the injective function index and the tag,
and a secret key consisting of the trapdoor of srltdf and the tag: pk = (srltdf , τ), and
sk = (tdrltdf , srltdf , τ).

Enc(PP, pk,m): Enc takes (PP, pk,m) as input, where PP = (sabo, par, h) is a tuple of
public parameters, pk = (srltdf , τ) is a public key, and m ∈ {0, 1}` is a message. It
chooses x ∈ {0, 1}n uniformly at random. It generates a key-pair for the one-time
signature scheme: (vk, skσ)← SigGen(1λ), then computes

c1 = LossyEval(srltdf , x), c2 = Fabo(sabo, vk, x), and c3 = h(x) ⊕ m.

Finally, it signs a tuple (c2, c3, τ) as σ ← SigSign(skσ, (c2, c3, τ)). Then, a cipher-
text C is output as C = (vk, c1, c2, c3, τ, σ).

ReKeyGen(PP, ski, sk j) : ReKeyGen takes as input (PP, ski, sk j), where (ski, sk j) =
((tdi, si, τi), (td j, s j, τ j)). It computes si↔ j ← ReIndex(tdi, td j), then outputs a re-
encryption key as rki↔ j = si↔ j.

ReEnc(PP, rki↔ j,Ci) : ReEnc takes (rki↔ j,Ci) as input, where rki↔ j = si↔ j is a re-
encryption key and Ci = (vk, c1,i, c2, c3, τ, σ) is a ciphertext. It computes c1, j ←

ReEval(si↔ j, c1,i). It then outputs C j = (vk, c1, j, c2, c3, τ, σ) as a new ciphertext for
the user with sk j.

Dec(PP, sk,C) : Dec takes (PP, sk,C) as input, where PP = (sabo, par, h) is a tuple of
public parameters, sk = (tdrltdf , srltdf , τ) is a secret key, and C = (vk, c1, c2, c3, τ

′, σ)
is a ciphertext. It first checks SigVer(vk, (c2, c3, τ

′), σ) = 1; if not, it outputs ⊥.
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It then compute x = LossyInv(tdrltdf , τ
′, c1). If τ = τ′ then it checks c1 =

LossyEval(srltdf , x), otherwise, it checks PrivReEval(x, τ′, τ, srltdf) = c1; if not, it
outputs ⊥. It also checks c2 = Fabo(sabo, vk, x); if not, it outputs ⊥. Finally, it out-
puts m = c3 ⊕ h(x). (We note that, if C was not re-encrypted, then τ = τ′. On the
other hand, if C was re-encrypted, τ , τ′.)

4.3 Security of Our Scheme

In this section, we claim the following theorem and describe a sketch of the proof. We
give the detail proof in the full version of this paper.

Theorem 1 The above proposed scheme satisfies the PRE-CCA security.

We now show modifications of games from Game0 to Game10 to prove Theorem 1.
Game0 is identical to the PRE-CCA game. In Game10, no adversary can win with
meaningful probability. Every modification from Gamei to Gamei+1 is perfect, statisti-
cally or computationally indistinguishable for each i ∈ [0, n−1]. Therefore, we conclude
that no adversary also can win with meaningful probability in Game0.

In every game, let C∗ = (vk∗, c∗1, c
∗
2, c
∗
3, τ
∗, σ∗) and pk∗ = (s∗rltdf , τ

∗) be the challenge
ciphertext and the challenge public key, respectively.

Game0: This game is identical to the PRE-CCA game.
Game1: Let x∗ denote a random input applied to making the challenge ciphertext. (i.e.

c∗1 = LossyEval(s∗rltdf , x
∗), c∗2 = Fabo(sabo, vk∗, x∗), c∗3 = h(x∗) ⊕ mb.)

Then, we modify the decryption oracle as follows: The decryption oracle is given
a decryption query (pk,C) = ((s, τ), (vk, c1, c2, c3, τ

′, σ)), where pk is limited to
an output by the corrupted or the uncorrupted oracles. If (pk,C) is a deriva-
tive of (pk∗,C∗), then it outputs ⊥. Else if the decryption query satisfies that
(vk, c2, c3, τ

′, σ) = (vk∗, c∗2, c
∗
3, τ
∗, σ∗) and PrivReEval(x∗, τ′, τ, s) = c1, then it out-

puts m ← c3 ⊕ h(x∗). Otherwise, it outputs Dec(sk,C) in the ordinary decryption
processes.

This modification does not affect any success probability of an adversary. From
the injectivity of PrivReEval(·, τ′, τ, s), if PrivReEval(x∗, τ′, τ, s) = c1, then we ob-
tain LossyInv(td, τ′, c1) = x∗. In fact, the probability that the above queries satisfy
PrivReEval(x∗, τ′, τ, s) = c1 is negligible. We discuss this fact in the modification be-
tween Game9 and Game10. However, this check is necessary for the following modifi-
cations.

Game2: We add the following check to the decryption oracle after checking
a derivative: The decryption oracle is given a decryption query (pk,C) =
((s, τ), (vk, c1, c2, c3, τ

′, σ)). The decryption oracle always outputs ⊥, if vk = vk∗

and (c2, c3, τ
′, σ) , (c∗2, c

∗
3, τ
∗, σ∗).

This modification is negligible for the success probability of an adversary from the
strongly existential unforgeability of the signature scheme.
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Game3: Let vk∗ be the verification key used by the challenge oracle. We modify the
setup oracle on a lossy branch as follows: We replace generates (sabo, tdabo) ←
Gabo(1λ, 0v) with (sabo, tdabo) ← Gabo(1λ, vk∗). The lossy branch is changed the
verification key vk∗ from a zero-padding 0v.

This modification is negligible for the success probability of an adversary from the
computational indistinguishability of all-but-one trapdoor functions.

Game4: Let (sabo, tdabo) be an index of all-but-one trapdoor functions and its trap-
door. We modify the decryption oracle as follows: The decryption oracle uses
the trapdoor tdabo to decrypt ciphertext, when it receives a ciphertext C =

(vk, c1, c2, c3, τ
′, σ). That is, in the case of (vk, c2, c3, τ

′, σ) , (vk∗c∗2, c
∗
3, τ
∗, σ∗) and

vk , vk∗, we replace x ← LossyInv(tdrltdf , τ
′, c1) with x ← F−1

abo(tdabo, vk, c2), and
proceed with the decryption processes (In the other cases, the decryption oracle
executes the operations defined in Game1 and Game2.).

This modification does not affect any success probability of an adversary because of the
injectivity of LossyEval(s, ·), Fabo(sabo, vk, ·), and PrivReEval(·, τ′, τ, s). In this modifi-
cation, Fabo(sabo, vk, ·) is an injective function since vk is not the lossy branch vk∗.

In the following games, the challenger manages uncorrupted re-encryption keys to
apply the table. That is, in the first of this game, the challenger makes an empty table,
which memorizes uncorrupted re-encryption keys. We set that a pair of keys (pk1, sk1)
is the first output by the uncorrupted oracle. At n-th query, the uncorrupted oracle out-
puts a pair of keys (pkn, skn) and makes the re-encryption keys rk1↔n,· · · ,rkn−1↔n and
rkn↔1,· · · ,rkn↔n−1. The challenger adds re-encryption keys to the table.

Game5: We modify the re-encryption oracle as follows: The re-encryption oracle takes
as query (pka, pkb,Ca) = ((sa, τa), (sb, τb), (vk, c1,a, c2, c3, τ

′
a, σ)) in the game.

If pka is corrupted, then it evaluates x ← LossyInv(tda, τ
′
a, c1,a). Then, it makes

c1,b = PrivReEval(x, τa, τb, sb). If pkb is uncorrupted, it searches rka↔b in the re-
encryption keys table and evaluates c1,b ← ReEnc(rka↔b, c1,a). Then, it outputs
Cb = (vk, c1,b, c2, c3, τ

′
a, σ) as a re-encrypted ciphertext for pkb.

This modification does not affect any success probability of an adversary because of the
equivalence between PrivReEval(·, τa, τb, sb) and ReEnc(rka↔b, LossyEval(sa., ·)).

Game6: We modify the re-encryption key generation oracle as follows: Given a pair
(pka, pkb), it searches the re-encryption keys rka↔b from the table. Then, it outputs
this re-encryption key rka↔b.

This modification does not affect any success probability of an adversary.

Game7: We define the number qA,unc as the maximum number of times that an adver-
sary A queries the uncorrupted oracle in the game. We modify the challenge oracle
as follows.
First, the challenger chooses a random number r ∈ {1, . . . , qA,unc}. If the challenge
oracle receives the challenge key pk∗ , pkr, the challenger outputs a random bit
b and aborts this game, where pkr is the r-th public key output by the uncorrupted
oracle. Otherwise, it proceeds with this game.
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This modification reduces the success probability of an adversary to 1/qA,unc fraction.
However, this is not an important reduction since qA,unc is polynomial of the security
parameter λ.

Game8: We modify the uncorrupted key generation oracle as follows.
First, it executes the following preprocessing. It choose a random number r ∈
{1, . . . , qA,unc} and generates a pair of keys (pkr, skr) ← KeyGen(PP). We describe
pkr = (sr, τr) and skr = (tdr, sr, τr). Then, for every i ∈ {1, . . . , qA,unc}\{r}, it uses
the fake key generation algorithm to generate a public key and the re-encryption
key: it computes (si, sr↔i, τi)← FakeKey(sr, τr) and sets pk = (si, τi), rkr↔i. Then,
it computes that rki↔ j = si↔ j ← Trans(sr↔i, sr↔ j) for every i, j ∈ {1, . . . , qA,unc}

and i , j. It adds every above-mentioned re-encryption key {rki↔ j}i, j∈{1,...,qA,unc},i, j to
the re-encryption keys table.
At j ∈ {1, . . . , qA,unc} times query for the uncorrupted oracle, it outputs the public
key pk j = s j generated by the above preprocessing. The re-encryption key oracle
and the re-encryption oracle execute their processes with the preprocessed table.
The challenge oracle applies the above number r to the check pk∗ = pkr.

This modification is negligible for the success probability of an adversary from the
statistical indistinguishability of the fake key algorithm.

Game9: We modify the above preprocessing as follows: We replace the first key gen-
eration pkr = sr ← LossyGen(τr) with pkr = sr ← LossyGen(τlos), where τlos is
a lossy tag.

This modification is negligible for the success probability of an adversary from the
computational indistinguishability of LTDFs.

Game10: We modify the decryption oracle as follows: The decryption oracle always
outputs ⊥, when it receives the query C = (vk∗, c1, c∗2, c

∗
3, σ

∗) and pk = srltdf .

This modification is negligible for the success probability of an adversary from the fact
that the average-case min-entropy of x∗ is high, and every public key pk = s, except
a challenge key, represents an injective function fs,?. That is, adversary never compute
c1 such that f −1

s,?(c1) = x∗ information-theoretically. This fact implies that Game10 is
statistically close to Game9. Due to this modification, we attach tags to re-applicable
LTDFs.

From the above sketch, we transform the PRE-CCA game (i.e. Game0) into the last
game (i.e. Game10). In the last game, Game10, we conclude that any adversary does
not detect which message is encrypted. The reason is, h(x∗) is statistically close to U`
since x∗ has high average-case min-entropy and h(·) can extracts a random string from
x∗.

5 Realization of Re-Applicable LTDFs Based on DDH Assumption

In this section, we describe the realization of re-applicable LTDFs from the DDH as-
sumption. We modify the construction proposed by Peikert and Waters.
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We now describe LTDFs based on the DDH assumption. We modify the construc-
tion as the proposed by Peikert and Waters on two points. One is a division of one
function generation algorithm into two algorithms. The other is a change on an en-
crypting matrix in the injective function generator. Peikert and Waters proposed the
function-generation algorithm which creates a function index as a ciphertext of a ma-
trix. This ciphertext is encrypted with the ElGamal encryption on matrices. When gen-
erating an injective-function index, it encrypts the matrix I = (gδi, j )i, j on Gn×n, where
δi, j is the Kronecker delta. When generating a lossy-function index, it encrypts the ma-
trix 0 = (e)i, j on Gn×n, where e is the identity in G (i.e. e = g0). We also do the same
for generating a lossy-function index, but we do another procedure for generating an
injective-function index. We define a set of tags T as a group G and a special element
τlos as the identity e ∈ G. We use a matrix M = (τδi, j )i, j on Gn×n, where τ is any ele-
ment in G. When generating a injective-function index, we set τ with τ , τlos. When
generating a lossy-function index, we set τ = τlos.

– Generation of a public parameter. A parameter generator ParGen first executes G,
and G outputs a tuple (p,G, g). It next selects random numbers r1, . . . , rn ∈R Zp,
then makes a public parameter C1 as

C1 =


c1
...

cn

 =


gr1

...
grn

 .
– Generation of function indices. A function generator LossyGen takes as input C1

and a tag τ, where C1 is the public parameter and τ is an element in G. (We note
that if τ = e, it means execution of the lossy mode, otherwise, execution of the
injective mode.) It first selects random elements z1, z2, . . . , zn ∈R Zp, then computes
a function index as

C2 =


c1,1 · · · c1,n
...
. . .
...

cn,1 · · · cn,n

 =


cz1
1 · τ · · · czn

1
...
. . .

...
cz1

n · · · czn
n · τ

 =
{

ci, j = cz j

i · τ if i = j,
ci, j = cz j

i otherwise.

The function index consists of (C1,C2). A trapdoor consists of the random elements
z = (z1, . . . , zn).

– Evaluation algorithm. An evaluation algorithm LossyEval takes as input
(C1,C2, x), where (C1,C2) is a function index, and x = (x1, . . . , xn) ∈ {0, 1}n is
an n-bit input interpreted as a vector.
It evaluates the linear product of x and C1 : That is, y1 = xC1 =

∏n
i=1(ci)xi .Next,

it evaluates the product of x and C2: That is, y2 = xC2 = (
∏n

i=1 cxi
i,1,· · · ,

∏n
i=1 cxi

i,n)=
((
∏n

i=1 cz1 xi
i )τx1 ,· · · ,(

∏n
i=1 czn xi

i )τxn ). Finally, it outputs (y1, y2).
– Inversion algorithm. An inversion algorithm LossyInv takes as input (td, τ, (y1, y2)),

where trapdoor information td consists of z = (z1, . . . , zn), τ, which is an element
in G\{e}, and y2 = (y2,1, · · · , y2,n) ∈ G1×n . It computes that w = (y2,1 · y

−z1
1 , y2,2 ·

y−z2
1 , · · · , y2,n · y

−zn
1 ). Then, if j-th element of w is the identity element of G, then it

sets x j = 0, else if j-th element of w is τ then it sets x j = 1; otherwise, it output ⊥.
Finally, it outputs x = (x1, x2, . . . , xn).
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We can show that the above four algorithms satisfy injectivity, (n, n − log p)-
lossiness, and indistinguishability based on the DDH assumption. These proofs are
nearly similar to the proof of Peikert and Waters [17]; therefore, we omit them in this
paper.

Next, we show that the above algorithms satisfy the definition of re-applicable
LTDFs.

Re-applying with respect to function indices: Let τi and τ j be tags different from τlos
in T . Let (si, tdi) and (s j, td j) be outputs from LossyGen(τi) and LossyGen(τ j).
We now define an algorithm ReIndex, which takes tdi and td j as inputs and outputs
si↔ j = td j − tdi = (z′1 − z1, z′2 − z2, . . . , z′n − zn) = (z1,i↔ j, . . . , zn,i↔ j).
We next define an algorithm ReEval. The algorithm ReEval takes as in-
put (si↔ j, (y1, y2)), where (y1, y2) = (y1, (y2,1, y2,2, · · · , y2,n)) is an output from
LossyEval(si, x). It computes that y′2 = (y′2,1, y

′
2,2, . . . , y

′
2,n) = (y2,1 · yz1,i↔ j

1 , y2,2 ·

yz2,i↔ j

1 , · · · , y2,n · y
zn,i↔ j

1 ). Then, it outputs (y1, y′2).
For the above elements, we can describe that (y1, y2) = (g

∑n
i=1 xiri , (gz1

∑n
i=1 xiri ·

τx1
i , · · · , g

zn
∑n

i=1 xiri ·τxn
i )) and (y1, y′2) = (g

∑n
i=1 xiri , (gz′1

∑n
i=1 xiri ·τx1

i , · · · , g
z′n
∑n

i=1 xiri ·τxn
i )).

Therefore, we have w′ = (τx1
i , · · · , τ

xn
i ) in the algorithm LossyInv(td j, τi, (y1, y′2)).

That is, we obtain that x = LossyInv(td j, τi, (y1, y′2)).
Generating proper outputs: Let τi, τ j, (si, tdi), (s j, td j), si↔ j x, and (y1, y′2) be defined

similarly to the above paragraph. We call (y1, y′2) a proper output for x, τi, τ j, and
s j, if they satisfy (y1, y′2) = ReEval(si↔ j, LossyEval(si, x)) for some si made from
a tag τi and si← j. We can uniquely describe a proper (y1, y′2) as (g

∑n
i=1 xiri , (gz′1

∑n
i=1 xiri ·

τx1
i , · · · , g

z′n
∑n

i=1 xiri · τxn
i )) from the above algorithms, where td j = (z′1, · · · , z

′
n).

We define a new algorithm PrivReEval, which takes x, τi, τ j, and s j as input,
where x = (x1, · · · , xn) is n-bits input. It computes (ŷ1, ŷ2) ← LossyEval(s j, x).
It makes ŷ′2 from ŷ2 in the following process: for each i ∈ [1, n], if xi = 1 then
ŷ′2,i ← ŷ2,iτ

−1
j τi, else ŷ2,i ← ŷ2,i, where ŷ2,i and ŷ′2,i are the i-th elements of ŷ2

and ŷ′2. Finally it outputs (ŷ1, ŷ′2). The algorithm PrivReEval(x, τi, τ j, s j) always
computes a proper output for x, τi, τ j, and s j. The reason is that, from an out-
put (ŷ1, ŷ2) = (g

∑n
i=1 xiri , (gz′1

∑n
i=1 xiri · τx1

j , · · · , g
z′n
∑n

i=1 xiri · τxn
j )), we verify (y1, ŷ′2) =

(g
∑n

i=1 xiri , (gz′1
∑n

i=1 xiri · τx1
i , · · · , g

z′n
∑n

i=1 xiri · τxn
i )) that τ j is replaced with τi. This

means that PrivReEval(·, τi, τ j, s j) is equivalent to ReEval(si↔ j, LossyEval(si, ·))
as a function.

Transitivity: We define an algorithm Trans, which takes si↔ j, si↔k and outputs si↔k −

si↔ j = (tdk − tdi)− (td j − tdi) = tdk − td j = s j↔k. That is, Trans(si↔ j, si↔k)→ s j↔k.
Statistical indistinguishability of the fake key: Now, we define an algorithm

FakeKey, which takes a function index si and a tag τi and makes a fake index s j, a
fake re-key si↔ j, and a fake tag τ j. The fake key generator FakeKey takes as input
si = (C1,C2) and τi ∈ G, where (C1,C2) is a function index. It then selects a random
element t ∈ G. It next chooses a random number si↔ j = (z1,i↔ j, . . . , zn,i↔ j) ∈R Z

n
p,

and makes a new matrix C′2 as follows.

C′2 =


c1,1 · c

z1,i↔ j

1 · t · · · c1,n · c
zn,i↔ j

1
...

. . .
...

cn,1 · c
z1,i↔ j
n · · · cn,n · c

zn,i↔ j
n · t

 =
{

c′k,` = ck,` · c
zl,i↔ j

k · t if k = `,
c′k,` = ck,` · c

zl,i↔ j

k otherwise,
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where ck is the k entry of C1, and ck,l is the (k, l) entry of C2. Finally, it output
s j = (C1,C′2), si↔ j = (z1,i↔ j, . . . , zn,i↔ j), and τ j = τi · t.
From the abode description, outputs of FakeKey(si, τi) and the proper index have
the same distribution. The reason is that, when si and τi is made from the proper
way, we can describe C′2 by

C′2 =


gr1(z1+z1,i↔ j) · τi · t · · · gr1(zn+zn,i↔ j)

...
. . .

...
grn(z1+z1,i↔ j) · · · grn(zn+zn,i↔ j) · τi · t

 =
{

c′k,` = grk(z`+z`,i↔ j) · τi · t if k = `,
c′k,` = grk(z`+z`,i↔ j) otherwise,

where (z1, · · · , zn) is the trapdoor of si. This means that, conditioned on
t , (τi)−1, the distribution of {τi, τ j, (si, td j), (s j, td j), si↔ j} is identical to
{τi, τ j, LossyGen(τi), LossyGen(τ j),ReIndex(tdi, td j)}. That is, distributions be-
tween them are statistically indistinguishable since the probability of t = (τi)−1

is 1/p.
Generation of injective functions from lossy functions: Next, we consider FakeKey

which si = (C1,C2) is output from LossyGen(τlos). In this case, we can describe
C′2 as

C′2 =


gr1(z1+z1,i↔ j) · t · · · gr1(zn+zn,i↔ j)

...
. . .

...
grn(z1+z1,i↔ j) · · · grn(zn+zn,i↔ j) · ·t

 ,
where (z1, · · · , zn) are logarithms between C1 and C2. Then, assuming that t , e,
LossyEval(s j, ·) represents an injective function fs j,t. This probability is 1 − 1/p
which is overwhelming in the security parameter λ.
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