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Abstract. This paper describes an extremely efficient squaring opera-
tion in the so-called ‘cyclotomic subgroup’ of F×

q6 , for q ≡ 1 mod 6. Our
result arises from considering the Weil restriction of scalars of this group
from Fq6 to Fq2 , and provides efficiency improvements for both pairing-
based and torus-based cryptographic protocols. In particular we argue
that such fields are ideally suited for the latter when the field charac-
teristic satisfies p ≡ 1 (mod 6), and since torus-based techniques can be
applied to the former, we present a compelling argument for the adop-
tion of a single approach to efficient field arithmetic for pairing-based
cryptography.

Keywords: Pairing-based cryptography, torus-based cryptography, fi-
nite field arithmetic.

1 Introduction

Pairing-based cryptography has provoked a wealth of research activity since
the first cryptographically constructive application of pairings was proposed by
Joux in 2000 [21]. Since then, numerous further applications of pairings have
been proposed and their place in the modern cryptographers’ toolkit is now
well established. As a result, much research activity has focused on algorithmic,
arithmetic and implementation issues in the computation of pairings themselves,
in order to ensure the viability of such systems [3, 12, 2, 18].

In practise, pairings are typically instantiated using an elliptic or a hyperel-
liptic curve over a finite field, via the Weil or Tate pairing (see [6]) - or a variant
of the latter such as the ate [18], or R-ate pairing [25]. These pairings map pairs
of points on such curves to elements of a subgroup of the multiplicative group
of an extension field, which is contained in the so-called cyclotomic subgroup.

Properties of the cyclotomic subgroup can be exploited to obtain faster arith-
metic or more compact representations than are possible for general elements of
the extension field. Cryptosystems such as LUC [33] and XTR [26], and the ob-
servations of Stam and Lenstra [34] and Granger, Page and Stam [16], all exploit
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membership of this subgroup to achieve fast exponentiation. Many pairing-based
protocols require exponentiation in the cyclotomic subgroup, as does the ‘hard’
part of the final exponentiation of a pairing computation, and so these ideas can
naturally be applied in this context [31, 17].

Currently there is a huge range of parametrisation options and algorithmic
choices to be made when implementing pairings, and in order to facilitate a
simple and unified approach to the construction of extension fields used in pair-
ings, in 2005 Koblitz and Menezes introduced the concept of Pairing-Friendly
Fields (PFFs) [24]. These are extension fields Fpk with p ≡ 1 (mod 12) and
k = 2a3b, with a ≥ 1 and b ≥ 0. Such specialisation enables algorithms and
implementations to be highly optimised. Indeed for ordinary elliptic curves the
2008 IEEE ‘Draft Standard for Identity-based Public-key Cryptography using
Pairings’ (P1636.3/D1) deals exclusively with fields of this form [19].

In 2006 Granger, Page and Smart proposed a method for fast squaring in
the cyclotomic subgroup of PFFs [15]. However even for degree six extensions
the method was almost 50% slower than the Stam-Lenstra result [34]; the latter
however does not permit the use of the highly efficient sextic twists available to
the former, and so is not practical in this context. Both of these methods rely
on taking the Weil restriction of scalars of the equation that defines membership
of the cyclotomic subgroup, in order to obtain a variety over Fp. The defining
equations of this variety are then exploited to improve squaring efficiency. Rather
than descend to the base field Fp, in this paper we show that descending to only
a cubic subfield enables one to square with the same efficiency as Stam-Lenstra
for degree six extensions, and for between 60% and 75% the cost of the next best
method for the cryptographically interesting extension degrees 12, 18 and 24.

In tandem with the results of [5] which show that PFFs are not always the
most efficient field constructions for pairing-based cryptography, we present a
compelling argument for the adoption of a single approach to efficient field arith-
metic for pairing-based cryptography, based on the use of fields of the form F×q6 ,
for q ≡ 1 mod 6. While these fields intersect with those listed in [19] - lending
strong support to their possible standardisation - since these recommendations
can be improved upon and since in the latest draft of this standard the recom-
mended security parameters section is empty [20], we believe that our proposed
fields should now be given serious consideration for inclusion.

The sequel is organised as follows. In §2 we describe our field construction and
in §3 present our fast squaring formulae. Then in §4 we compare our approach
with previous results, and in §5 and §6 apply our result to pairing-based and
torus-based cryptography respectively. We conclude in §7.

2 Pairing, Towering and Squaring-Friendly Fields

Pairing-friendly fields were introduced to allow the easy construction of, and ef-
ficient arithmetic within extension fields relevant to pairing-based cryptography
(PBC), and are very closely related to Optimal Extension Fields [1]. In particular
we have the following result from [24]:
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Theorem 1. Let Fpk be a PFF, and let β be an element of Fp that is neither a
square nor a cube in Fp. Then the polynomial Xk − β is irreducible over Fp.

Observe that for ‘small’ β, reduction modulo Xk − β can be implemented
very efficiently. Observe also that the form of the extension degree is important
for applications. When 6 | k the presence of sextic twists for elliptic curves
with discriminant D = 3 allows for very efficient pairing computation, while for
4 | k one can use the slightly less efficient quartic twists. Such extensions also
permit the use of compression methods based on taking traces [33, 26], or utilising
the rationality of algebraic tori [30]. Furthermore Fpk may be constructed as a
sequence of Kummer extensions, by successively adjoining the square or cube
root of β, then the square or cube root of that, as appropriate, until the full
extension is reached.

As shown in [5], the condition p ≡ 1 (mod 12) is somewhat spurious in that
PFFs do not always yield the most efficient extension towers, and does not allow
for families of pairing-friendly curves that have since been discovered [22]. For
the Barreto-Naehrig curves for example [4], which have embedding degree twelve,
p ≡ 3 mod 4 is preferred since one can use the highly efficient quadratic subfield
Fp2 = Fp[x]/(x2 + 1). To allow for the inclusion of such fields, Benger and Scott
introduced the following concept [5]:

Definition 1. A Towering-Friendly Field (TFF) is a field of the form Fqm for
which all prime divisors of m also divide q − 1.

As with PFFs, TFFs allow a given tower of field extensions to be constructed
via successive root extractions, but importantly stipulate less exclusive congru-
ency conditions on the base field cardinality. For example, as above for BN-curves
with p ≡ 3 (mod 4), the extension Fp12 is not a PFF, whereas the degree six
extension of Fp2 is towering-friendly, since p2 − 1 ≡ 0 (mod 6), cf. §5.2. This
definition thus captures those considerations relevant to pairing-based cryptog-
raphy (PBC). We refer the reader to [5] for details of the construction of efficient
TFFs.

All of the fields for PBC that follow shall be TFFs of special extension degree
k = 2a3b, with a, b ≥ 1, i.e., with 6 | k. Should it not cause confusion, we also
refer to any field of the form Fq6 for which q ≡ 1 mod 6 as a Squaring-Friendly
Field (SFF), a name whose aptness will become clear in §3. Thus all SFFs are
TFFs and all TFFs used for PBC in this paper are SFFs.

3 New Fast Squaring in the Cyclotomic Subgroup

In this section we derive efficient squaring formulae for elements of the cyclotomic
subgroup of TFFs, when the extension degree is of the form k = 2a3b, with
a, b ≥ 1, i.e., for SFFs. This is the subgroup of F×

pk of order Φk(p), where Φk is
the k-th cyclotomic polynomial, which for 6 | k is always of the form:

Φ2a3b(x) = x2·2a−13b−1
− x2a−13b−1

+ 1.

3



We denote the cyclotomic subgroup by GΦk(p), the membership of which can be
defined as follows:

GΦk(p) = {α ∈ Fpk | αΦk(p) = 1}. (1)

The condition on α in (1) defines a variety V over Fpk . For d | k let Fpd ⊂ Fpk .
We write ResF

pk /F
pd
V for the Weil restriction of scalars of V from Fpk to Fpd .

Then ResF
pk /F

pd
V is a variety defined over Fpd for which we have a morphism

η : ResF
pk /F

pd
V → V

defined over Fpk that induces an isomorphism

η : (ResF
pk /F

pd
V )(Fpd)→ V (Fpk).

We refer the reader to Section 1.3 of [37] for more on the restriction of scalars.
While not stated explicitly, all prior results for fast squaring in GΦk(p) exploit

the form of the Weil restriction of this variety to a subfield. Stam and Lenstra
restrict GΦ6(p) from Fp6 to Fp and GΦ2(p) from Fp2 to Fp [34], and similarly
Granger et al. restrict GΦk(p) from Fpk to Fp [15].

Observe that Φ2a3b(x) = Φ6(x2a−13b−1
) and so we have the following simpli-

fication:
GΦk(p) = GΦ6(pk/6).

We therefore need only consider GΦ6(q) where q = pk/6. Observe also that Φ6(q) |
Φ2(q3) and so

GΦ6(q) ⊂ GΦ2(q3).

Hence one can alternatively employ the simplest non-trivial restriction of GΦ6(q),
or rather of GΦ2(q3), from Fq6 to Fq3 , as in [34]. This reduces the cost of squar-
ing in GΦ2(q3), and hence in GΦ6(q), from two Fq3-multiplications to two Fq3 -
squarings, as we shall see in §3.1.

Our simple idea is to use the next non-trivial Weil restriction of GΦ6(q),
which is from Fq6 to Fq2 . This rather fortuitously provides the fastest squaring
formulae yet discovered for the cyclotomic subgroups of SFFs, making an even
greater efficiency gain than the Stam-Lenstra formulae for GΦ2(q3) (cf. Table 1),
while providing a systematic and more general framework than the more ad-hoc
method of [34]. Restrictions to other subfields for higher extension degrees of
interest do not seem to yield better results, however we leave this as an open
problem.

3.1 Fast squaring in ResFq2/Fq
GΦ2(q)

Let Fq2 = Fq[x]/(x2 − i) with i a quadratic non-residue in Fq, and consider the
square of a generic element α = a+ bx:

α2 = (a+xb)2 = a2+2abx+b2x2 = a2+ib2+2abx = (a+ib)(a+b)−ab(1+i)+2abx.
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This operation can be performed at the cost of two Fq-multiplications, and a
few additions.

If however α ∈ GΦ2(q), we have αq+1 = 1, or αq · α = 1. Observe that:

αq = (a+ xb)q = a+ bxq = a+ bx2(q−1)/2 · x = a+ bi(q−1)/2 · x = a− bx,

since i is a quadratic non-residue. Hence the variety defined by the cyclotomic
subgroup membership equation (1) is (a + xb)(a − xb) = 1, or a2 − x2b2 = 1,
or a2 − ib2 = 1. Note that this results in just one equation over Fq, rather than
two. Substituting from this equation into the squaring formula, one obtains

α2 = (a+ xb)2 = 2a2 − 1 + [(a+ b)2 − a2 − (a2 − 1)/i]x,

where now the main cost of computing this is just two Fq-squarings. Observe
that if i is ‘small’ (for example if i = −1 for p ≡ 3 (mod 4) when Fq = Fp), then
the above simplifies considerably.

3.2 Fast squaring in ResFq6/Fq2 GΦ6(q)

Let Fq6 = Fq[z]/(z6 − i), with i ∈ Fq a sextic non-residue. The standard repre-
sentation for a general element of this extension is

α = α0 + α1z + α2z
2 + α3z

3 + α4z
4 + α5z

5.

However, in order to make the subfield structure explicit, we write elements of
Fq6 in two possible ways, each of which will be convenient depending on the
context: firstly as a compositum of Fq2 and Fq3 , and secondly as cubic extension
of a quadratic extension.

Fq6 as a compositum: Let

α = (a0 + a1y) + (b0 + b1y)x+ (c0 + c1y)x2 = a+ bx+ cx2, (2)

where Fq2 = Fq[y]/(y2 − i) with y = z3, and Fq3 = Fq[x]/(x3 − i) with x = z2.
Note that a, b, c ∈ Fq2 . One can therefore regard this extension as the composi-
tum of the stated degree two and degree three extensions of Fq:

Fq6 = Fq(z) = Fq3(y) = Fq2(x),

with the isomorphisms as given above. Viewing α in the latter form its square
is simply:

α2 = (a+ bx+ cx2)2 = a2 + 2abx+ (2ac+ b2)x2 + 2bcx3 + c2x4

= (a2 + 2ibc) + (2ab+ ic2)x+ (2ac+ b2)x2 = A+Bx+ Cx2 (3)

As before we use the characterising equation (1) for membership of GΦ6(q),
which in this case is αq2−q+1 = 1. To Weil restrict to Fq2 , we first calculate
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how the Frobenius automorphism acts on our chosen basis. Firstly, since i is a
quadratic non-residue, we have

yq = y2(q−1)/2 · y = i(q−1)/2 · y = −y.

Hence aq = (a0 + a1y)q = a0 − a1y, which for simplicity we write as ā, and
similarly for bq and cq. Furthermore, since i is a cubic non-residue we have

xq = x3(q−1)/3 · x = i(q−1)/3 · x = ωx,

where ω is a primitive cube root of unity in Fq. Applying the Frobenius again
gives xq2

= ω2x. Note that the above computations necessitate q ≡ 1 (mod 6),
which is satisfied thanks to the definition of SFFs.

The cyclotomic subgroup membership equation, rewritten as αq2 · α = αq is
therefore:

(a+ bω2x+ cω4x2)(a+ bx+ cx2) = ā+ b̄ωx+ c̄ω2x2,

which upon expanding, reducing modulo x3− i, and modulo Φ3(ω) = ω2 +ω+1,
becomes

(a2 − ā− bci) + ω(ic2 − b̄− ab)x+ ω2(b2 − c̄− ac)x2 = 0. (4)

This equation defines the variety ResFq6/Fq2GΦ6(q), as each Fq2 coefficient of xi

equals zero. Solving for bc, ab, ac, one obtains:

bc = (a2 − ā)/i
ab = ic2 − b̄
ac = b2 − c̄

Substituting these into the original squaring formula (3) then gives

A = a2 + 2ibc = a2 + 2i(a2 − ā)/i = 3a2 − 2ā,
B = ic2 + 2ab = ic2 + 2(ic2 − b̄) = 3ic2 − 2b̄,
C = b2 + 2ac = b2 + 2(b2 − c̄) = 3b2 − 2c̄.

Fq6 as a cubic over a quadratic extension: As before let Fq6 = Fq[z]/(z6−i),
with i ∈ Fq a sextic non-residue. Let the tower of extensions be given explicitly
by Fq2 = Fq[y]/(y2 − i), and Fq6 = Fq2 [x]/(x3 −

√
i), with elements represented

in the basis:

α = (a0 + a1y) + (b0 + b1y)x+ (c0 + c1y)x2 = a+ bx+ cx2,

which is superficially the same as equation (2), but where now the isomorphism
is given by y = z3, x = z. The squaring formula is identical to (3) with i←

√
i.
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With this representation one can see that the Frobenius automorphism acts
on x as multiplication by a sixth root of unity in Fq, which we shall also call ω.
Noting that q ≡ 1 (mod 6) observe that:

xq = xq−1 · x = x3(q−1)/3 · x =
√
i
(q−1)/3

· x = i(q−1)/6 · x.

Since i is a sextic non-residue in Fq, we have that ω = i(q−1)/6 is a primitive
sixth root of unity in Fq. Hence xq = ωx, and similarly xq2

= (ωx)q = ω2x.
This simplifies the cyclotomic subgroup membership equation (1) to:

(a+ bω2x+ cω4x2)(a+ bx+ cx2) = ā+ b̄ωx+ c̄ω2x2,

which upon expanding, reducing modulo x3−
√
i, and modulo Φ6(ω) = ω2−ω+1,

becomes

(a2 − ā− bc
√
i)− ω(

√
ic2 + b̄− ab)x+ ω2(b2 − c̄− ac)x2 = 0. (5)

Solving for bc, ab, ac, one obtains:

bc = (a2 − ā)/
√
i

ab =
√
ic2 + b̄

ac = b2 − c̄

Substituting these into the revised squaring formula gives

A = a2 + 2
√
ibc = a2 + 2

√
i(a2 − ā)/

√
i = 3a2 − 2ā

B =
√
ic2 + 2ab =

√
ic2 + 2(

√
ic2 + b̄) = 3

√
ic2 + 2b̄

C = b2 + 2ac = b2 + 2(b2 − c̄) = 3b2 − 2c̄

3.3 Observations

Both sets of formulae for these degree six extensions are remarkably simple,
requiring just three Fq2-squarings to square an element of GΦ6(q), which is anal-
ogous to the result in §3.1 that requires two Fq-squarings to square an element
of GΦ2(q). Combining the result from §3.1 for squaring a generic element of Fq2 ,
means that for SFFs squaring in GΦ6(q) requires only six Fq-multiplications,
which matches the result of Stam and Lenstra.

Strictly speaking, the formulae require knowledge of the action of the Frobe-
nius on elements of Fq2 , which although as simple as it is, does entail Weil
restriction of equations (4) and (5) to Fq. However, if one ignores the arithmetic
of Fq2 and restricts directly to Fq as in [15], then the above formulae are obscured
and indeed were missed by Granger et al. So it is in the sense that the formulae
were discovered in this way that we mean the restriction is to Fq2 only.

Observe also that for the extension tower, one needs to multiply by
√
i ∈ Fq2 ,

whereas for the compositum one has i ∈ Fq. The cost of the former is however
not much more than the latter since the basis for Fq2/Fq is {1,

√
i} and so

multiplication by
√
i of a value in Fq2 involves just a component swap and a

multiplication by i.
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4 Comparison with Prior Work

In this section we compare the efficiency of the squaring formulae derived in §3
with the most efficient results in the literature.

4.1 Operation counts

Let m and s be the time required to perform an Fq-multiplication and an Fq-
squaring respectively. Since the cost of computing a squaring using our formulae
or others reduces to computing squarings in a subfield, we use the notation Sd

and Md to denote the time required to compute the square of one or the product
of two generic elements of Fqd . In our estimates we do not include the time for
modular additions and subtractions since although not negligible, are not the
dominant operations. This assumes that multiplication by the elements i, j used
in §3.1 and §3.2 can be effected with very few modular shifts and additions when
needed, see [5] for justification of this assumption.

We focus on TFFs with extension degrees 6, 12, 18 and 24 over Fq, which are
the main extension degrees of interest in PBC. However one can easily extrapo-
late cost estimates for any field whose extension degree is of the form k = 2a3b.
To estimate the cost of a multiplication in Fqk , we use the function ν(k)m where
ν(k) = 3a6b. The 3 and 6 in this estimate arise from the use of Karatsuba-Ofman
multiplication [23] for each quadratic and each cubic extension respectively. Our
cost function differs from that in [24] and [15], which is 3a5b, because these as-
sume that the Toom-Cook multiplication [36] of two degree three polynomials
is more efficient than Karatsuba-Ofman multiplication, however this is not usu-
ally the case [9]. Hence the cost of an Fqk multiplication for the given extension
degrees is 18m, 54m, 108m, 162m respectively.

The cost of squaring a generic element of Fqk is more complicated, since there
are several squaring techniques and one needs to determine which is faster for
a given application. Using the observation in [34], one can deduce that Sk =
2Mk/2 = 2 · 3a−16b. In addition, the results due to Chung and Hasan [8] give
three alternative formulae for squaring using the final degree three polynomial
at a cost of 3Mk/3 + 2Sk/3, 2Mk/3 + 3Sk/3 and Mk/3 + 4Sk/3. For simplicity we
use the second of the Chung-Hasan formulae, which incidentally for the above
extension degrees requires exactly the same number of Fq-multiplications as
when using [34].

Table 1 contains counts of the number of Fq-multiplications and Fq-squarings
that are required to perform a squaring in Fqk and GΦk(q), via the methods
arising from Weil restriction to the quadratic, cubic and Fq subfields respectively.

As is clear from the table, with the present result we have reduced the squar-
ing cost for generic elements in each of these fields by a factor of two for every
degree, which greatly improves the speed of an exponentiation. If we assume for
the moment also that m ≈ s, then our squaring takes approximately 2/3-rds
the time of the Stam-Lenstra result in the third column. In comparison with the
final column, one sees that we beat this comprehensively; indeed for k = 24 the
result from [15] is worse than when using ResF

qk /F
qk/2

GΦ2(qk/2), and is barely
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Table 1. Operation counts for squaring in various Weil restrictions of GΦk(q) for 6 | k.

k Fqk ResF
qk /F

qk/2
GΦ2(qk/2) ResF

qk /F
qk/3

GΦ6(qk/6) ResF
qk /Fq GΦ6(qk/6)

(Stam-Lenstra [34]) (Present result) (Granger et al. [15])

6 12m 2S3 = 4m + 6s 3S2 = 6m 3m + 6s
12 36m 2S6 = 24m 3S4 = 18m 18m + 12s
18 72m 2S9 = 24m + 30s 3S6 = 36m
24 108m 2S12 = 72m 3S8 = 54m 84m + 24s

better than Karatsuba-Ofman. Hence restricting to the cubic subfield is clearly
the most efficient for fields of this form.

Remark 1. Note that we have not included the Stam-Lenstra squaring cost for
k = 6 because this requires q ≡ 2 or 5 (mod 9) whereas the use of the sextic twist
requiresD = 3 and hence p ≡ q ≡ 1 (mod 3), thus making them less desirable for
pairings. An open problem posed in [15] asked for a generalisation of the Stam-
Lenstra result to cyclotomic fields of degree different from six, for pairings. We
have shown that our formula for squaring in the cyclotomic subgroup of F×q6 when
q ≡ 1 (mod 6) matches the extremely efficient degree six squaring of [34] (while
also permitting the use of sextic twists), and extends efficiently to higher degree
extensions. Hence in the sense that we have provided an efficient tailor-made
solution for pairings, we believe we have answered this question affirmatively.

4.2 Applicability of method to higher powerings

As we have shown, all of the techniques to date for producing faster arithmetic
in the cyclotomic subgroup result from an application of the Weil restriction of
scalars of the equation defining membership of this group. A natural question to
ask is whether this will work for extensions of any other degree? The answer is
that it does, but that it appears very unlikely to provide a faster alternative to
squaring.

Let δ(k) be the degree of the equation αΦk(q) = 1, once expanded and the
linear Frobenius operation has been incorporated. If δ = 2, then the variety
resulting from the Weil restriction down to any intermediate subfield may help
with squaring. If δ > 2 then the resulting equations may help when raising
an element of the cyclotomic subgroup to the δ-th power [34]. However this is
unlikely to be faster than sequential squaring for an exponentiation, even when
squaring is slow. For example, for GΦ3(q), one finds that δ = 3 and the resulting
equations aid cubing. However the ratio of the cost of a cubing to a squaring
is > log2 3, and thus it better to square than cube during an exponentiation in
this case.

Complementary to this is the fact that δ ≤ 2 only for extensions of degree
k = 2a3b for a ≥ 1, b ≥ 0. Hence pairings with embedding degrees of this form
are ideally suited to exploit our, and the Stam-Lenstra fast squaring technique.
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5 Application to Pairing-Based Cryptography

In this section we apply our squaring formula to extension field arithmetic re-
quired in the final exponentiation of a pairing computation, and post-pairing
exponentations, for two concrete examples. We here assume that Fq = Fp.

The use of our formulae is possible because for any pairing, the codomain
is a subgroup of GΦk(p) ⊂ F×

pk where k is the embedding degree of the curve.
For instance, the Tate pairing on an elliptic curve has the following form: for r
coprime to p we have

er : E(Fp)[r]× E(Fpk)/rE(Fpk)→ F×
pk/(F×pk)r.

In order to obtain a unique coset representative the output is usually powered
by (pk − 1)/r. Since

(pk − 1)/r = (pk − 1)/Φk(p) · Φk(p)/r,

the first term (pk − 1)/Φk(p) can be computed easily using the Frobenius and
a few multiplications and a division, while the remaining ‘hard’ part must be
computed as a proper exponentiation. Since for any element α ∈ F×

pk , we have

α(pk−1)/Φk(p) ∈ GΦk(p), fast arithmetic for this group can be used.

5.1 MNT curves

MNT curves were discovered in 2001 by Miyaji et al. and consist of three families
of ordinary elliptic curves with embedding degrees 3, 4 and 6 [28]. For efficiency
reasons, of most interest are the latter, for which the parametrisation of the base
field, group cardinality and trace of Frobenius are given by:

p(x) = x2 + 1
r(x) = x2 − x+ 1
t(x) = x+ 1

Using the method of Scott et al. [32] the final exponentiation reduces to the pow-
ering of an element of Gp2−p+1 by x. The maximum twist available has degree
two and so for efficiency one would like to use Fp3 arithmetic with a quadratic
extension of this field to give Fp6 . This implies that one should use the com-
posite construction of §3.2. One can alternatively use a quadratic extension of a
cubic extension for the Miller loop computation, and then switch to the isomor-
phic tower construction of §3.2 for the final exponentiation. This isomorphism is
just a permutation of basis elements, and so switching between representations,
even during the Miller loop, is viable, and therefore permits the use of the fast
multiplication results of [9].

The one condition that must be satisfied in order for our method to apply
is that p ≡ 1 (mod 6) which requires x ≡ 0 (mod 6), which eliminates 2/3-rds
of potential MNT curves. While this is restrictive, the benefits of ensuring this
condition are clear.
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5.2 BN curves

The Barreto-Naehrig family of pairing-friendly curves were reported in 2005
and have embedding degree 12 [4]. The parametrisation of the base field, group
cardinality and trace of Frobenius are given by:

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1
r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1
t(x) = 6x2 + 1

Note that for odd x, Fp12 is not pairing-friendly. However, choosing p ≡ 3
(mod 4) enables the use of the initial extension Fp2 = Fp[x]/(x2 + 1) which
permits highly efficient arithmetic. Since BN curves possess a sextic twist, such
efficient subfield arithmetic is very desirable. With this choice of extension, Fq6

is towering-friendly with Fq = Fp2 since p2 ≡ 1 (mod 6) for all primes p > 3,
and is also squaring-friendly.

Again the efficient final exponentiation of Scott et al. [32] can be applied
to reduce the final powering to essentially just three exponentiations by x. In
practise, it is recommended that x should be chosen to have as low a Hamming
weight as possible, to minimise the resulting cost of the Miller loop [10]. Hence
for the final exponentiation, the entries in Table 1 imply that this cost will
be ≈ 75% the cost of the previous fastest. Indeed using our squaring method
with the degree six extension of Fp2 given by the tower in §3.2 - i.e., a tower
having extensions of Fp of degrees 1 − 2 − 4 − 12 - a simple estimate of the
cost of performing the final powering with Scott et al.’s method for a 256-bit
prime, i.e., at AES 128-bit security, is 4856 Fp-multiplications. In contrast using
the tower extension with degrees 1 − 2 − 6 − 12 and using the Stam-Lenstra
result of §3.1 for the final extension, this figure is 5971 Fp-multiplications, so
our method should be approximately 20% faster in practise. Furthermore by
excluding p ≡ 3 (mod 4), the arithmetic for PFFs would be even slower for both
towers.

With regard to post-pairing exponentiation, one is free to use the method
of [13] which uses a clever application of the GLV decomposition [14]. For BN
curves one obtains a four-dimensional decomposition and hence uses quadruple
exponentiation to achieve this speed-up. Since there will be more multiplications
than for the final powering the impact of our squaring formulae on the cost of
exponentiation will be less pronounced, but still significant.

Another factor to consider for post-pairing exponentiations is that the trace-
based methods of LUC [33], XTR [26, 35] and XTR over extension fields [27], are
known to be faster than [34] and [16] for a single exponentiation. However we
expect the Galbrith-Scott method to be superior since the resulting exponents in
the quadruple exponentiation are one quarter the size, and for the trace-based
methods efficient algorithms appear to be known only for single and double
exponentiation [13], ruling out their application in this context. The same rea-
soning applies to schemes that require a product of pairings each with individual
post-pairing exponentiation, such as [7].
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The trace methods are also ruled out of Scott et al.’s final-powering method
since many multiplications are required, whereas the trace methods only per-
mit exponentiation. Hence, barring any improvements in trace-based multi-
exponentiation algorithms, we expect our formulae to feature in the most efficient
way to implement pairings, their products and exponentiation.

6 Application to Torus-Based Cryptography

Our central result may also be applied to torus-based cryptography (TBC),
which is based on the mathematics of algebraic tori, which were introduced to
cryptography by Rubin and Silverberg in 2003 [30]. While for degree six exten-
sions of prime fields, our squaring formulae only match the fastest implementa-
tion of CEILIDH [16] - which uses [34] - for nearly all sixth degree extensions of
non-prime fields our squaring method is the most efficient known.

The implementation of T30(Fp) = GΦ30(p) by van Dijk et al. used the Stam-
Lenstra result for p ≡ 2 or 5 (mod 9) [11]. This condition implies that q = pk ≡ 2
or 5 (mod 9) whenever k = 5m. Hence the family of fields of extension degree
6 · 5m over Fq for q ≡ 2 or 5 (mod 9) matches our squaring efficiency for the
cyclotomic subgroup. On the other hand, the condition q ≡ 1 (mod 6) for SFFs
is far less restrictive and in fact can be said to apply to 3/4’s of all finite fields.

With regard to compression of torus elements, which is the central function
of torus-based cryptography, let p ≡ 1 (mod 6) and let the field construction for
Fq6 be the compositum given in §3.2. We reorder the basis as so:

α = (a0 + a1x+ a2x
2) + (b0 + b1x+ b2x

2)y = a+ by.

Assuming α ∈ Gq2−q+1, then as in [17] and explicitly in [29], a straightforward
analysis of condition (1) yields that such elements - excepting the identity - can
be represented by two elements of Fq. To compress, one writes α 6= 1 as

α = a+ by =
c− y
c+ y

,

where c = −(a+ 1)/b for b 6= 0 and c = 0 if b = 0. Condition (1) now becomes(
c− y
c+ y

)q2−q+1

= 1,

and leads to the equation 3c20+i−3ic1c2 = 0, where c = c0+c1x+c2x2. Therefore
there is redundancy between the ci’s. One can eliminate c2 for instance which
can be recovered from c0 and c1. The decompression map is just the inverse of
this:

ψ : A2(Fq)→ T6(Fq) \ {1} : (c0, c1) 7→
3ic0c1 + 3ic21x+ (3c20 + i)x2 − 3ic1y
3ic0c1 + 3ic21x+ (3c20 + i)x2 + 3ic1y

,

with the condition c1 6= 0, which therefore represents all q2 − q non-identity
elements in Gq2−q+1.
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Since this compression method works for all fields for which p ≡ 1 (mod 6),
achieves the maximum known compression for any algebraic torus, and has the
fastest squaring available, we propose that such fields should be considered ideal
candidates TBC.

Furthermore, as stated in [13], TBC parameters can be easily generated
from pairing-friendly elliptic curves. The multi-exponentiation techniques stated
in §5.2 that one acquires from PBC when TBC parameters are generated in this
way mean that exponentiation in T6(Fq) should be extremely efficient, and in-
deed faster than all other known methods.

Therefore while it could be argued that the main application of TBC is to
PBC - in terms of offering faster arithmetic and compression mechanisms for
systems that may be used in practise - here TBC really benefits from PBC, thus
demonstrating a neat symbiosis between the two application areas.

7 Conclusion

We have presented a method to perform squaring extremely efficiently in the
cyclotomic subgroup of F×q6 , for q ≡ 1 (mod 6). We have shown how to apply
this result to fields of interest in pairing-based cryptography to obtain the fastest
final- and post-pairing exponentiation algorithms, and also detailed why these
fields are ideally suited for torus-based cryptography, when p ≡ 1 (mod 6).

Since these fields include those listed in the IEEE’s P1363.3/D1 draft stan-
dard for identity-based public-key cryptography, which use pairings over ordi-
nary elliptic curves that permit the fastest pairing via a maximal twist, our
result strongly supports their standardisation, but also demonstrates that the
more general squaring-friendly fields introduced here warrant serious considera-
tion for inclusion.

We leave it as an open problem to find similarly efficient squaring formulae
for the remaining case q ≡ −1 mod 6.
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