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Abstract. When commitment schemes are used in complex environ-
ments, e.g., the Internet, the issue of malleability appears, i.e., a concur-
rent man-in-the-middle adversary might generate commitments to values
related to ones committed to by honest players. In the plain model, the
current best solution towards resolving this problem in a constant num-
ber of rounds is the work of Ostrovsky, Persiano and Visconti (TCC’ 09).
They constructed a constant-round commitment scheme that is concur-
rent non-malleable with respect to both commitment and decommitment.
However, the scheme is only computationally binding. For application
scenarios where the security of receivers is of a great concern, computa-
tional binding may not suffice.
In this work, we follow the line of their work and give a construction
of statistically binding commitment scheme which is concurrent non-
malleable with respect to both commitment and decommitment. Our
work can be seen as a complement of the work of Ostrovsky et al. in
the plain model. Our construction relies on the existence of a family of
pairs of claw-free permutations and only needs a constant number of
communication rounds in the plain model. Our proof of security uses
non-black-box techniques and satisfies the (most powerful) simulation-
based definitions of non-malleability.
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1 Introduction

A commitment scheme is a two-phase interactive protocol between two parties,
the committer, who holds a value, and the receiver. It enables the committer
to commit itself a value while keeping it secret from the receiver. Two basic
properties of a commitment scheme are the hiding property (the receiver can
not learn the committed value before the decommitment phase) and the binding
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property (the committer is bounded to one value after the commitment phase). In
the literature, two fundamental types of commitment schemes, statistical hiding
and statistical binding, are considered.

It is well known that the basic properties of commitment schemes can not pre-
vent “malleability” attacks mounted by a probabilistic polynomial-time (PPT)
man-in-the-middle (MIM) adversary who has full control of the communication
channel between the committer and the receiver. The concept of non-malleability
was first introduced by Dolev et al. [1] to capture security concerns in such set-
tings. Loosely speaking, a commitment scheme is non-malleable if one can not
transform the commitment of a value into a commitment of a related value.
This kind of non-malleability is called non-malleability with respect to commit-
ment (NMc for short) [1]. This definition is based on the independence of the
committed messages played by the MIM adversary with respect to the ones
played by the committer. The notion of non-malleability used by Di Crescenzo
et al. [2] is called non-malleability with respect to decommitment or opening
(NMd for short), i.e., the adversary can not construct a commitment from a
given one, such that after having seen the opening of the original commitment,
the adversary is able to correctly open his commitment with a related value. This
definition requires that the success probability of a MIM adversary is maintained
by a stand-alone simulator. Subsequent NMc definitions are modified in a similar
way [3–8]. Simulation-based definitions are much more useful when a commit-
ment scheme is used as a building block in a larger protocol since the existence
of a simulator heavily simplifies the task of proving the security of the larger
protocol.

Intuitively, it seems that NMc is stronger than NMd. However, this depends
on the subtleties of the definitions. Indeed this does not necessarily always hold at
least with respect to non-malleability definitions in [2, 1, 3]. In a journal version
of [3], the authors [9] presented a stringent definition of non-malleability w.r.t
commitment in order to imply the notion of non-malleability w.r.t opening.

Several previous results focused on designing statistically hiding commit-
ment schemes which are NMd. Based on number-theoretic assumptions, NMd
commitment schemes were designed in [10, 3] assuming the existence of a com-
mon reference string (CRS) that is shared by the two players before the protocol
execution. Thus, their schemes do not work in the plain model (i.e., without
setup assumptions). Recently, Pass and Rosen [4, 5] presented a slightly differ-
ent definition of NMd.3 They then constructed a commitment scheme under
their NMd definition based on a family of collision-resistant hash functions in
the plain model. Their scheme is round-efficient and needs only constant-round
communication. More recently, based on the work of [11, 12], Zhang et al. [13]
presented a non-malleable commitment scheme under the weakest assumption,
i.e., the existence of one-way functions.

3 More precisely, the NMd definitions in [2, 10] do not take into account possible a
priori information the adversary might have about the commitment received in the
left interaction, while the definitions in [3–5] do. The definitions in [2, 10, 3] do not
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Before the work of [8], it was commonly believed that NMd (compared with
NMc) is the only notion that makes sense in a computationally binding commit-
ment scheme [1]. However, Ostrovsky et al. [8] argued that by slightly relaxing
the NMc definition,4 NMc can also be achieved for computationally binding
commitment schemes. They considered concurrent MIM attacks where the ad-
versary can simultaneously participate in any polynomial number of executions
as a receiver and as a committer. Based on the work of [6, 7], and using some
techniques already introduced in [14, 15] they gave a computationally hiding and
computationally binding commitment scheme which is both concurrent NMc and
concurrent NMd. In a full version of [8], they [16] further gave a construction
of a constant-round statistically hiding commitment scheme which is concurrent
NMd and that actually consists of a simplified protocol with respect to the one
presented in [8]. The above schemes assume the existence of a family of pairs of
claw-free permutations, require constant number of communication rounds only
and assume that commitment phase and decommitment phase do not overlap in
time.

For statistically binding commitment schemes, the first NMc one was de-
signed by Dolev et al. [1] assuming the existence of one-way functions. How-
ever, the scheme requires O(log n) rounds, where n is the security parameter.
In the CRS model, Di Crescenzo et al. [10] constructed very efficient NMc com-
mitment schemes based on any public-key cryptosystem that is non-malleable
under chosen plaintext attacks in addition to any shared-key cryptosystem that
enjoys indistinguishability under plaintext oracle CCA-post attack. In the plain
model, Pass and Rosen [4, 5] first constructed a constant-round NMc commit-
ment scheme assuming the existence of collision resistant hash functions. Pass
and Rosen [6, 7] then showed the NMc scheme of [4, 5] is actually a concur-
rent NMc one under a stronger simulation-based definition.5 The security proofs
of [4–7] requires a non-black-box use of the code of the adversary and moreover
the one of [6, 7] assumes that commitment phase and decommitment phase do
not overlap in time. Lin et al. [12] reconsidered the scheme of [1] and presented
a concurrent NMc commitment scheme using only black-box techniques. Their
scheme requires a polynomial number of communication rounds and is based
on the minimal assumption, i.e., existence of one-way functions. In addition to
the above results focusing on NMc, the only one that explicitly claimed NMd
commitment schemes was designed in [9] (see Sec. 3) in the CRS model.

provide the stand-alone simulator the value committed in the left interaction after
the commitment phase is finished, while the definitions in [4, 5] do.

4 The values committed to by the adversary in a MIM execution are uniquely defined
for all algorithms in the NMc definition [1, 3], but only for PPT algorithms in the
relaxed definition. More recently, the NMc definition formulated in [9] can also be
applied to computationally binding commitment scheme.

5 The NMd definition in [6, 7] is stronger than that in [2]. The former is a
indistinguishability-based definition, i.e., there exists a PPT stand-alone simulator
that commits to a value which is computationally indistinguishable from the value
committed to by the MIM adversary. The latter is a relation-based definition, i.e., the
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Before the clarification of [8], another folklore belief about a statistically
binding commitment scheme is that if it is NMc then it is NMd. However, at least
this can not be deduced just from the simulation-based definitions in [4–7] in
the plain model.6 The main problem is that the success probability of the stand-
alone simulator is required to be only negligible close to the success probability
of the MIM adversary [8]. Recall in the NMc proof [4–7], a stand-alone simulator
will internally simulate the left interaction for the MIM adversary by committing
to a bogus value 0n. It seems that this simulator can not handle the NMd proof,
because after receiving a committed value m, the simulator is stuck to open the
bogus commitment to m.

Therefore, achieving simultaneously concurrent NMc and NMd in a con-
stant number of rounds and under the simulation-based notions, the work of [8]
achieves the strongest security for commitment schemes in the plain model. How-
ever, the scheme is only computationally binding. When the security of receivers
is of a great concern in some application scenarios, it may not be sufficient. Thus,
there remains an open problem as to whether or not constant-round statistically
binding commitment scheme that is both concurrent NMc and concurrent NMd
exists in the plain model, under the stronger simulation-based definition [6, 5–8].

1.1 Our Contribution

We solve the above problem by presenting a round-efficient protocol for con-
current non-malleable statistically binding commitment scheme. We show the
following theorem.

Theorem 1. Suppose that there exists a family of pairs of claw-free permu-
tations. Then there exists a constant-round statistically binding commitment
scheme that is both concurrent NMc and concurrent NMd.

On a high level view, the commitment phase of our scheme is almost identical
with that in [8]. The technique used in this phase is also the same. More precisely,
in addition to the technique used by [4–7], the two-witness technique of Feige [17]
is also employed. Our contribution lies in the modification of the open phase in
order to simultaneously achieve concurrent NMd and statistical binding property.
We borrow the idea of [18] in designing concurrent zero-knowledge proofs, i.e.,
we let the committer guess the private values committed to by the receiver in
the commitment phase, and then use a witness-indistinguishable proof system
to prove a carefully designed statement. In this way, the scheme is guaranteed to
prevent any unbounded adversary from opening the commitment in two different
ways.

Our work can be viewed as a complement of the work of [8]. Both of the work
resolve the non-malleability issues against concurrent man-in-the-middle attacks
and achieve the same-level of security in the plain model. The main difference

stand-alone simulator is less likely to commit to a value satisfying any polynomial-
time computable relation than the value committed to by the MIM adversary.

6 There is no problem in the CRS model. The reader is refereed to [8] for more details.
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between the two results lies in that the work of [8] focuses mainly on computa-
tionally binding commitment schemes, whereas our work considers statistically
binding ones. Compared with the work of [6, 7], our work also achieves both con-
current NMc and concurrent NMd, whereas they only achieve concurrent NMc.
We emphasize here that our scheme inherits the limitation from [6–8], i.e., the
non-malleability proof heavily relies on the assumption that commitment phase
and the decommitment phase do not overlap in time.

2 Preliminaries

We assume the reader is familiar with witness-indistinguishable protocols, zero-
knowledge protocols and commitment schemes. For more details, the reader is
refereed to [19] for references.

2.1 Concurrent Non-Malleable Commitments and Decommitments

Next, we formulate the definitions of concurrent NMc and concurrent NMd. As
stated in [6, 7] we formalize the notion of non-malleability by a comparison be-
tween a man-in-the-middle execution and a simulated execution. Let 〈C,R〉 be
a commitment scheme. Let n ∈ N be a security parameter.

The man-in-the-middle execution. In the MIM execution, the adversary A is
simultaneously participating in m(n) = poly(n) left and m(n) right interactions
(WLOG, the number of commitments is the same in the left and right execu-
tion). In the ith left interaction, A interacts with the committer C to receive
a commitment to a value vi. In the ith right interaction, A interacts with the
receiver R and tries to commit to a value ṽi of its choice. After the execution
of the commitments in all interactions, A executes the decommitments with
C and the decommitments with R. Prior to the interaction, the value vector
V = (v1, . . . , vm) is given to C as local inputs. A also receives an auxiliary input
z, which might contain a priori information about V.

Let the random variable mimAcom(V, z) denote the values ṽ1, . . . , ṽm to which
the adversary has committed in the right interactions. If the ith right commit-
ment fails, or its transcript (commitment phase) equals to the transcript of any
left interaction, the value ṽi is set to ⊥.

Similarly, we let the random variable mimAopen(V, z) denote the values ṽ1, . . . , ṽm
to which the adversary has opened in the right interactions. If the ith right com-
mitment or decommitment fails, or its transcript (both commitment phase and
decommitment phase) equals to the transcript of any left interaction, the value
ṽi is set to ⊥.

The simulated execution. In the simulated execution, a simulator S directly in-
teracts with an honest receiver R in m(n) interactions. As in the MIM execution,
the value vector V = (v1, . . . , vm) is chosen prior to the interaction, and S re-
ceives some a prior information about V as part of its auxiliary input z. S first
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executes the commitment phases with R. Once all the commitment phases have
been completed, S receives the value vector V and attempts to decommit to
values ṽ1, . . . , ṽm.

Let the random variable simS
com(V, z) denote the values ṽ1, . . . , ṽm committed

to by S. The value ṽi is set to ⊥ if S fails in the ith commitment phase. Let the
random variable simS

open(V, z) denote the values ṽ1, . . . , ṽm opened by S. The

value ṽi is set to ⊥ if S fails in the ith commitment phase or decommitment
phase.

Definition 1 (Concurrent Non-Malleable Commitment w.r.t Commit-
ment [6, 7]). A commitment scheme 〈C,R〉 is said to be concurrent non-malleable
with respect to commitment if for every PPT man-in-the-middle adversary A
that participates in at most m(n) left and m(n) right interactions, there exists
a PPT simulator S such that the following two ensembles are computationally
indistinguishable:

– {mimAcom(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

– {simS
com(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

Definition 2 (Concurrent Non-Malleable Commitment w.r.t Decom-
mitment). A commitment scheme 〈C,R〉 is said to be concurrent non-malleable
with respect to decommitment if for every PPT man-in-the-middle adversary A
that participates in at most m(n) left and m(n) right interactions, there exists
an expected PPT simulator S such that the following two ensembles are compu-
tationally indistinguishable:

– {mimAopen(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

– {simS
open(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

A commitment scheme that is non-malleable according to Definition 2 is
liberal non-malleable rather than strict non-malleable [1, 3]. Note we follow [4,
5, 8] in that non-malleability is guaranteed only if the commitment phase and
the decommitment phase do not overlap in time.

Strong signature schemes. A signature scheme SS = (Sgen,Ssig,Sver) is said
to be strongly unforgeable under adaptive chosen-message attack if no efficient
adversary, with access to signature oracle with respect to the verification key VK,
can output a valid message/signature pair (m,σ) with non-negligible probability.
Here “valid” means that Sver(VK,m, σ) = 1 and (m,σ) does not correspond to
any message/signature pair that was output by the signature oracle. A strong
signature scheme is a signature scheme that is strongly unforgeable.

3 Constant-Round Statistically Binding Concurrent NMc
and Concurrent NMd

In this section, we present a constant-round statistically binding commitment
scheme that is concurrent NMc and concurrent NMd. Denote by SBCom the
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statistically binding commitment scheme from any one-way function [20]. De-
note by SHCom the statistically hiding commitment scheme from any collec-
tion of claw-free permutation with an efficiently-recognizable index set [21].
Denote by {〈Ptag,Vtag〉}tag the constant-round tag-based perfect non-malleable
zero-knowledge argument of knowledge (NMZKAOK) for NP [4, 5]. Denote by
〈swiP, swiV〉 the constant-round statistically witness-indistinguishable argument
of knowledge (WIAOK) for NP [22, 23].7 Let 〈cwiP, cwiV〉 be a constant-round
computationally witness-indistinguishable proof of knowledge (WIPOK) for NP.
Let SS = (Sgen,Ssig,Sver) be a strong signature scheme. The commitment
scheme is shown in Fig. 1. Note that all the tools used above can be achieved
assuming the existence of a family of pairs of claw-free permutations.

Our commitment scheme is a statistically binding variant of the one in [8].
The commitment phase is almost identical with that of the commitment scheme
in [8] with the following exception: in Stage 2, the receiver R uses a statistically
hiding commitment scheme SHCom instead of a statistically binding one. It also
invokes the statistical WIAOK 〈swiP, swiV〉 instead of a computational WIPOK.
Roughly, in Stage 1, the committer generates a commitment c to v and proves
knowledge of opening of c. In Stage 2, the receiver generates two commitments
c0, c1 to two secretes v0, v1 respectively and proves knowledge of either secret. In
Stage 3, the committer generates a signature to the transcripts up to now and
the receiver then verifies the correctness of the signature.

The decommitment phase is more involved and needs more careful design.
The main difficulty lies in simultaneously achieving concurrent NMd and sta-
tistical binding properties. We are inspired by the work of [18] on concurrent
zero-knowledge proofs. We modify the scheme in [8] by letting the committer
guess the private values committed to in the commitment phase and then use a
WIPOK to prove a carefully designed OR statements. The construction employs
the two-witness technique by Feige [17] and the well known FLS-technique [24].
Roughly, in Stage 1′, the committer first generates a commitment c′ to a dummy
value 0n. After receiving c′, the receiver then opens the values v0, v1 committed
to in the commitment phase and proves knowledge of opening of either commit-
ment c0 or c1. In Stage 2′, the committer sends the committed value v and runs
a computational WIPOK to prove the statements that either c is a commitment
to v, or c′ is a commitment to v0 or v1. In Stage 3′, the committer proves that
c is a commitment to v, or it knows opening of cb∗ to vb∗ for some b∗ ∈ {0, 1}.
In Stage 4′, the committer generates a signature to the transcripts up to now
and the receiver then verifies the correctness of the signature. Note that the
FLS-technique is used both in Stage 2′ and Stage 3′.

Theorem 2. Suppose that SBCom is a statistically binding commitment scheme,
SHCom is a statistically hiding commitment scheme and SS = (Sgen,Ssig,Sver)

7 Blum’s basic protocol for Hamiltonicity [22] is only computational zero-knowledge
with soundness error 1

2
. Moreover, the protocol includes three rounds of interac-

tion. By running the basic protocol polynomial times in parallel, we get a computa-
tional WIPOK for Hamiltonicity. If the prover uses a statistically hiding commitment
scheme [21] in the first round, then we get a statistical WIAOK for Hamiltonicity.
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Protocol 〈C,R〉
Security Parameter: 1n

String to be committed: v ∈ {0, 1}n
Commitment Phase:

Stage 1:
C → R : Let (pk, sk) ← Sgen(1n). Pick uniformly r ∈ {0, 1}n and compute

c← SBCom(v; r). Send pk, c.
C ⇔ R : C uses witness (v, r) and proves using 〈Ppk,Vpk〉 (with tag pk) the

statement that there exist values v, r ∈ {0, 1}n such that c = SBCom(v; r).
R : Abort if the above proof fails.

Stage 2:
R→ C : Pick uniformly v0, r0, v1, r1 ∈ {0, 1}n and compute c0 =

SHCom(v0; r0), c1 = SHCom(v1; r1). Send c0, c1.
R→ C : Pick a random bit b ∈ {0, 1}. R uses witness (vb, rb) and proves

using 〈swiP, swiV〉 that there exist values v∗, r∗ ∈ {0, 1}n such that c0 =
SHCom(v∗; r∗) or c1 = SHCom(v∗; r∗).

C : Abort if the above proof fails.
Stage 3:
C → R : Let tr0 be the transcript of the above interaction. Compute σ0 ←

Ssig(sk, tr0) and send σ0.
R : Verify that Sver(pk, tr0, σ0) = 1.

Decommitment Phase:
Stage 1′:
C → R : Pick uniformly r′ ∈ {0, 1}n. Compute c′ = SBCom(0n; r′) and send

c′.
R→ C : Send v0, v1.
R⇔ C : R uses witness rb and proves using 〈swiP, swiV〉 (with tag pk)

the statement that there exists a value r∗ ∈ {0, 1}n such that c0 =
SHCom(v0; r∗) or c1 = SHCom(v1; r∗).

C : Abort if the above proof fails.
Stage 2′:
C → R : Send v.
C ⇔ R : C uses witness r and proves using 〈cwiP, cwiV〉 the OR of the fol-

lowing statements
1. ∃ r ∈ {0, 1}n s.t c = SBCom(v; r),
2. ∃ b∗ ∈ {0, 1}, r∗ ∈ {0, 1}n s.t c′ = SBCom(vb∗ ; r

∗).
R: Abort if the above proof fails.

Stage 3′:
C ⇔ R : C uses witness r and proves using 〈Ppk,Vpk〉 (with tag pk) the state-

ment that either there exists r ∈ {0, 1}n such that c = SBCom(v; r), or
there exist b∗ ∈ {0, 1}, r∗ ∈ {0, 1}n such that cb∗ = SHCom(vb∗ ; r

∗).
R : Abort if the above proof fails.

Stage 4′:
C → R : Let tr1 be the transcript of the above interaction. Compute σ1 ←

Ssig(sk, tr1) and send σ1.
R : Verify that Sver(pk, tr1, σ1) = 1.

Fig. 1. Concurrent non-malleable statistically binding commitment scheme 〈C,R〉.
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is a strong signature scheme. Suppose that {〈Ptag,Vtag〉}tag is an one-many con-
current perfect NMZKAOK for NP, 〈swiP, swiV〉 is a statistical WIAOK for NP
and 〈cwiP, cwiV〉 is a computational WIPOK for NP. Then 〈C,R〉 is a statisti-
cally binding commitment scheme that is both concurrent NMc and concurrent
NMd.

Proof. We need to prove the scheme satisfies the following three properties:
computational hiding, statistical binding, and concurrent NMc and concurrent
NMd.

Computational hiding. Intuitively, the hiding property follows from the hiding
property of SBCom and perfect zero-knowledge property of 〈Ptag,Vtag〉. Suppose,
on the contrary, there exists an adversary R∗ that violates the hiding property of
〈C,R〉. Then we design an efficient adversary R′ that breaks the hiding property
of SBCom. R′ proceeds as follows. On input a challenge com (i.e., a commitment
to m0 or m1) from the committer of SBCom, R′ internally incorporates R∗ and
forwards the external commitment com to R∗ in Stage 1. All other executions are
emulated by R′ by following the honest committer strategy except that R′ runs
the simulator for 〈Ptag,Vtag〉 in Stage 1. Finally, R′ outputs whatever R∗ outputs.
From the perfect zero-knowledge property of 〈Ptag,Vtag〉, if R∗ distinguishes the
commitment made using 〈C,R〉, then R′ distinguishes the commitment made
using SBCom.

Statistical binding. The proof of binding property is more subtle. We show that
any malicious adversary C∗ can not violate the binding property of 〈C,R〉. In-
tuitively, if C∗ can open the commitment in two different ways, then due to
the soundness property of 〈cwiP, cwiV〉 and the statistical binding property of
SBCom, C∗ must use a fake witness in the execution of 〈cwiP, cwiV〉 in Stage
2′, i.e., it knows the witness to the statement that c′ is a commitment to v0 or
v1. Note that the only place that C∗ might learn v0 or v1 before Stage 1′ is in
Stage 2 of the commitment phase. Since both the commitments c0, c1 are sta-
tistically hiding and 〈swiP, swiV〉 is statistical WI, C∗ learns v0 or v1 only with
negligible probability in Stage 2. Thus, C∗ makes a commitment c′ to the value
v0 or v1 only with negligible probability in Stage 1′. Moreover, C∗ commits using
SBCom. So the second statement proved in Stage 2′ is a false statement (even
to an unbounded machine). According to the property of 〈cwiP, cwiV〉, even
an unbounded C∗ can not successfully execute the proof with non-negligible
probability in Stage 2′. This reaches a contradiction.

More in details, assume for contradiction that there exists some adversary
(not necessarily PPT) A that is able to violate the binding property of 〈C,R〉.
We show how to construct an algorithm (not necessarily PPT) A′ that violates
the binding property of SBCom or the hiding property of SHCom or the WI prop-
erty of 〈swiP, swiV〉. A′ interacts with A and follows honest receiver strategy.
Once the decommitment phase is finished, A′ runs the extractor of 〈cwiP, cwiV〉
in Stage 2′. According to the property of the extractor of 〈cwiP, cwiV〉, with
overwhelming probability, A′ gets a witness w. Then it must be the case that
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(1) w = r s.t c = SBCom(v; r). (2) w = r∗ s.t c′ = SBCom(vb; r
∗). (3) w = r∗ s.t

c′ = SBCom(v1−b; r
∗).

We now show however that case 1 happens with negligible probability only.
Assume by contradiction, that it can happen with non-negligible probability.
Then we can design an algorithm B that breaks the binding property of SB-
Com. B proceeds exactly as A′. B then succeeds extracting r such that c =
SBCom(v; r). Next, we let B keep rewinding A to the beginning of the decom-
mitment phase until case 1 happens again. B again extracts a witness and we
denote by r∗ the extracted witness. Let v∗ be the opened value by A. Now we
get c = SBCom(v∗; r∗). According to the assumption of A, v 6= v∗ with non-
negligible probability. Now we find a commitment c that can be opened in two
different ways. Thus, we break the binding property of SBCom.

Next we show case 2 happens with negligible probability. Suppose on the con-
trary, with some non-negligible probability it happens that c′ = SBCom(vb; r

∗).
We can design an algorithm B that breaks the WI property of 〈swiP, swiV〉. B
then internally executes all the interactions with A and proceeds exactly as A′

with the only exception that the proof of 〈swiP, swiV〉 in Stage 2 is generated by
relaying all the messages with an external prover (B submits opening informa-
tion of c0 and c1 to the external prover. The external prover then proves using
a witness for cb∗ for some b∗ ∈ {0, 1}). We emphasize here that B generates the
proof of Stage 2′ itself. Then B successfully simulates the interactions with A in
the decommitment, and B runs the extractor of 〈cwiP, cwiV〉. By looking at the
extracted witness, B will guess the witness used by the external prover.

Finally, we show case 3 happens with negligible probability. Suppose on the
contrary, with non-negligible probability it happens that c′ = SBCom(v1−b; r

∗).
We then design an algorithm B that breaks the hiding property of SHCom. On
input a challenge commitment c∗ (to value v̂0, v̂1), B has to decide which value
corresponds to c∗. B proceeds exactly as A′ with the following two exceptions.
The first exception lies in the handling of interaction in Stage 2 of the commit-
ment. Here B first picks a random bit b ∈ {0, 1}, a random string vb ∈ {0, 1}n
and a uniform random string rb ∈ {0, 1}n. B then computes cb = SHCom(vb; rb)
and sets c1−b = c∗. Next B continues the execution of Stage 2 of commitment
by following the honest prover strategy of 〈swiP, swiV〉 using (vb, rb) as witness.
The second exception lies in the handling of interaction in Stage 1′ of decommit-
ment. Here B randomly chooses a bit b∗ ∈ {0, 1}, sends vb, v1−b = v̂b∗ to A and
then uses witness rb to complete the proof 〈swiP, swiV〉. Finally, if the witness
r∗ extracted satisfies c′ = SBCom(v1−b; r

∗), B then outputs v1−b; otherwise, B
outputs v̂b′ for randomly chosen b′ ∈ {0, 1}. Therefore the probability that B
breaks the hiding property of SHCom is also non-negligible.

Concurrent non-malleability. We need to show that the scheme is concurrent
NMc and concurrent NMd. The proof of concurrent NMc is almost identical with
that of the proof in [8]. Note NMc only concerns the commitment phase and
as we discussed previously, the commitment phase of our scheme only deviates
from that of [8] when R sends commitments and plays the WIAOK in Stage 2.
Indeed, in our scheme we use statistical versions of these tools while the protocol
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of [8] only needs the computational versions. The proof however goes through
precisely as the one of [8]. We omit the details here and defer the proof in the
full version.

Next, we show it is concurrent NMd. We show that for every PPT man-in-the-
middle adversary A that participates in m(n) left commitments and m(n) right
commitments, there exists an expected PPT simulator S such that for every
PPT distinguisher D and every negligible function µ, for every value vector
V = (v1, . . . , vm) where vi ∈ {0, 1}n and every z ∈ {0, 1}∗, it holds that∣∣Pr[D(mimAopen(V, z)) = 1]− Pr[D(simS

open(V, z)) = 1]
∣∣ ≤ µ(n). (1)

Denote by Adec the state of A after the commitment phase, i.e., Adec con-
tains A’s description along with its configuration at that time just before the
decommitment phase starts.

We proceed by giving the description of the simulator S. S on input z and
security parameter 1n interacts with external honest receivers and runs the ad-
versaryA internally. During the commitment phases, on a high level, S internally
incorporates A and emulates the commitment phases of all left interactions for
adversary A by honestly committing to 0n, while internally emulating the right
interactions as honest receivers. After all the commitment phases end, S invokes
the extractors for all the proofs provided by A in the left and right commitments
to extract all the corresponding witnesses. More precisely, for each right commit-
ment, S runs the extractor of 〈Ptag,Vtag〉 and we denote by (ṽi, r̃i) the witness
extracted in the ith right commitment. For each left commitment, S runs the
extractor of 〈swiP, swiV〉 to get witness (vbi,i, rbi,i) (bi ∈ {0, 1}). Next, S plays
the commitment phases with external receivers. S follows the honest committer
strategy and commits to ṽi in the ith commitment phase.

Once all the commitment phases are finished, S receives a value vector V =
(v1, . . . , vm) and has to perform the decommitment phases internally with Adec.
S follows the honest receiver strategy in all right decommitments. The simulation
of the ith left decommitment is as follows. In Stage 1′, S acts identically as an
honest committer with the exception that S commits to vbi,i instead of 0n (using
randomness r∗bi,i). In Stage 2′, S follows the honest committer strategy with the
exception that it uses the “fake” witness r∗bi,i to open the commitment to vi.
In Stage 3′, S uses the fake witness rbi,i to complete the proof. S follows the
honest committer strategy in Stage 4′. Finally, for each i, if Adec has successfully
completed the ith right decommitment, then S completes the decommitment
phase of the external execution with honest receivers by opening the commitment
to ṽi.

Running time of S. From the construction of S, we know that S performs
at most 2m extraction procedures in the commitment phases. Note that the
running time of the extractions in both 〈Ptag,Vtag〉 and 〈swiP, swiV〉 are all
expected PPT. Since the extractions are executed sequentially, the running time
of all extractions is also expected PPT. Furthermore, the MIM adversary A is a
PPT algorithm and therefore invoking a copy of A also requires PPT. Thus, S
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runs in expected PPT in the commitment phases. In the decommitment phases,
since S runs in a straight-line manner and no rewinding is involved, the running
time of S is strict PPT. Finally, we conclude that the overall running time of S
is expected PPT.

Next, we prove that the distribution of the messages opened by A when
interacting with honest committers and honest receivers is indistinguishable from
the distribution of the messages opened by A when interacting with S.

Indistinguishability of the simulation. We first consider the case when there is
only one left commitment and m(n) right commitments. Towards of showing
Equation (1) (note V contains only a value v), we define a sequence of hybrid
experiments {HYBi(v, z)}1≤i≤7 that receive v and z as auxiliary inputs. The
output of each experiment is the output of a PPT distinguisher D on input
a value v and a vector of values Ṽ whose ith element is defined as follows. If
the ith right decommitment completes successfully and its transcript is different
from the left interaction, then ṽi is the value opened in the ith right interaction.
Otherwise, ṽi is set to ⊥. Let pi = Pr[HYBi(v, z) = 1].

HYB1(v, z) proceeds exactly as S except that in Stage 1 of the left commit-
ment phase, it runs the simulator of 〈Ptag,Vtag〉. Since the simulation is perfect
we conclude that p1 = Pr[D(simS

open(v, z)) = 1].

HYB2(v, z) proceeds exactly as HYB1 except that in the left commitment
phase, instead of feeding A a commitment to 0n in Stage 1, HYB2 feeds A
a commitment to v using SBCom. Since both HYB1 and HYB2 are efficiently
computable, that |p1 − p2| is negligible follows directly from the computational
hiding property of SBCom.

HYB3(v, z) proceeds exactly as HYB2 except that it runs the simulator of
〈Ptag,Vtag〉 in Stage 3′ of the left decommitment. It follows from the perfect
zero-knowledge property of 〈Ptag,Vtag〉 that p3 = p2.

HYB4(v, z) differs from HYB3 in that it uses the real witness (i.e., decommit-
ment of c) to complete the proof in Stage 2′ of the left decommitment. It follows
from the computational WI property of 〈cwiP, cwiV〉 that |p4 − p3| is negligible.

HYB5(v, z) differs from HYB4 in that it commits to 0n in Stage 1′ of the left
decommitment. It follows from the computational hiding property of SBCom
that |p5 − p4| is negligible.

HYB6(v, z) proceeds exactly as HYB5 except that it uses the real witness (i.e.,
decommitment of c) to complete the proof in Stage 3′ of the left decommitment.
It follows from the perfect zero-knowledge property of 〈Ptag,Vtag〉 that p6 = p5.

HYB7(v, z) proceeds exactly as HYB6 except that it does not need to run
the extractor of 〈swiP, swiV〉 in Stage 2 of left commitment phase. Since the
extraction fails with negligible probability we have that |p7 − p6| is negligible.

Note that HYB7 differs from the real game in that it runs the simulator-
extractor of 〈Ptag,Vtag〉 in Stage 1 of the commitment phase. Following the
description of HYB7 we know that it opens to external receivers the values it
extracts from A at the end of the commitment phase in the simulated game.
Moreover, in the real game the adversary A can not open its commitments in a
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different way (cf. Claim 1). Thus, A opens to external receivers the values it com-
mits to in the commitment phase. It follows from the simulation-extractability
property of 〈Ptag,Vtag〉 that the simulation is perfect and the extraction fails
with negligible probability in each right commitment where the tag is different
from that in the left decommitment (when tags are the same, the security of
signature scheme is violated). Therefore, except with negligible probability, we
have that HYB7 opens to external receivers the same values opened by A in the
real game, i.e., we have that

∣∣p7 − Pr[D(mimAopen(v, z)) = 1]
∣∣ is negligible.

Finally we conclude Equation (1). This completes the proof of Theorem 2.

Claim 1 In the real game A can not open in a different way.

Proof. Assume that, with some probability p, there exists i ∈ [m] such that
the value ṽ′ opened in the ith right decommitment is different from the value ṽ
committed in the ith right commitment.8 We denote by c0, c1 the commitments
made by R in Stage 2 of the ith right commitment. Denote by b the bit such that
R uses the decommitment information corresponding to the commitment cb to
complete the proof of 〈swiP, swiV〉 in Stage 2 and Stage 1′ of ith right interaction.
If A successfully completes the ith right decommitment, then we consider the
following experiment B. B on inputs i, v and z interacts with A and works
as follows. We let B commit to v in the left commitment phase. Furthermore,
B follows the honest committer strategy in the left interaction and the honest
receiver strategy in all right interactions, except in Stage 1′ of ith decommitment
B sends vb and a randomly chosen v∗1−b (With overwhelming probability v∗1−b will
be different from the v1−b chosen in the commitment phase. This is important
for the proof of Case 3 below.). Once the ith right decommitment is over, B
runs the extractor of 〈Ptag,Vtag〉 in Stage 3′. Note that the views of A in a real
execution and an execution of B are identical. So the probability that A opens
in a different way in the execution of B is also p. According to the property of
the extractor of 〈Ptag,Vtag〉, with probability p′ = p−ε(n) where ε is a negligible
function, B gets a witness w̃, and one of the following three cases must happen:

1. w̃ = r̃ s.t c̃ = SBCom(ṽ′; r̃).( c̃ is the commitment generated by A in the ith

right commitment.)
2. w̃ = r∗ s.t cb = SHCom(vb; r

∗). (vb, v
∗
1−b are the values opened by B in Stage

1′ of ith right decommitment.)
3. w̃ = r∗ s.t c1−b = SHCom(v∗1−b; r

∗).

Let p′ = p1 + p2 + p3, where pi is the probability that Case i happens (for
i = 1, 2, 3). By the statistical binding property of SBCom, we have that ṽ′

must correspond to ṽ and thus in this case A does not open in a different way,
therefore p1 must be negligible. Recall in the ith right commitment, B already
generates commitments c0 and c1 to two different values v0 and v1 respectively
and B uses knowledge of a decommitment of vb for a random bit b in both

8 The committed value is the one uniquely specified by the statistically binding com-
mitment scheme SBCom.
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〈swiP, swiV〉 of Stage 2 and 〈swiP, swiV〉 of Stage 1′. By the statistical hiding
property of SHCom and statistical WI property of 〈swiP, swiV〉, we have that p2
is essentially identical to p3, and therefore both p2 and p3 roughly correspond
to p′/2− ε(n) where ε is a negligible function.

We can now conclude the proof showing that p3 must be negligible, and thus
summing up p is negligible as well, therefore A can not open in a different way
with non-negligible probability. Indeed, notice that when Case 3 happens, we
have that A committed to some value v∗1−b in c1−b without having never used
any opening of c1−b in the two executions of 〈swiP, swiV〉. Now in addition to the
opening in the commitment phase (note B generates the commitment itself), we
get two openings for SHCom. Therefore being SHCom computationally binding,
this happens with negligible probability.

Extending to many-many concurrent NMd. Next, we present the proof sketch for
the many-many concurrent case. We show that the two ensembles {mimAopen(V, z)}
and {simS

open(V, z)} are computationally indistinguishable. Suppose, for contra-
diction, this is not the case. That is, there exists a PPT distinguisher D and a
polynomial p(n) such that for infinitely many n ∈ N, there exists a value vec-
tor V = (v1, . . . , vm), z ∈ {0, 1}∗ such that D distinguishes mimAopen(V, z) and

simS
open(V, z) with probability at least 1

p(n) . For a generic n for which this hap-

pens. We design a sequence of hybrid experiments {HYBi(V, z)}0≤i≤m where
HYBi(V, z) is defined as follows. HYBi proceeds as S except that it emulates
the ith left commitment phase by committing to vi, if j ≤ i, and 0n other-
wise. Moreover, it emulates the ith left decommitment by using a legal wit-
ness to vi, if j ≤ i, and a false witness otherwise. It directly follows that
simHYBm

open (V, z) = mimAopen(V, z) and simHYB0
open (V, z) = simS

open(V, z). By a stan-
dard hybrid argument there exists an i ∈ [m] such that∣∣∣Pr[D(simHYBi−1

open (V, z)) = 1]− Pr[D(simHYBi
open (V, z)) = 1]

∣∣∣ > 1

m · p(n)
(2)

Note that the only difference between experiment HYBi−1(V, z) and HYBi(V, z)
is that in the former A receives a commitment to vi and its corresponding de-
commitment generated using a valid witness in the ith interaction, whereas in
the latter it receives a commitment to 0n and its corresponding decommitment
generated using a false witness.

Then we design an efficient MIM adversary Ã that breaks the one-many
concurrent non-malleability of 〈C,R〉. Ã on auxiliary inputs z′ = (n, i,V, z)
proceeds as follows. Ã internally incorporates A(z) and emulates the left and
right interactions for A. Ã relays the messages in all right interactions between
A and external receivers. In the ith left interaction, Ã relays either messages
between an external committer and A, or messages between the simulator of the
one-many concurrent case and A. For j ∈ [m] and j 6= i, Ã internally emulates
the ith left commitment phase for A by committing to vi, if j ≤ i, and 0n

otherwise. Moreover, Ã emulates the ith left decommitment for A by using a
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valid witness, if j ≤ i, and a false witness otherwise. By construction, it follows
that simS

open(V, z) = simHYBi−1
open (z′) and mimAopen(V, z) = simHYBi

open (z′).

Therefore, Ã breaks the one-many concurrent non-malleability of 〈C,R〉.

4 Concluding Remarks

Our result on top of previous work shows that there exist constant-round com-
mitment schemes that are secure also against very powerful adversaries, as long
as there is a barrier in time between commitment and decommitment phase.
An interesting open question concerns the possibility of achieving commitment
schemes that remain secure even without such a barrier. The question is inter-
esting even without requiring a constant round complexity.9
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