
Groth–Sahai proofs revisited

E. Ghadafi, N.P. Smart, and B. Warinschi

Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB.
United Kingdom.

{ghadafi,nigel,bogdan}@cs.bris.ac.uk

Abstract. Since their introduction in 2008, the non-interactive zero-
knowledge (NIZK) and non-interactive witness indistinguishable (NIWI)
proofs designed by Groth and Sahai have been used in numerous appli-
cations. In this paper, we offer two contributions to the study of these
proof systems. First, we identify and correct some errors, present in the
oringal online manuscript, that occur in two of the three instantiations
of the Groth-Sahai NIWI proofs for which the equation checked by the
verifier is not valid for honest executions of the protocol. In particular,
implementations of these proofs would not work correctly. We explain
why, perhaps surprisingly, the NIZK proofs that are built from these
NIWI proofs do not suffer from a similar problem. Secondly, we study
the efficiency of existing instantiations and note that only one of the
three instantiations has the potential of being practical. We therefore
propose a natural extension of an existing assumption from symmetric
pairings to asymmetric ones which in turn enables Groth-Sahai proofs
based on new classes of efficient pairings.

1 Introduction

Background. Interactive proofs allow a prover who possesses some witness ω
to convince a verifier that a certain statement x ∈ L is true, where L is some lan-
guage and ω is a witness that attests to this fact. A particularly fascinating class
of interactive proofs are those where the interaction does not reveal information
about the witness, even if the verifier behaves maliciously. Two popular flavors
of witness privacy are witness-indistinguishability [14], when it is unfeasible for
an adversary to decide which of the possible witnesses is used by the prover, and
zero-knowledge[19, 20], when it is possible to simulate the interaction between
the prover and the verifier without access to a witness. The two notions share
many commonalities, but are also different in important respects and suitable
for different applications. For example, WI proofs can be executed in parallel
while preserving the privacy of the witness, while ZK proofs may fail in this
scenario.

A variant of zero-knowledge proofs useful in multiple application scenarios
are the non-interactive ones [6] (NIZK). In such proofs the interaction between
the prover and the verifier is minimal: the prover simply sends the verifier a
single message after which the latter verifies correctness of the proof without any
further interaction with the prover. It is not difficult to see that NIZK proofs
are impossible in the plain model [18], so some additional setup assumptions
are required. Originally, such proofs were constructed in a setting where parties
share a common random string (CRS) [15]. Later, non-interactive protocols were
also constructed by eliminating interaction through the use of random oracles [5].

Unsurprisingly, both zero-knowledge and witness-indistinguishable proofs have
found countless applications in cryptography. The power and versatility of such
proofs is based on general results that show how to construct zero-knowledge
proof systems for any language in NP [21]. For example, with zero-knowledge
proofs, a party can prove that he/she is following a certain protocol, without re-
vealing any information about its internal state, and thus can be used to compile
protocols secure for honest-but-curious adversaries into protocols secure against
arbitrary adversaries. Witness indistinguishable proofs can be used, for instance,
in the Yao garbled-circuit protocol, to show that public commitments are com-
mitments to elements in {0, 1}. The usability of proofs is tightly tied to the class
of languages to which they apply, and to the efficiency of the associated proof
systems. Clearly, these two requirements are contradictory. Indeed, the approach
of [21] is quite general, but the combination of general NP-reductions to prob-
lems along with ZK protocols leads to highly impractical protocols even for the
simplest languages.

A crucial step towards more efficient non-interactive zero-knowledge proofs
was the breakthrough work of Groth and Sahai [25]. The authors show how
to give NIWI and NIZK proofs for a large class of languages, without going
through the use of a general NP reduction. Numerous cryptographic results
use GS proofs to obtain efficient implementations for various primitives, see
the related work section for a very partial list of such works. In this paper,
we contribute to the understanding of these proofs in two different ways. We
extend the range of implementations to new, potentially more efficient settings
and we fix an inconspicuous flaw that affects an important part of the original
online manuscript [26]. To explain our contributions, we recall some details of
the settings used by [25].

In the original (conference) version of the Groth–Sahai paper [25], the authors
give a general, abstract framework for the construction of NIWI/NIZK proofs
based on cryptographic pairings. We note that none of the errors we identify
occur in [25]. Proofs and details for three different instantiations are given in
the e-print archive version of the paper [26]. The first instantiation uses pairings
over groups of large composite order; the other two use pairings over prime order
groups. The cryptographic assumptions on which the results rely are: the sub-
group decisional problem [8] in the first case, the decisional linear assumption
(DLIN) [7], and the symmetric external Diffie–Hellman assumption (SXDH) [1],
for the remaining two instantiations, respectively. To obtain the later instantia-

tions the authors essentially use a general procedure [16] of converting protocols
from the subgroup decision setting for composite order pairing groups, into pro-
tocols for the DLIN and SXDH assumptions in prime order pairing groups.

Efficient implementations based on a new assumption. From a practical
perspective, pairings for groups of composite order are likely to have little practi-
cal impact, due to their inherent inefficiency. The same holds true for symmetric
pairings, i.e. Type-1 pairings in the vocabulary of [17], which are the pairings
used in the second instantiation. Therefore, the only practical instantiation pro-
posed in [26] remains the one based on SXDH in Type-3 curves. In this paper,
we propose new GS proofs which can be used with the most efficient curves for
pairing based cryptography. Our proposals are based on a natural extension of
the DLIN assumption from the symmetric setting to the asymmetric one. We
thus give DLIN-based GS proofs that work for all of the asymmetric pairing
types. In particular, our proofs are the first GS proofs that work for Type-2
pairings.

We wish to warn readers against judging the efficiency of the proof systems
based on Type-1 curves versus those based on Type-2 and Type-3 solely based
on the number of group elements needed. The efficiency of the former curves is
only illusory since the key sizes for these curves grow faster, and the benefits are
immediately lost. Also, we note that the relative merits of the SXDH assumption
versus the DLIN assumption are a matter of debate in pairing based cryptogra-
phy; some people prefer the DLIN assumption as it applies to both symmetric
and asymmetric settings, although the latter is never formally stated and we
need to formalise the underlying hard problem in this paper. On the other hand
the SXDH assumption only applies to Type 3 pairings, which produce the most
efficient pairings known. The SXDH assumption also usually results in cleaner
and simpler protocol, with Groth–Sahai proofs being no exception. In addition
the SXDH assumption is more closely related to a long standing natural number
theoretic problem, i.e. decisional Diffie–Hellman, than the DLIN assumption.

Fixing the inconspicuous flaw. The construction of Groth–Sahai NIZK
proofs in [25, 26] is done in two stages. First, the authors show how to construct
NIWI proofs, and then following a trick they turn these proofs into full zero-
knowledge ones. Unfortunately, the NIWI proofs based on DLIN and SXDH
presented in [26] are actually invalid: the verification equation is not always
satisfied when the execution is between honest provers and verifiers. As such,
these proofs do not apply for many rather simple but quite useful statements. The
details are somewhat technical and we explain this point later in the paper. These
errors were introduced during the translation from the construction based on the
subgroup decisional problem to the DLIN and SXDH settings [27]. Interestingly,
this problem does not affect the construction of NIZK proofs out of NIWI proofs,
since in this case the verification equation is always satisfied! Again, we elaborate
on this point later in the paper.

We believe that the reason why this error had not been discovered so far is
two-fold. On the one hand, as explained above, GS NIZK proofs are actually
correct. On the other hand, when used in applications, GS (NIWI) proofs are

usually treated in a black-box way: the actual proofs are never spelled out, and
the associated equations are never verified. Clearly, the problem would immedi-
ately show up in an implementation. We fix these problems by giving the correct
versions of the proofs.

Finally, we note that in an effort to encourage further study of the Groth-
Sahai proofs we depart from the notation in the original paper and use some
notation that we believe is more expressive and easier to follow.
Related work. Despite their recent introduction, Groth–Sahai proofs have
been widely used. Since Groth–Sahai proofs apply to bilinear groups, they are
mainly used to design cryptographic primitives that do not rely on the random
oracle assumption. The proofs are used to prove a knowledge of some secret
witnesses or as a proof of membership. The scenarios in which the Groth–Sahai
proofs are used in the literature include: proving the possession of some sig-
nature without actually revealing the signature, proving that two ciphertexts
encrypt the same message, etc. For instance, they were used by Camenisch et al.
[10] to build an encryption scheme that is KDM-CCA2 secure. Also, the NIWI
and NIZK proofs were used by Belenkiy et al.[2, 3] to design p-signatures and
anonymous credentials. Groth and Lu[24] used the NIZK proofs to prove the
correctness of a shuffle. Huang et al. [28] used Groth–Sahai NIWI and NIZK
proofs to construct optimistic fair exchange protocol. In [31], Phong et al. used
the NIZK proofs to construct undeniable signatures. Belenkiy et al. in[4] have ex-
tensively used both the NIWI and NIZK proofs to construct many cryptographic
primitives such as p-signatures, verifiable random functions and compact e-cash
system. Groth–Sahai proofs have also been used to construct group-signatures
[23, 30]. In [13, 22] the proofs are used to design universally composable oblivious
transfer protocols. The first of these is particularly interesting from our perspec-
tive; in [13] the authors use a NIWI proof to prove that set of linear equations
holds. When this protocol is instantiated with the DLIN or SXDH protocols
from [26] one would not obtain a proof which verifies. This is an example of an
instance where the verification equations of the GS NIWI proofs are not valid.

Many of the previous applications of Groth–Sahai proofs for prime order
groups, are assumed to be in the (inefficient) symmetric pairing setting, as they
wish to use protocols based on the DLIN assumption; or they are in the asym-
metric setting and need to make a DLIN assumption related to their scheme and
then an additional SXDH assumption to apply Groth–Sahai proofs. By extend-
ing the DLIN setting to both Type-2 and Type-3 pairings we hope to simplify
future applications of Groth–Sahai proofs, in addition by providing a mechanism
for implementing Groth–Sahai proofs in the Type-2 setting other applications
may open up.

2 Bilinear Groups

Bilinear groups are a set of three groups G1,G2 and GT of prime order q along
with a bilinear map (deterministic function) t̂ which takes as input an element
in G1 and an element in G2 and outputs an element in GT . We shall write G1

and G2 additively, and GT multiplicatively, and write G1 = 〈P1〉,G2 = 〈P2〉, for
two explicitly given generators P1 and P2.

The function t̂ must have the following three properties:

1. Bilinearity: ∀Q1 ∈ G1 , Q2 ∈ G2 x, y ∈ Z, we have

t̂([x]Q1, [y]Q2) = t̂(Q1, Q2)xy.

2. Non-Degeneracy: The value t̂(P1, P2) generates GT .
3. The function t̂ is efficiently computable.

In [17], pairings were categorized into three Types:

– Type-1: This is the symmetric pairing setting in which G1 = G2.
– Type-2: Here we have G1 6= G2, but there is an efficiently computable

isomorphism ψ : G2 −→ G1 where ψ(P2) = P1.
– Type-3: Again G1 6= G2, but now there is no known efficiently computable

isomorphism.

In the Type-1 setting the decision Diffie–Hellman problem is easy in G1, and
hence in G2. In the Type-2 setting the decision Diffie–Hellman problem is easy
in G2, but believed to be hard in G1. In the Type-3 setting the decision Diffie–
Hellman problem is believed to be hard in both G1 and G2. This last belief is
often formalised as the symmetric external Diffie–Hellman assumption:

Definition 1. Symmetric External Diffie-Hellman (SXDH) Assump-
tion: In Type-3 pairings the Decisional Diffie-Hellman (DDH) problem is hard
in both groups G1 and G2.

As a note on naming, the “external” part relates to the fact we are talking
about DDH in G1 and G2, as opposed to the pairing based BDDH problem.
The “symmetric” part is related to the fact that we are talking about DDH
being hard in both G1 and G2. It is perhaps unfortunate terminology that this
symmetry only applies in the asymmetric pairing setting!

As the SXDH problem only applies to Type-3 pairings, it is common to make
the following assumption for Type-1 pairings, as a natural strengthening of the
normal DDH assumption, which no longer applies in Type-1 pairings:

Definition 2. Decisional Linear Problem (DLIN) Assumption: For Type-
1 pairings with G1 = G2 = G and P = P1 = P2, given the tuple ([a]P, [b]P, [ra]P ,
[sb]P, [t]P) where a, b, r, s, t ∈ Fq are unknowns, it is hard to tell whether t = r+s
or t is random.

To extend this definition to the Type-2 or Type-3 setting one could insist
that DLIN is hard in either G1 or G2, however we will require that it is hard in
both G1 and G2. We call this latter notion, in following the naming of the SXDH
assumption, as the symmetric DLIN (SDLIN) assumption.

Definition 3. Symmetric Decisional Linear Problem (SDLIN) Assump-
tion: SDLIN is said to hold if DLIN is hard in both G1 and G2.

This is a stronger form of a version of the asymmetric DLIN problem considered
in other works such as [22], where a single problem with some variable instances
in G1 and some in G2 is considered.

We end this section by noting that in [9], Boneh et al. showed that the
existence of the isomorphism in the Type-2 setting can affect the security of
some cryptographic primitives. On the other hand, Chatterjee and Menezes [11]
show that a protocol which is secure in Type-2 setting can almost always be
transfered to one which is secure in Type-3 setting.

3 Groth–Sahai Proofs

In [25, 26] Groth and Sahai presented a way to construct efficient non-interactive
witness-indistinguishable and zero-knowledge proofs for a wide variety of state-
ments in the common reference string model. In this section, we recap on their
notation, and point out the problems with their presentation.

The NIZK proof systems allow the same methodology to be applied to four
distinct types of equations, or three distinct types in the case of Type-1 pair-
ings. In this section the four different types are presented in one go using the
abstraction of Groth-Sahai. Later we present the specialisations to the different
settings.

Let q be the order of G1, G2 and GT as above. We first create Fq-vector spaces
A1,A2, AT , B1, B2 and BT . In [26] these are Zn-modules and not Fq-vector spaces
since n may be composite, in our situations we always have n = q, a prime. We
assume these vector spaces are equiped with bilinear maps f : A1 × A2 → AT

and F : B1 × B2 → BT . In addition, there are inclusion and projection maps for
each pair, i.e. we have maps ι1 : A1 → B1, ι2 : A2 → B2, ιT : AT → BT , and
p1 : B1 → A1, p2 : B2 → A2, pT : BT → AT . Note, that the ι maps are required
to be computable, but that the p maps will not be computable in general. The
maps are extended to vectors of elements in a componentwise fashion.

All these maps need to satisfy the following commutative properties:

∀x ∈ A1,∀y ∈ A2 :F (ι1(x), ι2(y)) = ιT (f(x, y)),
∀X ∈ B1,∀Y ∈ B2 :f(p1(X), p2(Y)) = pT (F (X ,Y)).

The essential problem in the DLIN and SXDH settings from [26] is that the
specific values of these maps, for three of the four equation types, do not result
in the first of these commutative properties holding. In particular the given
presentation of ιT is incorrect. This leads to the resulting verification of the
NIWI proofs being invalid.

The CRS we use in our proofs is a set of m̂1 and m̂2 elements of B1 and
B2, which we will denote by U (1)

1 , . . . ,U (m̂1)
1 ∈ B1 and U (1)

2 , . . . ,U (m̂2)
2 ∈ B2. To

commit to an element x ∈ Ai one picks r = (r1, . . . , rm̂i) ∈ Fm̂i
q and computes

commi(x) = ιi(x) +
m̂i∑
j=1

[rj]U (j)
i

= ιi(x) + r · Ui.

Now suppose we wish to produce a NIWI proof for the equation,

a⊗ y + x⊗ b+ x⊗ Γy = t, (1)

where we use the shorthand x ⊗ y for f(x, y), with an obvious extension to
vectors. In the above equation; x ∈ An

1 , y ∈ Am
2 are the secret witnesses, with

a ∈ Am
1 , b ∈ An

2 , Γ ∈ Matn×m(Fq), and t ∈ AT the known constants.
We commit to x and y using the random values given by R ∈ Matn×m̂1(Fq)

and S ∈ Matm×m̂2(Fq) via

c = ι1(x) +R U1 and d = ι2(y) + S U2.

The NIWI proof is then given by the following two vector values; one picks
T ∈ Matm̂2×m̂1(Fq) uniformly at random and computes

π = RTι2(b) +RTΓι2(y) +RTΓS U2 − TTU2 ∈ Bm̂1
2 ,

θ = STι1(a) + STΓTι1(x) + T U1 ∈ Bm̂2
1 .

Verification of the proof (π, θ) is performed by checking whether

ι1(a) • d+ c • ι2(b) + c • Γd = ιT (t) + U1 • π + θ • U2

holds. Here we use X • Y as a shorthand for F (X ,Y), again with an obvious
extension for vectors.
Notes. There are four possible instantiations of the equations:

– A1 = G1, A2 = G2, f(P,Q) = t̂(P,Q): This case is called pairing product
equations.

– A1 = G1, A2 = Fq, f(P, y) = [y]P : This case is called multi-scalar multipli-
cation in G1.

– A1 = Fq, A2 = G2, f(x,Q) = [x]Q: This case is called multi-scalar multipli-
cation in G2.

– A1 = Fq, A2 = Fq, f(x, y) = x · y: This case is called quadratic equation in
Fq.

In the DLIN and SXDH cases, the formulaes for ιT for the last three types of
equations are given incorrectly in [26]. From examining the above methods for
NIWI proofs, we see that the NIWI proofs would not verify, unless the value t
was the trivial element.

We note that in the simpler, yet very common, setting of having Γ = 0 and
either a = 0 or b = 0 in equation (1), the proofs can be simplified further by
setting the random matrix T to be zero.

The CRS, and hence the commitment scheme used to commit to elements in
A1 and A2, comes in two flavours: either we have a binding key, or a hiding key.

– Binding key: This setting requires that for i = 1 and i = 2, pi(ιi(x)) = x

and pi(U (j)
i) = 0 for all j. Hence we have pi(commi(x)) = x which gives

us a perfectly binding, computationally hiding commitment scheme. When
used in the proof, this results in perfectly-sound proofs with computational
witness indistinguishablity.

– Hiding key: This setting requires that {U (1)
i , . . . ,U (m̂i)

i }, i.e. the set of
commitment keys, generate the entire space Bi, and hence we have ιi(Ai) ⊆
〈U (1)

i , . . . ,U (m̂i)
i 〉. Therefore, if the randomness vector, r, is uniformly chosen,

the commitment scheme is computationally binding and perfectly hiding.
If this setting is used, the resulting proofs are computationally sound and
perfectly witness-indistinguishable.

The security of the whole system is ensured as long as the adversary is unable
to distinguish between a hiding and a binding key. The security proofs can be
found in [26]. When producing a real system, one relies on a trusted third party
to produce a binding key, however when producing a simulated proof etc. one
relies on a hiding key, which essentially provides a trapdoor for the simulator in
the CRS model.

For the DLIN assumption in the Type-1 setting in [26], a method is given to
make the map F symmetric, in the sense that F (X ,Y) = F (Y,X). We shall see
when F is instantiated below, that such a symmetry is not possible for Type-2
and Type-3 pairings. When F is symmetric the associated proofs can be made
much simpler, we leave the reader to consult [26] for details.

To convert the above method for NIWI proofs into a method for NIZK proofs,
we first reorganize the above equation as

a⊗ y + (−1⊗ t) + x⊗ b+ x⊗ Γy =

0 If AT = Fq,
O If AT = G1 or G2,
1 If AT = GT .

The vector of commitments c is extended to include a commitment to the el-
ement one, this is done to deal with the extra term in the left hand side of
the above equation. Then the above NIWI method is applied. This results in
the NIZK proofs in the pairing product equation subcase only applying when
either t = 1 in equation (1), or one knows P1, . . . , Pn and Q1, . . . , Qn such that
t = t̂(P1, Q1) · · · t̂(Pn, Qn), since only then can the above transform be applied.
This is the only restriction in the method for obtaining NIZK proofs.

In all cases, to obtain NIZK proofs we apply the method for NIWI proofs in
the case where the equation is homogeneous, i.e. has a trivial right hand side.
This latter point is crucial in understanding why the NIZK proofs from [26] work
but the NIWI proofs do not. Hence, even though ιT was presented incorrectly
in [26], since the method to produce NIZK proofs will result in a trivial value of
ιT , the method for NIZK is sound.

4 Equations for ι and p

From the last section, it is seen that the whole system depends on the choice
of the ι and p maps, plus the CRS. The maps must be chosen so that they
have the required commutativity property over f and F . In this section, we give
such maps and the relevant CRS for the SXDH and SDLIN examples in the
asymmetric pairing setting.

We present the data in the following way, for each setting we first present
the hiding and binding CRS, along with the map F and the groups Bi and BT .
Then we present the maps ιi and pi for the cases Ai = Fq and Ai = Gi. At this
point we overload the symbols ιi and pi, with the precise maps being obtained
by type-checking. This helps simplify our notation somewhat.

Once the maps are defined we can proceed to produce the commitment
schemes, and the NIWI and NIZK proofs. Then for the four types of equation
being proved, we present the maps ιT and pT , which result in the maps being
commutative. With these maps one can then verify the resulting NIWI proofs.
Again we overload ιT and pT , with the precise map being determined by type
checking.

4.1 SXDH-Based Proofs:

Setup: We set B1 = G2
1, B2 = G2

2 and BT = G4
T , all with operations performed

componentwise. We let

F :
{

B1 × B2 −→ BT

(X1, Y1), (X2, Y2) 7−→
(
t̂(X1, X2), t̂(X1, Y2), t̂(Y1, X2), t̂(Y1, Y2)

)
Since the underlying pairing t̂ is bilinear, it follows that the map F is also bilinear.
To generate the CRS, the trusted party generates, for i = 1, 2, ai, ti ∈ F∗q at
random and defines

Qi = [ai]Pi, Ui = [ti]Pi, Vi = [ti]Qi.

We now set

U (1)
i = (Pi, Qi) ∈ Bi,

U (2)
i =

{
[ti]U (1)

i = (Ui, Vi) Binding Case
[ti]U (1)

i − (O, Pi) = (Ui, Vi − Pi) Hiding Case
∈ Bi.

The CRS is then the set {U1,U2} where U1 = {U (1)
1 ,U (2)

1 }, and U2 = {U (1)
2 ,U (2)

2 }.
Under the SXDH assumption one cannot tell a binding key from a hiding key.
To aid what follows, we first set Wi = U (2)

i + (O, Pi) = (Wi,1,Wi,2) ∈ Bi.

ιi, pi and commi: We now define the maps ιi : Ai → Bi, pi : Bi → Ai and the
commitment scheme commi. There are two cases we need to consider; Ai = Fq

and Ai = Gi.

Ai = Fq: We define, in this case, the maps via

ιi :
{

Fq −→ Bi

x 7−→ [x]Wi
pi :

{
Bi −→ Fq

X = ([c1]Pi, [c2]Pi) 7−→ c2 − aic1

Note, that computing pi requires one to solve discrete logarithms. This is not an
issue since we at no point will compute pi, we simply need to know it exists and
it has the correct properties.

The commitment scheme commi is obtained as before, except we select m̂i =
1, as opposed to m̂i = 2, this simplifies the equations somewhat. Hence we have

commi :
{

Fq × Fq −→ Bi

(x, r) 7−→ ιi(x) + [r]U (1)
i

Ai = Gi: In this case we define

ιi :
{

Gi −→ Bi

X 7−→ (O, X) pi :
{

Bi −→ Gi

X = (C1, C2) 7−→ C2 − [ai]C1

The commitment scheme commi is obtained as in our main discussion, i.e. with
m̂i = 2. Hence we have

commi :
{

Gi × Fq × Fq −→ Bi

(X, r1, r2) 7−→ ιi(X) + [r1]U (1)
i + [r2]U (2)

i

ιT and pT : Here we have four cases, depending on which of the four types of
equation we are dealing with

Pairing Product Equations.

ιT :
{

GT −→ BT

ζ 7−→ (1, 1, 1, ζ) pT :
{

BT −→ GT

(ζ1,1, ζ1,2, ζ2,1, ζ2,2) 7−→ ζ2,2ζ
−a1
1,2 (ζ2,1ζ

−a1
1,1)−a2

Multi-Scalar Multiplication in G1 and G2.
In both of these cases we have

pT :
{

BT −→ Gi

(ζs1 , ζs2 , ζs3 , ζs4) 7−→ [s4 − a1s2 − a2s3 + a1a2s1]Pi

where ζ = t̂(P1, P2). For multi-scalar multiplication in G1 the map ιT is defined
by

ιT :
{

G1 −→ BT

X 7−→ (1, 1, t̂(X,W2,1), t̂(X,W2,2))

Whilst for multi-scalar multiplication in G2 the map ιT is defined by

ιT :
{

G2 −→ BT

X 7−→ (1, t̂(W1,1, X), 1, t̂(W1,2, X)).

Note, these are different definitions from those given in [26]. The above definitions
produce the required commutative properties.
Quadratic Equations in Fq.
In this case we have

pT :
{

BT −→ Fq

(ζs1 , ζs2 , ζs3 , ζs4) 7−→ s4 − a1s2 − a2s3 + a1a2s1

where ζ = t̂(P1, P2). The function ιT is given by

ιT (z) :
{

Fq −→ BT

z 7−→ F (W1,W2)z.

Again this is different from the map given in [26].

4.2 SDLIN-Based Proofs:

We now perform a similar analysis when we wish to base security on the SDLIN
problem. Recall in [26] this situation is only described for the Type-1 pairing
situation. What we describe below can be used in both the Type-2 and Type-3
situations. In addition by specialising it to the Type-1 situation, and applying
the optimization of [26], to produce a symmetric version of F (X ,Y), one obtains
more efficient NIZK proofs for Type-1 pairings as well.

Setup: We set B1 = G3
1, B2 = G3

2 and BT = G9
T , all with operations performed

componentwise. We let

F :

B1 × B2 −→ BT

(X1, Y1, Z1), (X2, Y2, Z2) 7−→

 t̂(X1, X2) t̂(X1, Y2) t̂(X1, Z2)
t̂(Y1, X2) t̂(Y1, Y2) t̂(Y1, Z2)
t̂(Z1, X2) t̂(Z1, Y2) t̂(Z1, Z2)

Since the underlying pairing t̂ is bilinear, it follows that the map F is also bilinear.
To generate the CRS the trusted party generates, for i = 1, 2 ai, ri, si, ti ∈ F∗q at
random and defines

Ui = [ai]Pi, Vi = [ti]Pi.

We now set

U (1)
i = (Ui,O, Pi) ∈ Bi,

U (2)
i = (O, Vi, Pi) ∈ Bi,

U (3)
i =

[ri]U (1)

i + [si]U (2)
i

= ([ri]Ui, [si]Vi, [ri + si]Pi) Binding Case
[ri]U (1)

i + [si]U (2)
i − (O,O, Pi)

= ([ri]Ui, [si]Vi, [ri + si − 1]Pi) Hiding Case

The CRS is then the set {U1,U2} where U1 = {U (1)
1 ,U (2)

1 ,U (3)
1 }, and U2 =

{U (1)
2 ,U (2)

2 ,U (3)
2 }. Under the SDLIN assumption one cannot tell a binding key

from a hiding key. To aid notation in what follows, we first set Wi = U (3)
i +

(O,O, Pi) = (Wi,1,Wi,2,Wi,3) ∈ Bi.

ιi, pi and commi: We now define the maps ιi : Ai → Bi, pi : Bi → Ai and the
commitment scheme commi. There are two cases; Ai = Fq and Ai = Gi.
Ai = Fq: We define the maps via

ιi :
{

Fq −→ Bi

x 7−→ [x]Wi
pi :

{
Bi −→ Fq

X = ([c1]Pi, [c2]Pi, [c3]Pi) 7−→ c3 − 1
ai
c1 − 1

ti
c2

The commitment scheme commi is obtained as before, except we select m̂i = 2,
as opposed to m̂i = 3, this again simplifies the equations. Hence we have

commi :
{

Fq × Fq × Fq −→ Bi

(x, r1, r2) 7−→ ιi(x) + [r1]U (1)
i + [r2]U (2)

i

Ai = Gi: We define

ιi :
{

Gi −→ Bi

X 7−→ (O,O, X) pi :
{

Bi −→ Gi

X = (C1, C2, C3) 7−→ C3 − [1
ai

]C1 − [1
ti

]C2

The commitment scheme commi is obtained as in our main discussion, i.e. with
m̂i = 3. Hence we have

commi :
{

Gi × Fq × Fq × Fq −→ Bi

(X, r1, r2, r3) 7−→ ιi(X) + [r1]U (1)
i + [r2]U (2)

i + [r3]U (3)
i

ιT and pT : Here we have four cases, depending on which of the four types of
equation we are dealing with
Pairing Product Equations.

ιT :

GT −→ BT

ζ 7−→

1 1 1
1 1 1
1 1 ζ

 pT :

BT −→ GT ζ1,1 ζ1,2 ζ1,3

ζ2,1 ζ2,2 ζ2,3

ζ3,1 ζ3,2 ζ3,3

 7−→ γ
−1/a2
1 γ

−1/t2
2 γ3

where γi = ζ
−1/a1
1,i ζ

−1/t1
2,i ζ3,i.

Multi-Scalar Multiplication in G1 and G2.
In both of these cases we have

pT :

BT −→ Gi ζs1,1 ζs1,2 ζs1,3

ζs2,1 ζs2,2 ζs2,3

ζs3,1 ζs3,2 ζs3,3

 7−→ [s3 − 1
a2
s1 − 1

t2
s2]Pi

where ζ = t̂(P1, P2) and

si = s3,i −
1
a1
s1,i −

1
t1
s2,i.

For multi-scalar multiplication in G1 the map ιT is defined by

ιT :

G1 −→ BT

X 7−→

 1 1 1
1 1 1

t̂(X,W2,1) t̂(X,W2,2) t̂(X,W2,3)

Whilst for multi-scalar multiplication in G2 the map ιT is defined by

ιT :

G2 −→ BT

X 7−→

1 1 t̂(W1,1, X)
1 1 t̂(W1,2, X)
1 1 t̂(W1,3, X)

When specialised to the symmetric case these are different definitions of ιT to
those given in [26]. The above definitions produce the required commutative
properties.
Quadratic Equations in Fq.
In this case we have

pT :

BT −→ Fq ζs1,1 ζs1,2 ζs1,3

ζs2,1 ζs2,2 ζs2,3

ζs3,1 ζs3,2 ζs3,3

 7−→ s3 − 1
a2
s1 − 1

t2
s2

where again we have ζ = t̂(P1, P2) and

si = s3,i −
1
a1
s1,i −

1
t1
s2,i.

The function ιT is given by

ιT (z) :
{

Fq −→ BT

z 7−→ F (W1,W2)z.

Again this is different from the mapping given in [26].

4.3 Combining SXDH and SDLIN

We end this section by noting an extension which was pointed out to us by J.
Groth [27]. If one wanted to work in Type-2 pairings and one wanted a more
efficient instantiation one could implement a system using DDH in G1 and DLIN
in G2. We do not expand on the details of this construction, but remark that
this would imply that elements in B1 would consist of two elements in G1 and

elements in B2 would consist of three elements in G2, with BT consisting of six
elements in GT . This added efficiency is at the expense of having to assume DDH
in G1, which defeats the benefit which some people (although not the current
authors) see behind the DLIN assumption based constructions in pairing based
cryptography; namely that a single protocol description can apply in all main
three pairing types.

5 Performance Comparison

In this section we compare the relative commitment sizes of the different instan-
tiations, the resulting proof sizes can be deduced from these and show a similar
relative comparison. From the size of the elements in the groups B1 and B2 one
can also easily estimate the relative computational performance figures, as group
operations are essentially a quadratic function of the bit length. Before proceed-
ing we also note that Groth–Sahai proofs will usually be used in the context of
another protocol or scheme which is likely to dictate the exact pairing type one
is using, hence the following comparison is only for illustrative purposes.

To provide concrete numbers we assume a security level equivalent to 128-
bits of symmetric key security. Using “standard” comparisons of different key
sizes this equates to a minimum size of GT of 3072-bits and a minimum size of
elements in G1 of 256-bits. We let k denote the pairing embedding degree. For
Type-1 pairings the value of k is bounded by two for elliptic curves defined over
fields of large prime characteristic and by six for curves which are defined over
fields of characteristic three. For Type-2 and Type-3 curves the “optimal” value
of k at this security level is k = 12. A crucial observation is that for Type-3
curves we have the ability to compress the elements in G2 by a factor of six at
this security level by using BN curves.

We summarize the commitment sizes (in bits), i.e. the size of elements in B1

and B2, as well as the proof sizes (also in bits), in Table 1. From the table it
would appear that using the SDLIN setting as introduced in this paper gives no
advantage. However, this overlooks the fact that the point of Groth–Sahai proofs
is to use them in other protocols and schemes. These protocols and schemes may
require one to work in the Type-2 setting, or to base ones security on the SDLIN
assumption. Thus in these situations it makes more sense to use Groth–Sahai
proofs suited to the particular protocol. In addition some researchers prefer the
SDLIN setting to the SXDH setting as they prefer not to use the “special”
pairing setting of Type-3, where there is no computable isomorphism from G2

to G1.
For the Type-1 setting we give two figures to represent the case of large

prime characteristic and characteristic three. Note in all cases the size of a proof
is equal to m̂1 elements of B2 and m̂2 elements of B1, except in the case of
Type-1 pairings where due to the symmetric nature of the map F (X ,Y) one can
simplify this to max(m̂1, m̂2) elements of B1 = B2.

Pairing
Type 1 2 3 3

Hard
Problems DLIN SDLIN SDLIN SXDH

|G1| 1536/512 256 256 256
|G2| 1536/512 3072 512 512

|B1| 3 · |G1| = 4608/1536 3 · |G1| = 768 3 · |G1| = 768 2 · |G1| = 512
|B2| 3 · |G2| = 4608/1536 3 · |G2| = 9216 3 · |G2| = 1536 2 · |G2| = 1024

Pairing Product Equations

(m̂1, m̂2) (3,3) (3,3) (3,3) (2,2)
Size 13824/4608 29952 6912 3072

Multi-scalar multiplication in G1

(m̂1, m̂2) (3,2) (3,2) (3,2) (2,1)
Size 13824/4608 29184 6144 2560

Multi-scalar multiplication in G2

(m̂1, m̂2) (2,3) (2,3) (2,3) (1,2)
Size 13824/4608 20736 5376 2048

Quadratic Equations in Fq

(m̂1, m̂2) (2,2) (2,2) (2,2) (1,1)
Size 9216/3072 19968 4608 1536

Table 1. Summary of the different instantiations

6 Summary

We have extended the Groth–Sahai techniques to pairings in the Type-2 setting,
and to using the DLIN assumption in the Type-3 setting. This required us to
introduce a minor extension to the DLIN hardness assumption. In doing so we
corrected a number of mistakes in the formulae presented in [26]. Using our
formulae all valid NIWI proofs in both the DLIN and SXDH settings will now
verify.

Acknowledgements. The authors work was partially funded by the EU FP7
projects CACE and eCrypt-2. The work of the second author was supported by a
Royal Society Wolfson Merit Award. The authors would like to thank Jens Groth
and Amit Sahai for useful feedback on an earlier version of this manuscript.

References

1. G. Ateniese, J. Camenisch, B. de Medeiros and S. Hohenberger. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,
2005.

2. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya and H.
Shacham. Randomizable proofs and delegatable anonymous credentials. In Ad-
vances in Cryptology – CRYPTO 2009, Springer LNCS 5677, 108–125, 2009.

3. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and
noninteractive anonymous credentials. In Theory of Cryptography Conference –
TCC 2008, Springer LNCS 4948, 356–374, 2008.

4. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Compact E-Cash
and simulatable VRFs revisited. In Pairing-Based Cryptography – Pairing 2009,
Springer LNCS 5671, 114–131, 2009.

5. M. Bellare and P. Rogaway. Random oracles are practical: A Paradigm for Design-
ing Efficient Protocols. In Computer and Communications Security – CCS 1993,
ACM, 62–73, 1993.

6. M. Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its ap-
plications. In Symposium on Theory of Computing – STOC 1988, ACM, 103–112,
1988.

7. D. Boneh, X. Boyen and H. Shacham. Short group signatures. In Advances in
Cryptology – CRYPTO 2004, Springer LNCS 3152, 41–55, 2004.

8. D. Boneh, E. Goh and K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. In
Theory of Cryptography Conference – TCC 2005, Springer LNCS 3378, 325–341,
2005.

9. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – ASIACRYPT 2001, Springer LNCS 2248, 514–532, 2001.

10. J. Camenisch, N. Chandran and V. Shoup A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In Advances in Cryptology – EUROCRYPT 2009, Springer LNCS 5479, 351–368,
2009.

11. S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric
pairings – The role of Ψ revisited. Cryptology ePrint Archive, Report 2009/480,
2009.

12. I. Damg̊ard. Non-interactive circuit based proofs and non-interactive proofs of
knowledge with preprocessing. In Advances in Cryptology – EUROCRYPT ’92,
Springer LNCS 658, 341–355, 1992.

13. I. Damg̊ard, J.B. Nielsen, and C. Orlandi. Essentially optimal universally com-
posable oblivious transfer. Information Security and Cryptology – ICISC 2008,
Springer LNCS 5461, 318–335, 2009.

14. U. Feige and A. Shamir. Witness indistinguishable and witness hidding protocols.
In Symposium on Theory of Computing, ACM, 416–426, 1990.

15. U. Feige, D. Lapidot and A. Shamir. Non-interactive zero-knowledge proofs based
on a single random string. In Foundations of Computer Science – FOCS 1990,
ACM, 308–317, 1990.

16. D.M. Freeman. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. Cryptology ePrint Archive, Report 2009/540, 2009.

17. S. Galbraith, K. Paterson and N.P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156, 3113–3121, 2008

18. O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7, 1–32, 1994.

19. S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interac-
tive proof-systems (extended abstract). In Symposium on Theory of Computing –
STOC 1985, ACM, 291–304, 1985.

20. S. Goldwasser, S. Micali and C. Rackoff The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18, 186–208, 1989.

21. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity. In Journal of the ACM, volume 38, issue 3, p.690-728. July 1991.

22. M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer.
In Advances in Cryptology – ASIACRYPT 2008, Springer LNCS 5350, 179–197,
2008.

23. J. Groth. Fully anonymous group signatures without random oracles. In Advances
in Crytology – ASIACRYPT 2007, Sprigner LNCS 4833, 164–180, 2007.

24. J. Groth and S.Lu. A non-interactive shuffle with pairing based verifiability. In
Advances in Cryptology – ASIACRYPT 2007, Springer LNCS 4833, 51–67, 2007.

25. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Advances in Cryptology – EUROCRYPT 2008, Springer LNCS 4965, 415–432,
2008.

26. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups
(full version). http://www.brics.dk/~jg/WImoduleFull.pdf

27. J. Groth and A. Sahai. Private Communication. Dec 2009.
28. Q. Huang, G. Yang, D. S. Wong, and W. Susilo. Ambiguous optimistic fair ex-

change. In Advances in Cryptology - ASIACRYPT 2008 , Springer LNCS 5350,
74–89, 2008.

29. J. Kilian and E. Petrank. An efficient non-interactive proof system for NP with
general assumptions. Journal of Cryptology, 11, 1–27, 1998.

30. X. Liang, Z. Cao, J. Shao, and H.Lin. Short group signature without random
oracles. In Information Security and Cryptology – ICICS 2007, Springer LNCS
4861, 69–82, 2007.

31. L.T. Phong, K. Kurosawa, and W. Ogata. New DLOG-based convertible undeni-
able signature schemes in the standard model. Cryptology ePrint Archive, Report
2009/394.

32. A. De Santis, G. Di Crescenzo and G. Persiano. Randomness-optimal characteri-
zation of two NP proof systems. In Randomization and Approximation Techniques
in Computer Science – RANDOM ’02, Springer LNCS 2483, 179–193, 2002.

