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Abstract. Network coding offers the potential to increase throughput
and improve robustness without any centralized control. Unfortunately,
network coding is highly susceptible to “pollution attacks” in which mali-
cious nodes modify packets improperly so as to prevent message recovery
at the recipient(s); such attacks cannot be prevented using standard end-
to-end cryptographic authentication because network coding mandates
that intermediate nodes modify data packets in transit.
Specialized “network coding signatures” addressing this problem have
been developed in recent years using homomorphic hashing and homo-
morphic signatures. We contribute to this area in several ways:
– We show the first homomorphic signature scheme based on the RSA

assumption (in the random oracle model).
– We give a homomorphic hashing scheme that is more efficient than

existing schemes, and which leads to network coding signatures based
on the hardness of factoring (in the standard model).

– We describe variants of existing schemes that reduce the communi-
cation overhead for moderate-size networks, and improve computa-
tional efficiency (in some cases quite dramatically – e.g., we achieve
a 20-fold speedup in signature generation at intermediate nodes).

Underlying our techniques is a modified approach to random linear net-
work coding where instead of working in a vector space over a field, we
work in a module over the integers (with small coefficients).

1 Introduction

Network coding [2, 18] offers an alternative, decentralized approach to traditional
multicast routing. We consider a network setting where a source node has a file
that it wants to distribute to a set of target nodes. The source partitions the file
into m packets which it transmits to its neighboring nodes. Further transmission
happens through intermediate nodes who receive packets via incoming links and
produce modified packets sent over outgoing links. These outgoing packets are
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computed as linear combinations of incoming packets, where packets are viewed
as vectors in a vector space over some field. (See further discussion in Section 2.1.)
We focus on the case of random linear network coding [10, 13], where scalars
are chosen by each intermediate node at random from the underlying field. This
strategy induces a fully decentralized solution to the routing problem since nodes
do not need to coordinate their actions.

Target nodes reconstruct the original file sent by the source using the packets
they receive. This can be done if the intermediate nodes augment each vector they
send with m additional coding coordinates that encode the linear combination
that resulted in that vector. A target that receives a set of augmented vectors
for which the coding coordinates induce a full rank matrix can recover the file
sent by the source via simple matrix inversion. (See Section 2.1.) A fundamental
question is: what is the decoding probability at the targets; i.e., what is the
probability with which a target is able to reconstruct the original file? The
network coding literature shows that small-size fields (e.g., F28) provide good
decoding probability for sufficiently connected networks.

Although network coding can increase throughput and reliability relative to
alternative techniques, it is susceptible to pollution attacks in which malicious
nodes inject invalid packets that prevent reconstruction of the file at the targets.
(An invalid packet is any packet that is not in the linear span of the original
augmented vectors sent by the source.) Due to the way vectors are propagated
and combined in the network, a single invalid packet injected by an attacker can
invalidate many more packets further downstream. This constitutes a serious
denial of service attack which can be mounted effortlessly.

Two naive solutions to this problem are easily seen to be inapplicable. Having
the source sign the file prevents a target node from reconstructing an incorrect
file, but does not enable the target to efficiently reconstruct the correct file in
the first place. (Moreover, it does not provide any way for intermediate nodes to
drop invalid packets they receive.) Having the source sign each augmented vector
it sends (using a standard signature scheme) is also of no help, since interme-
diate nodes are supposed to modify vectors in transit. Prior work has shown,
however, that dedicated network coding signatures can be used to address pollu-
tion attacks. Such signatures have been based on two primitives: homomorphic
hash functions [17, 21] or homomorphic signatures [16, 7, 6]. In both cases, homo-
morphic properties ensure that the signature (or hashing) operation on a linear
combination of vectors results in a corresponding homomorphic combination of
signatures (or hash values). See Section 2.2 for further details.

Constructions of homomorphic hash functions are well known, and can be
implemented over any prime-order group where the discrete logarithm problem
is hard. Building homomorphic signatures is more challenging. So far the only
known construction is based on bilinear groups [6] and involves costly pairing
operations. In particular, network coding signatures based on homomorphic sig-
natures are computationally more expensive than those built from homomorphic
hashing. However, the latter are less communication-efficient since they require
each packet transmitted to be sent along with some “authentication data” whose



length is proportional to m (the number of file vectors). One drawback of both
approaches is that they replace the small fields used in “standard” network cod-
ing with very large fields appropriate for cryptography. For example, instead of
using vectors over an 8-bit field as in traditional network coding, the crypto-
graphic approaches use vectors over a 160-bit field instead. This increases both
the communication and computational overhead.

Our Contributions. We present new and improved network coding signatures.
First, we show the first homomorphic signature scheme based on the RSA as-
sumption in the random oracle model.1 In particular, it offers more efficient
processing at the intermediate nodes as compared to the scheme of [6] that is
based on bilinear groups and pairings. The bandwidth overhead is also lower for
networks of moderate size (e.g., where the maximum path length between source
and target nodes is 20–30 hops).

We also present a new homomorphic hashing scheme which is quite efficient.
Treating each information vector v as a single (large) integer, we define our hash
function simply as HN (v) = 2v mod N for a composite N . This hash function
is homomorphic over the integers and can be proven collision resistant based on
the hardness of factoring. This constructions leads to a network coding signature
scheme based on the factoring assumption and without random oracles.

A core technique we use for both the above constructions is to apply network
coding in a module over the integers rather than in a vector space over a field as
is traditionally done. By working over the integers we enable the homomorphic
properties of the above two schemes (where the group order is unknown), and
furthermore can work with small coefficients (that need not be cryptographically
large). This has the immediate effect of improving the computation at interme-
diate nodes, and it also reduces the total bandwidth overhead for networks with
moderate-length paths between source and targets.

We must analyze how this change from working over a field to working over
the integers affects the decoding probability. We show that if the integer coef-
ficients are taken from a set Q = {0, . . . , q − 1} for prime q, then the decoding
probability is at least as good as working over the field Fq; thus we conclude
that using 8-bit coefficients is good enough for most applications.

The ability to perform with network coding with small integer coefficients
allows us also to improve the performance of existing schemes. We show that by
choosing coefficients from a small set Q as above (but still performing computa-
tions modulo the large prime p as required by prior schemes) we can significantly
improve performance: e.g., we obtain roughly a 20-fold improvement in signa-
ture generation time at intermediate nodes and a reduction in the communication
overhead as well.
1 Yu et al. [20] recently proposed an RSA-based homomorphic signature scheme, but

their scheme is essentially flawed (e.g., no signature, even one produced by an honest
source, ever passes verification). The problem is that Yu et al. incorrectly assume (cf.
equations (11) and (12) in Section III-B of [20]) that for integers A, b, d, a prime e,
and RSA composite N , it holds that (Ab mod e)d mod N = (A mod e)bd mod N .



Organization. Section 2 reviews network coding and existing network coding
signature schemes. In Section 3, we discuss network coding over the integers and
show how this translates into performance improvements for existing network
coding signature schemes. We present our RSA-based homomorphic signature
scheme in Section 4, and our factoring-based homomorphic hashing scheme in
Section 5.

2 Background

2.1 Network Coding

We present a high-level description of linear network coding (the only type with
which we are concerned in this work); for further details see [12]. In this setting,
we have a network with a distinguished node S, called the source, and a subset
of nodes known as targets. The objective is for S to transmit a file F̄ to all the
target nodes, where F̄ is represented as a matrix containing the m (row) vectors
v̄(1), . . . , v̄(m) ∈ Fn over some finite field F.

The source first creates m augmented vectors w̄(1), . . . , w̄(m) defined as

w̄(i) = (

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0 ‖ v̄(i)) ∈ Fm+n ;

i.e., each original vector v̄(i) of the file is pre-pended with the vector of length
m containing a single ‘1’ in the ith position. These augmented vectors are sent
by the source to its neighboring nodes.

Each (well-behaved) intermediate node I in the network processes packets
(i.e., incoming vectors) as follows. Upon receiving packets w(1), . . . , w(`) ∈ Fm+n

on its ` incoming communication edges, I computes a packet w for each of its
outgoing links as a linear combination of the packets that it received. That is,
each outgoing packet w transmitted by I takes the form w =

∑`
i=1 αiw

(i), where
αi ∈ F. We say a vector w transmitted in the network (in the scenario above) is
valid if it lies in the linear span of the original augmented vectors w̄(1), . . . , w̄(m).
It is easy to see that if all nodes follow the protocol honestly, then every packet
transmitted in the network is valid.

Different strategies for choosing the coefficients αi yield different variants of
network coding. When the {αi} are chosen randomly and independently by each
intermediate node, for each of its outgoing communication links, the resulting
scheme is referred to as random linear network coding [8, 10, 13]. When analyzing
efficiency, we assume random linear network coding is used; our constructions,
however, ensure security regardless of how the coefficients are chosen.

To recover the original file, a target node must receive m (valid) vectors
{w(i) = (u(i)‖v(i))}mi=1 for which u(1), . . . , u(m) are linearly independent. If we
define a matrix U whose rows are the vectors u(1), . . . , u(m) and a matrix V



whose rows are the vectors v(1), . . . , v(m), the original file can be recovered as

F̄ = U−1V. (1)

Assuming the coefficients are chosen randomly and independently by the
intermediate nodes, the decoding probability — i.e., the probability with which a
given target node will be able to recover the file (or, equivalently, the probability
with which a given target node will receive m linearly independent vectors, in
the sense required above) — is determined by the network topology and the
size of the field F. To minimize the communication overhead (due to the first m
coordinates of every transmitted vector), it is desirable to keep |F| as small as
possible; on the other hand, choosing |F| too small would reduce the decoding
probability too much. For typical networks encountered in practice, taking |F| ≈
256 has been shown to give a decoding probability of better than 99%.

2.2 Network Coding Signatures

We have already discussed the problem of pollution attacks, and why standard
cryptographic mechanisms are incapable of preventing them. Early efforts to deal
with pollution attacks focused on information-theoretic solutions [11, 14, 15] that
use error-correction techniques to ensure that targets can reconstruct the file as
long as the ratio of valid to invalid vectors they receive is sufficiently high. Un-
fortunately, these techniques (inherently) impose limitations on the number of
nodes the adversary can corrupt, the number of packets that can be modified,
and/or the number of links on which the adversary can eavesdrop. Researchers
have more recently turned to cryptographic approaches that place no restrictions
on the adversary (other than assuming that the adversary is computationally
bounded) [17, 7, 21, 6]. These approaches give network coding signature schemes
that allow anyone holding the public key2 of the source to determine whether
a given vector is valid. This allows target nodes to reject invalid vectors before
reconstructing the file; it also allows intermediate nodes to filter out invalid vec-
tors when generating their outgoing messages. For formal definitions of network
coding signatures and their security requirements, see [6].

Two classes of network coding signature schemes are known: those based on
homomorphic hashing, and those using homomorphic signatures. We describe
these now at a high level.

Schemes based on homomorphic hashing [17, 21, 6]. A homomorphic hash
function H is a collision-resistant hash function with the property that for any
vectors a, b and scalars α, β it holds that H(αa + βb) = H(a)αH(b)β . Collision
resistance implies (via standard arguments) that if one knows vectors a, b, c for
which H(c) = H(a)αH(b)β then it must be the case that c = αa + βb.

A concrete example [17] of a homomorphic hash function is given by what we
call the exponential homomorphic hash (EHH) scheme. Let G be a cyclic group
2 A symmetric-key analogue is also possible [9, 1], but this allows only a (single) target

to verify validity of vectors.



of order p, and let the public key contain random generators g1, . . . , gn ∈ G.
Define a function H on vectors v = (v1, . . . , vn) ∈ Zn

p as

H(v) =
∏n

j=1 g
vj

j . (2)

The homomorphic property is easily verified, and collision resistance is implied
by the discrete logarithm assumption in G.

Homomorphic hash functions can be used for network coding as follows. For
each original vector v̄(i), the source S computes hi = H(v̄(i)); it then signs
(h1, . . . , hm) (together with a unique file identifier fid) using a standard signa-
ture scheme. The {hi} and their signature are then appended to every packet
sent in the network.3 A node can determine whether a vector w = (u ‖ v) is
valid by checking the signature on the {hi} (and the fid), and then verifying
whether

∏m
i=1 hui

i
?= H(v). In particular, for the EHH scheme hi = H(v̄(i)) and

verification takes the form:
m∏

i=1

hui
i

?= H(v) def=
n∏

j=1

g
vj

j . (3)

The resulting network coding signature scheme can be proven secure without
random oracles based on the discrete logarithm assumption [17, 6].

When using homomorphic hashing, the only change in the processing done by
intermediate nodes is to verify the hash and forward the authentication informa-
tion. However, the linear network coding operations performed by intermediate
nodes are now done over the (large) field F = Zp.

Homomorphic signature schemes [16, 7, 6]. Here, the full signature (and
not just the hash) is homomorphic. Namely, the signature scheme has the prop-
erty that for any vectors a, b and scalars α, β, it holds that Sign(αa + βb) =
Sign(a)αSign(b)β . The security property, roughly speaking, is that given the sig-
natures of vectors w̄(1), . . . , w̄(m) it is only feasible to generate signatures on
vectors in the linear span of w̄(1), . . . , w̄(m). The application to network coding
is immediate: The source S signs each augmented vector w̄(i) and transmits each
w̄(i) together with its signature Sign(w̄(i)). An intermediate node I that receives
a set of incoming vectors with their corresponding signatures will (i) verify the
signatures (discarding any vector whose signature is invalid) and (ii) compute
(using the homomorphic property) a valid signature on each outgoing vector
that it generates. Thus, in addition to the normal network coding processing,
intermediate nodes must now generate a signature on each outgoing packet. On
the other hand, the per-packet communication overhead due to the signature is
now constant rather than linear in m as in the case of homomorphic hashing.

A concrete example of a homomorphic signature scheme (the BFKW scheme)
was given by Boneh et al. [6]; the scheme can be proven secure based on the CDH
assumption in the random oracle model. We provide a description here for future
reference. To begin, the source S establishes a public key as follows:
3 In some settings, there may be alternate ways to distribute the {hi} authentically.



1. Generate G = (G, GT , p, e) where G, GT are groups of prime order p, and
ê : G×G→ Gt is a bilinear map. Choose random g1, . . . , gn, h ∈ G.

2. Choose s← Zp, and set f := hs.
3. Let H : {0, 1}∗ × Z→G be a hash function, modeled as a random oracle.
4. Output the public key PK = (G,H, g1, . . . , gn, h, f) and the private key s.

To sign a vector w = (u ‖ v) ∈ Zm+n
p associated with the file identifier fid, the

source S computes the signature

σ :=

 m∏
i=1

H(fid, i)ui

n∏
j=1

g
vj

j

s

.

(Note that the above can be viewed as applying a cryptographic operation [that
depends on the secret key] to a homomorphic hash of w.) An intermediate node
who knows PK can verify validity of a vector w = (u ‖ v) with associated
signature σ by checking whether

e (σ, h) ?= e

 m∏
i=1

H(fid, i)ui

n∏
j=1

g
vj

j , f

 . (4)

Upon receiving vectors w(1), . . . , w(`) with valid signatures σ1, . . . , σ`, an inter-
mediate node can generate a valid signature on any linear combination w =∑

i αiw
(i) by computing σ :=

∏`
i=1 σαi

i .

3 Network Coding Over the Integers

In this section we describe the idea of implementing network coding over the
integers rather than over a finite field. This approach is essential for the crypto-
graphic schemes we propose in the following sections, and also results in efficiency
improvements for existing schemes as we describe here.

Let us first motivate this departure from traditional network coding. Exam-
ining the signature schemes described in the previous section, one can see that
they result in significant performance penalties relative to basic (insecure) net-
work coding, in terms of both communication and computation. The increase
in communication is due to the fact that instead of working over a small (e.g.,
8-bit) field as in basic network coding, the cryptographic schemes work modulo
a 160-bit prime p. Each file vector is thus augmented by 160-bit coordinates,
rather than 8-bit coordinates as in basic network coding — a 20-fold increase
in the communication overhead. This also impacts computation; for example,
the time required to verify signatures when using the EHH scheme (cf. Eq. (3))
is proportional to the bit-length of the exponents (i.e., the coefficients {ui}).
A similar effect can be observed in the time required to compute signatures at
intermediate nodes when using the BFKW scheme (cf. Eq. (4)).



To alleviate these performance costs, our approach will be to choose small
integer coefficients as opposed to 160-bit scalars as in previous schemes. In more
detail: We now view the file F̄ transmitted by the source S as a sequence of
vectors v̄(1), . . . , v̄(m) with integer coordinates. (At this point we do not specify
the dimension of these vectors or the range of the coordinates – these details
will depend on the specific cryptographic scheme used). These vectors are aug-
mented with unit vectors ū(1), . . . , ū(m) as described in Section 2.1. Intermediate
nodes will again compute outgoing packets as random linear combinations of in-
coming vectors, except that now these combinations are taken over the integers
and the coefficients αi are chosen uniformly from Q = {0, . . . , q − 1} for some
small prime q (e.g., q = 257). (A hybrid approach using small integer coefficients
but with linear combinations performed modulo a large prime is studied in Sec-
tion 3.1. In no case are the computations done modulo q.) We stress that the
coordinates of the file vectors v̄(1), . . . , v̄(m) need not lie in Q.

Recall from Section 2.1 that the usefulness of random linear network coding
depends on the decoding probability, namely, the probability with which a re-
cipient can correctly reconstruct the file transmitted by the source. Technically,
this is the probability that the recipient collects m vectors whose u-portions
form an invertible matrix U (see Eq. (1)). For the setting described above, where
operations are performed over the integers, we must re-analyze the decoding
probability since existing bounds hold only when network coding is performed
over a finite field. Fortunately, we show that working over the integers can only
improve the decoding probability in a sense we make formal now.

Lemma 1. Fix q prime. For any network, the decoding probability when net-
work coding is performed over the integers with intermediate nodes choosing
coefficients uniformly from Q = {0, . . . , q−1}, is at least the decoding probability
when network coding is performed modulo q (with intermediate nodes choosing
coefficients uniformly from Q).

Proof. Fix a sequence of coefficients αi ∈ Q chosen by the intermediate nodes
during a run of the network coding protocol when operations are performed
modulo q. Assume these coefficients lead to successful recovery of the file in this
case. This means that the target receives m vectors such that the u-portions
of these vectors give a matrix U with det(U) 6= 0 (computed modulo q). Note
that det(U) mod q is unchanged if no modular reductions are performed in the
network, but instead all modular reductions are ‘delayed’ and performed only by
the target. But if U is an integer matrix, det(U) 6= 0 mod q implies det(U) 6= 0
over the integers; thus, successful recovery would occur for these same coefficients
if all operations were performed over the integers. �

The lemma implies that in order to get a good decoding probability when
working over the integers, it suffices to choose q such that the decoding probabil-
ity when working modulo q is sufficiently good. This puts us back in the setting
of standard network coding, where the required size of the underlying field is
well-studied. Appropriate choice of q depends on the network topology, required
fault tolerance, etc., but in most practical applications an 8-bit q suffices.



In fact, we expect that working over the integers with coefficients chosen from
Q = {0, . . . , q − 1} will induce a decoding probability that is noticeably better
than working over a field of size q. If so, one could further save in bandwidth and
computation by reducing the size of q. Another variant to investigate is choosing
coefficients from the set {−q/2, . . . , q/2}.

Coordinate growth. When we work over the integers without any modular
reduction, the size of the coordinates of the vectors transmitted in the network
increases with each traversed hop. Specifically, each hop through some node
increases the maximal coordinate of some vector in the network by a factor of at
most min{mq, `q}, where ` is the in-degree of that node. (Note that even if ` > m,
the incoming vectors contain a set of at most m linearly independent vectors.)
So, after L hops the first m coordinates each have magnitude at most (mq)L

(since the initial m coordinates in the augmented vectors sent by the source are
0/1-valued), while the remaining coordinates have magnitude at most M(mq)L,
where M is the maximal size of coordinates in the original file vectors v̄(i). As
we will see, by working over the integers we obtain bandwidth improvements (in
typical networks) in spite of this coordinate growth.

We remark also that an attacker can generate large valid packets by choosing
large coefficients, thus countering some of the bandwidth gains achieved by hav-
ing honest nodes use small coefficients. (Note, however, that nodes may be able
to reject suspiciously large packets; e.g., those that deviate significantly from
the average packet size received at the node or packets whose coefficients exceed
an upper bound derived from the distance between the node and the source.)
Network coding signatures cannot and do not prevent all forms of denial of ser-
vice; their purpose is to prevent pollution attacks that are easy for an attacker
to carry out yet have devastating effect.

3.1 Improvements to Existing Schemes

We consider here a “hybrid” variant where intermediate nodes choose small
integer coefficients but operations are performed modulo a large prime p. This
approach will allow us to significantly improve the performance of the schemes
described in Section 2.2, while keeping their security guarantees intact.

In the schemes described in Section 2.2, network coding is done modulo
a large prime p. That is, the original vectors v̄(1), . . . , v̄(m) transmitted by the
source are in Zn

p ; the coefficients for the linear combinations are chosen at random
from Zp; and the linear combinations are performed modulo p. Here we suggest
to keep these schemes unchanged except that the random coefficients chosen by
each intermediate node will be taken from the set Q = {0, ..., q − 1} for some
small prime q (we stress that linear combinations are still computed modulo p).

We first analyze the effect of this change on the decoding probability, showing
that the decoding probability remains high as long as (1) p is a random k-bit
prime, and (2) m and the maximal path length L from the source to the target
are negligible relative to 2k (the latter is the case in our applications where k is
typically 160 or larger).



Lemma 2. Fix q prime. For any network, the decoding probability of the “hy-
brid” scheme described above (where intermediate coefficients are chosen at ran-
dom from Q = {0, . . . , q− 1} and the linear combinations are performed modulo
a random k-bit prime p) is at least the decoding probability when network coding
is performed modulo q (with intermediate nodes choosing coefficients uniformly
from Q), up to an O((Lm log mq)/2k) additive term.

Proof. As in the case of Lemma 1, we may assume that all linear combina-
tions in the network are performed over the integers, and all modular reductions
are performed only at the end by the target node. Fix some set of coefficients,
chosen by all intermediate nodes, for which reconstruction of the file (when op-
erations are performed mod q) succeeds. Letting U∗ denote the integer matrix
computed at the target, this means that det(U∗) 6= 0 mod q which, in turn, im-
plies det(U∗) 6= 0 (over the integers). We now show that except with probability
O(Lm log mq/2k) over choice of p, it also holds that det(U∗) 6= 0 mod p.

Let d denote the bit-length of det(U∗). The number of primes of length k
dividing det(U∗) is at most d/k, and the number of primes of length k is O(2k/k).
Thus the probability that p divides det(U∗) is at most O(d/2k). It remains to
bound d = O(log |det(U∗)|).

The matrix U∗ is composed of the u-portion of vectors received by the target.
As seen before, the u-coordinates of such vectors have magnitude at most (mq)L,
where L is the maximal path length from the source to the target. So U∗ is
an m × m matrix with each entry having magnitude at most (mq)L. Thus,
det(U∗) ≤ m!(mq)Lm ≤ (mq)m(L+1) and d = O(Lm log mq). �

We proceed to examine how using small integer coefficients can improve the
performance of the network coding signature schemes discussed in Section 2.2.

Saving bandwidth. In the two schemes reviewed in Section 2.2, all vectors
transmitted in the network are pre-pended with a u-portion consisting of m
coordinates each 160 bits in length. (For simplicity, we assume here that p is a
160-bit prime.) Using our approach, all vectors are pre-pended with a u-portion
consisting of m integer coordinates each of whose length is at most 160 bits (since
we are still performing reduction modulo p). On average, however, the length of
these coordinates can be much smaller.4 For example, assume the maximum path
length is 16 hops and u-coordinates increase by at most 10 bits per hop (this is the
case, e.g., if ` = 4 and q = 253). After the first hop the u-coordinates are at most
10-bits long; after the second hop they are at most 20-bits long, etc. Thus, in the
worst-case we use (on average over all hops) 80 bits per coordinate which reduces
the bandwidth of the u-components by a factor of two as compared to the case
when intermediate nodes choose coefficients from Zp. Better improvements are
obtained when average path lengths are shorter; even when average path lengths
are longer, our approach can never perform worse than the basic approach.

4 Note that the coordinates of the v-portion of the vectors are not affected by the use
of small coefficients; in both cases these are always 160-bit values.



Saving computation. Reducing the bit-length of the u-coordinates yields com-
putational savings as well, due to the use of shorter exponents during verification
(cf. Eqs. (3) and (4)). A major improvement is also obtained in the computation
required by intermediate nodes in generating the signatures of their outgoing
vectors when using the BFKW scheme, exactly due to the use of small coef-
ficients. This gives a 20-fold improvement for this operation, regardless of the
average path length in the network. See also the following remark.

Remark 1. Signature verification can be done on an opportunistic basis by in-
termediate nodes (e.g., for a random subset of vectors). In contrast, signature
computation must be done by all intermediate nodes for each outgoing packet.

4 An RSA-Based Network Coding Signature Scheme

In this section we present an RSA-based network coding signature scheme that
enjoys a proof of security in the random oracle model under the RSA assump-
tion, and relies on the ability to perform random linear network coding over
the integers as described in Section 3. The scheme is similar to the BFKW
scheme and adapts ideas from [3, 4] in the same way the BFKW scheme bor-
rows from [19]. We construct a homomorphic signature scheme by applying a
multiplicatively homomorphic signature to a homomorphic hash of the vector
being signed. The homomorphic hash we use is similar to the EHH scheme ex-
cept that we work modulo an RSA composite rather than modulo a prime. We
take as our multiplicatively homomorphic signature the “textbook RSA” scheme
where a signature on x is just xd mod N . The resulting scheme is presented in
Section 4.1.

In order to use the resulting scheme for network coding, it is essential that the
linear operations being performed by the nodes “work” relative to an unknown
modulus (that arises in our case because φ(N) is unknown). To achieve this, we
have intermediate nodes perform network coding over the integers. We describe
this in detail in Section 4.2.

4.1 An RSA-Based Homomorphic Signature Scheme

We start by defining an RSA-based homomorphic signature scheme denoted Bsig.

• Public and secret keys: Let N be a product of two safe primes; in particular,
the subgroup of quadratic residues QRN is cyclic and random elements of QRN

are generators of this subgroup with overwhelming probability. The public key is
(N, e, g1, . . . , gn) and the secret key is d, where ed = 1 mod φ(N) and g1, . . . , gn

are random generators of QRN .

• Signature generation: The signature on v = (v1, . . . , vn) ∈ Zn is given by

Bsig(v) =

(
n∏

i=1

gvi
i

)d

mod N. (5)



Verification is done in the obvious way. It is easy to see that this scheme
is homomorphic: for any v, v′ ∈ Zn and α, β ∈ Z, we have Bsig(αv + βv′) =
(Bsig(v))α · (Bsig(v′))β .

4.2 An RSA-based Network Coding Signature Scheme

Here we describe how the above scheme Bsig can be extended to give a network
coding signature scheme Nsig. We first review the underlying network coding
being performed, focusing on details not already covered in Section 3. The file
held by the source S is a sequence of vectors v̄(1), . . . , v̄(m), where each v̄(i) ∈ Zn

for some value n. Note that once the size of the file and the number m of vectors is
fixed, a lower bound |v| on the bit-length of each of the vectors v̄(i) is determined,
and n can take on any value between 1 and |v|. As we will see, smaller values
of n reduce communication while larger values of n reduce computation (very
often n = 1 will provide the most practical trade-off).

As usual, before sending the v̄(i) vectors to the network, the source pre-pends
them with unit vectors ū(i) thus producing w̄(1), . . . , w̄(m) ∈ Zm+n. Everything
else is carried out as already described in Section 3: in particular, intermedi-
ate nodes generate random linear combinations (over the integers) of incoming
packets, using coefficients chosen uniformly from Q = {0, ..., q − 1} for prime q.

Let L be an upper bound on the path length from the source to any target.
(Looking ahead, the Nsig scheme defined below may reject packets that traverse
more than L hops.) Given L we define a bound B = (mq)L which represents the
largest possible value of a u-coordinate in any (honestly generated) vector; cf.
Section 3. If M denotes an upper bound on the magnitude of the coordinates of
the initial vectors v̄(1), . . . , v̄(m), then the maximal magnitude of any coordinate
in an honestly generated vector is B∗ = BM .

We now introduce our scheme Nsig.

• Parameters: m,n,M,B, and B∗.

• Public and secret keys: The public key (N, e, g1, . . . , gn) and the secret key d
are as in Bsig, except that e is chosen to be prime with e > mB∗ (for efficiency
reasons e can be chosen to have low Hamming weight). In addition, the scheme
uses a public hash function H : {0, 1}∗ → QRN that will be modeled as a
random oracle.

• Signature generation by source S: On input a file given by m vectors v̄(1), . . . , v̄(m) ∈
Zn, the source S generates the augmented vectors w̄(i) = ū(i) ‖ v̄(i) ∈ Zm+n in
the usual way. S chooses random fid ∈ {0, 1}k, and computes hi = H(i, fid) for
i = 1, . . . ,m. The signature on each vector w = (u1, . . . , um, v1, . . . , vn) is:

Nsig(w) =

 m∏
i=1

hui
i

n∏
j=1

g
vj

j

d

mod N. (6)



S transmits each w̄(i) along with its signature and fid.

• Signature verification: Given w = u ‖ v = (u1, . . . , um, v1, . . . , vn) ∈ Zm+n,
a file identifier fid, and a signature σ, verification is done as follows. Reject
immediately if any of the u-coordinates is negative or larger than B, or any of the
v-coordinates is negative or larger than B∗. Otherwise, compute hi = H(i, fid)
for i = 1, . . . ,m and accept the signature if and only if

σe ?=
m∏

i=1

hui
i

n∏
j=1

g
vj

j mod N. (7)

(An optimized batch verification procedure for testing multiple incoming vectors
is presented at the end of this subsection.)

• Signature combination at intermediate nodes. Upon receiving w(1), . . . , w(`)

associated with the same fid and with valid signatures σ1, . . . , σ`, an intermediate
node proceeds as follows. It first discards any w(i) having a u-coordinate larger
than B/mq or a v-coordinates larger than B∗/mq.5 For simplicity we continue to
denote the non-discarded vectors by w(1), . . . , w(`). The intermediate node then
chooses random coefficients α1, . . . , α` ∈ Q, sets w =

∑`
i=1 αiw

(i), and computes
the signature on w as:

σ =
∏̀
i=1

σαi
i mod N. (8)

We prove security of this scheme in the following subsection. First, we com-
pare the performance of our scheme to the original BFKW scheme and the vari-
ant BFKW scheme (using small integer coefficients) described in Section 3.1.

Bandwidth. The lengths of the coordinates of the vectors w transmitted in
the network increase by at most s = log(mq) bits for each traversed hop. Thus,
after t hops each u-coordinate has bit-length at most ts. If s = 10, for example,
then it will take 32 hops before the total communication overhead due to the
u-coordinates exceeds that of the original BFKW scheme (where u-coordinates
are always of size 160 bits). For most networks, where maximum path-lengths
are expected to be much less than 32 hops, Nsig therefore incurs lower overhead.
Comparing Nsig to the variant BFKW scheme described earlier in this work,
we see that the two schemes have the same overhead until coordinates reach
160 bits; after that the variant BFKW scheme performs better (since in Nsig
coordinates keep growing while in BFKW they do not). This, however, does not
take into account the fact that in Nsig the v-coordinates also increase while in
BFKW they do not. Fortunately, we can choose n to be small (e.g., n = 1), thus
making this overhead insignificant (see more below regarding the choice of n).

Computation. The most critical operation is signature generation at interme-
diate nodes (see Remark 1 in Section 3.1). In Nsig this operation is extremely
5 These bounds are more restrictive than those required by signature verification, and

are intended to ensure that signature verification will succeed at the next hop.



efficient since the exponents αi in Eq. (8) are small (say, 8 bits each). Thus, we
can expect this operation to be roughly 20 times faster in Nsig than in the orig-
inal BFKW scheme. (The variant BFKW scheme is expected to perform about
as well as Nsig.) Verification is more expensive. Looking at Eq. (7), we see that
verification in Nsig requires an exponentiation using (|v| + (m + n) log B)-bit
exponents and a (log m + log B + |v|/n)-bit exponent (i.e., the bit-length of e).
Since the impact of n is more significant with regard to bandwidth than com-
putation, in most cases it makes sense to choose n = 1. The resulting cost of
verification is still better than that of the original BFKW scheme due to the
pairing operation and the cost of hashing onto the bilinear groups in the latter.
The cost of a hashing operation in this case is equivalent to a full exponentiation
and it is needed for computing each of the m values hi = H(fid, i) (and also to
compute the generators g1, . . . , gn in the case that one implements BFKW with
fixed-size public key). In contrast, in the case of Nsig the computational cost of
the hashing operations is negligible. Moreover, if one uses n = 1 the resultant
public key has a single generator while in BFKW one needs |v|/160 of them (e.g.,
for a 4 Kbyte |v|, BFKW requires 200 generators). The cost of computation can
be further improved by resorting to a batch verification of incoming vectors as
described next.

Batch verification. The most expensive operation in the Nsig scheme is the
verification of incoming signatures. Here we show that instead of verifying each
incoming signature it suffices to verify just one outgoing signature. The probabil-
ity that the verification of this outgoing vector succeeds but one of the incoming
vectors was invalid is at most 1/q. This is fine in most cases since even if a node
forwards an invalid vector this will be caught with high probability by subse-
quent nodes (i.e., the probability that t consecutive honest nodes do not discover
a forgery is at most 1/qt). To achieve this optimization we modify the actions
of intermediate nodes as follows.

Upon receiving w(1), . . . , w(`) associated with the same fid and with alleged
signatures σ1, . . . , σ`, intermediate node I discards any vector that has too large
coordinates as described above. Then, I generates one outgoing vector as usual,
i.e., chooses random coefficients α1, . . . , α` ∈ Q and sets w =

∑`
i=1 αiw

(i). It
then sets σ =

∏`
i=1 σαi

i mod N and verifies (using Eq. (7)) that Nsig(w) equals
σ or −σ. If this verification succeeds, then no further verifications are needed.
That is, I outputs w on one of its outgoing edges and proceeds to compute other
outgoing vectors as in the case that all incoming vectors and their signatures
were valid (with the usual random linear combinations and using Eq. (8) to
generate outgoing signatures but without additional verifications). In this way,
the number of signature verifications at any intermediate node is 1 regardless
of the number of incoming or outgoing vectors. (Note: If the above verification
of outgoing w fails, I may decide to discard its incoming vectors or test each
one separately to find the valid ones – the important point is that under normal
operation, i.e., without adversarial activity, a single verification suffices).

A proof of correctness of the above batch verification technique follows [5]
and is presented in the full version.



4.3 Proof of Security

We now prove security of Nsig relative to the definition given in [6].

Theorem 1. Under the RSA assumption, Nsig is a secure network coding sig-
nature scheme when the hash function H is modeled as a random oracle.

Proof. Given a forger F attacking Nsig, we build an algorithm S that solves the
RSA problem. Here S stands for simulator and also for source since S will be
simulating the actions of the source being attacked by F .

Algorithm S receives input N, e, C where N, e are distributed as in an Nsig
public key and C ∈R QRN . Its goal is to output C1/e mod N . (Note that if S
computes C1/e mod N for C ∈R QRN with non-negligible probability, this con-
tradicts the standard RSA assumption where C is chosen uniformly from Z∗

N .)
Algorithm S begins by choosing i0 ∈R {1, . . . , n} and then setting gi0 := C. For
i 6= i0, algorithm S chooses ri ∈R QRN and sets gi := re

i mod N . Then S calls
F on the public key (N, e, g1, . . . , gn).
F chooses a file, represented as a set of vectors v̄(1), . . . , v̄(m), and requests

a signature on it. In response, algorithm S chooses σ1, . . . , σm ∈R QRN and
fid ∈ {0, 1}k, and then sets (using the programmability of the random oracle H)

hi
def= H(i, fid) := σe

i

n∏
j=1

g
−v̄

(i)
j

j mod N. (9)

(If fid was used previously to sign another file, S aborts. This occurs with negligi-
ble probability and we ignore it from here on.) Finally, S gives to F the signature
σi on the augmented vector w̄(i) = ū(i) ‖ v̄(i) (for i = 1, . . . ,m), along with fid.
It is easy to see that signatures are distributed exactly in the real experiment.

Say F outputs a forgery, i.e., a file id fid∗, a vector w∗ /∈ span{w̄(1), . . . , w̄(m)}
(where {w̄(1), . . . , w̄(m)} is the unique set of augmented vectors signed using fid∗),
and a valid signature σ∗ = Nsig(w∗) on w∗. We show how S can use this to solve
its given RSA instance.

Denote w∗ = u∗ ‖ v∗ = (u∗1, . . . , u
∗
m, v∗1 , . . . , v∗n), and define the vector

z∗ = w∗ −
m∑

i=1

u∗i w̄
(i). (10)

Note z = (0, . . . , 0, z1, . . . , zn); that is, its first m coordinates are all zero. More-
over, since w∗ /∈ span{w̄(1), . . . , w̄(m)} at least one of the values zi is non-zero.
With probability at least 1/n we thus have zi0 6= 0, and we assume this to be
the case from now on.

By definition of z∗ and the homomorphic property of Nsig we have:

Nsig(z∗) = Nsig(w∗ −
m∑

i=1

u∗i w̄
(i))

= Nsig(w∗)
m∏

i=1

Nsig(w̄(i))−u∗i = σ∗
m∏

i=1

σ
−u∗i
i mod N. (11)



On the other hand, we can also represent Nsig(z∗) as

Nsig(z∗) =

(
m∏

i=1

h0
i

n∏
i=1

gzi
i

)1/e

= (Czi0 )1/e
∏
i 6=i0

(gzi
i )1/e = (Czi0 )1/e

∏
i 6=i0

rzi
i mod N. (12)

Combining Eqs. (11) and (12) we get that

(Czi0 )1/e = σ∗
m∏

i=1

σ
−u∗i
i

∏
i 6=i0

r−zi
i mod N,

from which S can compute a value x such that xe = Czi0 mod N . Using a
standard trick, S can then compute C1/e mod N provided that gcd(zi0 , e) = 1.
But this is the case since e > mBM is prime and

−mBM ≤ v∗i0 −
∑m

i=1 u∗i w̄
(i)
i0

= zi0 = v∗i0 −
∑m

i=1 u∗i w̄
(i)
i0
≤ MB.

(Since w∗ passes verification we have 0 ≤ u∗i ≤ B and 0 ≤ v∗i ≤ MB; it always
holds that 0 ≤ w̄

(i)
j ≤M .) �

Remark 2. The above proof uses the fact that e is larger than the coordinates of
valid vectors. Indeed, if coordinates larger than e are allowed then given a valid
vector w = u||v with signature σ an attacker can output the forged signature
σ′ = σ · g1 on the vector w′ = u||v′ with v′ = v + (e, 0, . . . , 0).

5 Homomorphic Hashing Modulo a Composite

Network coding signatures based on homomorphic hashing can offer significant
computational advantages relative to constructions based on homomorphic sig-
nature schemes since, when using the former, a node that chooses not to verify an
incoming vector (cf. Remark 1) need not perform any cryptographic operations.
On the other hand, constructions based on homomorphic hashing consume more
bandwidth since nodes now need to obtain the (authenticated) hash values of
the original file vectors. If delivery of the hash values to nodes can be done in
some out-of-band fashion, however, this drawback is mitigated.

Here we introduce a homomorphic hashing scheme, denoted HN , that is
similar to the EHH scheme described in Section 2.2 but where operations are
performed modulo a composite N . This results in the homomorphic properties
holding over a group of unknown order; hence this scheme can only be applied
when the underlying network coding is done over the integers. HN has better
computational efficiency than the EHH scheme (over prime-order groups) from
Section 2.2; although HN produces larger hash values, it requires a smaller public
key than the EHH scheme.



In this section we once again assume linear network coding being performed
over the integers as described in Section 3. Namely, the file to be transmitted
is represented by vectors v̄(1), . . . , v̄(m) ∈ Zn, and intermediate nodes choose
coefficients uniformly from a set Q = {0, . . . , q−1} (for some small prime q) and
compute all linear combinations without any modular reduction.

Let N be the product of two safe primes so that the group QRN of quadratic
residues modulo N is cyclic, and let g1, . . . , gn be generators of QRN . For v =
(v1, . . . , vn) ∈ Zn, define

HN (v) =
n∏

j=1

g
vj

j mod N.

This is a homomorphic hash function that is collision resistant if factoring N
is hard (proof omitted). Thus, HN can serve as a basis for a network coding
signature scheme as discussed in Section 2.2. In particular, a node receiving a
vector w = (u1, . . . , um, v1, . . . , vn) can verify it by checking whether

m∏
i=1

hui
i

?= HN (v) def=
n∏

j=1

g
vj

j mod N. (13)

where hi = HN (v̄(i)), i = 1, . . . ,m. Below we show a batch verification optimiza-
tion that allows an intermediate vector to verify all of its incoming vectors with
a single application of Eq. (13).

Bandwidth considerations for this scheme, which uses integer coefficients that
grow over time, are similar to those of the RSA-based scheme from Section 4. An
additional benefit of HN is that there is no need to determine an a priori bound
on these coefficients. As in the case of the RSA-based scheme from Section 4,
one way to limit the effect of coordinate growth on the total communication is
to set n = 1. As we now discuss, this not only reduces bandwidth overhead but
also improves computational performance significantly.

Fix n = 1 so that each block of information v̄(i) is a single (long) integer.
Choosing N appropriately6, we can take 2 as a generator ofQRN , thus obtaining:

HN (v) = 2v mod N.

This achieves the most salient advantage of the HN scheme: fast exponentiation.
Another advantage of this homomorphic hash is that it considerably improves the
size of the public parameters relative to the EHH scheme. To see this, observe
that in the EHH scheme the total length of the set of generators g1, . . . , gn

included in the public parameters is (at least) n log p which is (at least) as large
as each information vector v̄(i). Moreover, the number of generators is usually
very large; e.g., for vectors v̄(i) of size 4KB and 160-bit p the EHH scheme

6 Choose N = p1p2 p1 = 2p′
1 + 1, p2 = 2p′

2 + 1, and p1, p2, p
′
1, p

′
2 all prime; p′

1, p
′
2 =

3 mod 8; and p1, p2 = 7 mod 8.



needs 200 random generators.7 In the case of HN , on the other hand, only one
generator is needed and furthermore this generator can be fixed to 2; the public
parameters need only include N .

Batch verification. The use of HN for network coding can be further optimized
by using batch verification at intermediate nodes similarly to the procedure
described in Section 4.2 for the Nsig signature. Specifically, instead of verifying
each incoming vector using Eq. (13), an intermediate node can just generate one
outgoing vector as usual (i.e., as a random linear combination over {0, . . . , q−1}
of the incoming vectors) and then apply Eq. (13) to the resultant vector. It can
be shown that the probability that this single verification passes but one of the
incoming vectors was invalid (not in the span of w̄(1), . . . , w̄(m)) is at most 1/q.
The probability that t consecutive nodes will be foiled to accept invalid vectors is
at most 1/qt. Thus a single verification per intermediate node suffices regardless
of the number of incoming or outgoing vectors.

In all, we have shown that the homomorphic hashing scheme HN leads to a
computationally efficient network coding signature scheme whose security can be
proven based on the factoring assumption in the standard model (and assuming
the security of the signature scheme used to sign the hash values h1, . . . , hn).
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