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Abstract. Attribute-based cryptography has emerged in the last years
as a promising primitive for digital security. For instance, it provides good
solutions to the problem of anonymous access control. In a ciphertext-
policy attribute-based encryption scheme, the secret keys of the users de-
pend on their attributes. When encrypting a message, the sender chooses
which subset of attributes must be held by a receiver in order to be able
to decrypt.
All current attribute-based encryption schemes that admit reasonably
expressive decryption policies produce ciphertexts whose size depends at
least linearly on the number of attributes involved in the policy. In this
paper we propose the first scheme whose ciphertexts have constant size.
Our scheme works for the threshold case: users authorized to decrypt
are those who hold at least t attributes among a certain universe of
attributes, for some threshold t chosen by the sender. An extension to the
case of weighted threshold decryption policies is possible. The security
of the scheme against selective chosen plaintext attacks can be proven
in the standard model by reduction to the augmented multi-sequence of
exponents decisional Diffie-Hellman (aMSE-DDH) problem.
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1 Introduction

Encryption is the cryptographic primitive which provides confidentiality to dig-
ital communications. In a traditional public key encryption scheme, a message
is encrypted with the public key of the intended receiver, who is the only person
able to decrypt. This level of confidentiality is enough for many real-life ap-
plications, including e-mail and key escrow. However, new situations requiring
different cryptographic functionalities appear constantly.

Let us consider for example the case of anonymous access control : a system
must be accessible only to those who have received the appropriate rights, which
are defined by the system administrator. Let us imagine how such a process
could be implemented with a standard public key encryption scheme. First, a



user A claims that he is actually user A. Second, the system sends to this user
a challenge: a ciphertext computed with the public key of A (obtained from a
certification authority, maybe), for some random plaintext. Third, A decrypts
and sends back the plaintext. Fourth, if the plaintext is correct, the system checks
if user A must have access to the system, and if so, A is accepted. This solution
has some weaknesses, the main one being the lack of anonymity, as user A must
reveal his identity to the system. Furthermore, each time the system wants to
change its access control policy, it has to update the database containing all the
users that have the right to access the system.

A more desirable solution, employing encryption, would be as follows. First,
in a (possibly interactive, physical) registration process, every potential user
receives a secret key that depends on his age, his job, his company, his expertise,
etc., in short, on his attributes. Later, the system defines his policy for access
control as a (monotonic) family of subsets of attributes: attributes in one of such
subsets must be held by a user in order to have the right to access the system;
in particular, in an extreme case, this policy can contain a unique subset with
the unique attribute ‘right to access system X’. When a user tries to access
the system, he receives as a challenge a ciphertext computed by the system, on
a random message, using the current access policy. If the policy changes, the
system administrator just has to take into account the new policy for generating
the future challenges. A user is able to decrypt the challenge only if his attributes
satisfy the considered policy. In this way, if a user answers such a challenge
correctly, he does not leak who he is, only the fact that his attributes satisfy the
access control policy.

Ciphertext-policy attribute-based encryption (ABE for short, from now on) is
the cryptographic primitive which precisely realizes the functionality described
in the previous paragraph. This primitive can be traced back to identity-based
encryption [Sha84] (which can be seen as the particular case of ABE where the
policy contains a single subset with a single attribute) and to fuzzy identity-
based encryption [SW05] (the particular case of ABE where the policy is always
defined by a predetermined threshold t: only users holding at least t attributes
can decrypt).

Related work. The first paper dealing explicitly with ABE was [GPSW06]. Two
different and complementary notions of ABE were defined there: key-policy ABE,
where a ciphertext is associated to a list of attributes, and a secret key is associ-
ated to a policy for decryption; and ciphertext-policy ABE, where secret keys are
associated to a list of attributes (i.e. credentials of that user) and ciphertexts are
associated to policies for decryption. It seems that ciphertext-policy ABE can
be more useful for practical applications than key-policy ABE. Another related
notion is that of fuzzy identity-based encryption [SW05], which can be seen as
a particular case of both key-policy and ciphertext-policy ABE.

A construction of a key-policy ABE scheme was provided in [GPSW06], while
the first ciphertext-policy ABE scheme was proposed in [BSW07], but its security
was proved in the generic group model. Later, a generic construction to transform
a key-policy ABE scheme into a ciphertext-policy ABE scheme was given in



[GJPS08], with the drawback that the size of the ciphertexts is O(s3), if s is the
number of attributes involved in the decryption policy.

The most efficient ciphertext-policy ABE schemes in terms of ciphertext size
can be found in [Wat08,DHMR08], the size of a ciphertext depending linearly
on the number of attributes involved in the specific policy for that ciphertext.
For example, in the case of (t, s)-threshold decryption policies, where there are s
involved attributes and a user can decrypt only if he holds t or more attributes,
the size of the ciphertexts in one of the schemes in [Wat08] is s+O(1), whereas
the size of the ciphertexts in the scheme in [DHMR08] is 2(s− t) +O(1). Both
schemes admit however general policies (general monotonic access structures)
and make use of secret sharing techniques.

All the constructions mentioned so far only achieve security under selective
attacks, a model in which the attacker specifies the challenge access structure
before the setup phase. The first CP-ABE scheme with full security has appeared
very recently [LO+10]. The size of the ciphertexts in this scheme is 2s+O(1).

A concept which is more generic than attribute-based encryption is that of
predicate encryption [KSW08]: the decryption policy, chosen by the sender of
the message, is hidden in the ciphertext, in such a way that even the receiver gets
no information on this policy, other than the fact that his attributes satisfy it
or not. Because of this additional strong privacy requirement, current proposals
for predicate encryption consider quite simple (not very expressive) policies.

We stress that all the existing proposals for ABE schemes produce cipher-
texts whose size depends (at least) linearly on the number of attributes involved
in the policy for that ciphertext. An exception is the scheme in [EM+09], where
ciphertexts have constant size; but this scheme admits only (s, s)-threshold de-
cryption policies. Note that for this particular threshold case where t = s, the
scheme in [DHMR08] already achieved constant-size ciphertexts. For more ex-
pressive or general decryption policies, no existing scheme has short ciphertexts.
This fact can limit the applications of ABE in real life, if we consider for example
the case of anonymous access control, with a low bandwidth available for the
communication between the user and the system administrator.

An essential feature of ABE schemes is their collusion resistance property,
which guarantees that a ciphertext can leak no information about the plaintext
to users whose attributes do not satisfy the considered policy, even if the union
of the attributes of these colluding users satisfies the policy. This property is
essential to guarantee a reasonable level of security in many of the applications
of ABE schemes, like anonymous access control or access to encrypted data.

A notion similar to ciphertext-policy ABE but without this collusion re-
sistance property has been considered under different names: policy-based en-
cryption [BM05], cryptographic work flow [AMS06], etc. This notion is actually
equivalent to the primitive of dynamic distributed identity-based encryption
[CCZ06,DHMR07,DP08,DHMR08]: the sender chooses ad-hoc a set of identities
and a monotonic access structure defined on this set; the ciphertext can be de-
crypted only if users associated to the identities of some subset in the access
structure cooperate.



Our contribution. In this paper we propose the first collusion-resistant ABE
scheme which produces constant size ciphertexts and which admits reasonably
expressive decryption policies. Our scheme is inspired by the dynamic threshold
(identity-based) encryption scheme from [DP08], in which the ciphertext’s size
was constant as well. As we have just said, this scheme directly leads to a weak
ABE scheme, without the collusion resistance property. The challenge was to
modify this scheme in order to achieve collusion resistance without losing the
other security and efficiency properties, in particular that of constant size ci-
phertexts. The resulting scheme works for threshold policies: the sender chooses
ad-hoc a set S of attributes and a threshold t, and only users who hold at least
t of the attributes in S can decrypt. An extension is possible in order to support
also weighted threshold policies.

Our new scheme achieves security against selective chosen plaintext attacks
(sCPA), in the standard model, under the assumption that the augmented multi-
sequence of exponents decisional Diffie-Hellman (aMSE-DDH) problem is hard
to solve. This is essentially the same level of security that was proved for the
scheme in [DP08]. Using well-known techniques, it is possible to obtain security
against chosen ciphertext attacks (CCA), in the random oracle model.

Organization of the paper. We define the syntactics of attribute-based encryp-
tion and the required security properties in Section 2, where we also describe
the aMSE-DDH problem, on which the security of our scheme will be based. Sec-
tion 3 contains the description of our scheme, the details on its correctness and
consistency checking, and finally the formal proof of its security. In Section 4 we
discuss how to extend our threshold scheme to the case of weighted threshold
decryption policies, and the (im)possibility to achieve CCA security from CPA
security in the standard model using a generic conversion due to [Wat08]. The
work is concluded in Section 5.

2 Preliminaries

In this section we describe the algorithms that form an attribute-based encryp-
tion scheme which supports threshold decryption policies, as well as the basic
security requirements for such schemes. We also introduce the computational
problem called aMSE-DDH problem, to which we will relate the security of our
scheme.

2.1 Attribute-Based Encryption

In a ciphertext-policy attribute-based encryption (ABE, for short) system, each
user receives from a master entity a secret key which depends on the attributes
that he satisfies (to soften the natural limitation of the unique trusted authority,
the possibility to distribute the key extraction among several authorities has
been investigated in [Cha07]). A sender can encrypt a message so that it can
be decrypted only by users whose attributes satisfy some policy of his choice,



and which may depend of the message. Since the basic scheme that we propose
in Section 3 works for threshold decryption policies, we describe the protocols
and security model with respect to these threshold policies: the sender chooses
a subset S of attributes and a threshold t such that 1 ≤ t ≤ |S|, and encrypts
a message m for the pair (S, t). A particular user will be able to decrypt the
ciphertext only if he holds t or more attributes in S. The protocols and security
model for ABE schemes supporting more general decryption policies can be
described in a very similar way.

Syntactic Definition. A ciphertext-policy attribute-based encryption scheme
ABE = (Setup,Ext,Enc,Dec) supporting threshold decryption policies consists
of four probabilistic polynomial-time algorithms:

– The randomized setup algorithm Setup takes a security parameter λ and a
universe of attributes P = {at1, . . . , atm} as inputs and outputs some public
parameters params, containing in particular the set P, which will be common
to all the users of the system, along with a secret key msk for the master
entity. The public parameters will be an input of all the following algorithms.
We write (params,msk) ← ABE.Setup(1λ,P) to denote an execution of this
algorithm.

– The key extraction algorithm Ext is an interaction between a user and the
master entity. The user proves to the master entity that he enjoys a subset
A ⊂ P of attributes. After verifying that this is actually the case, the master
entity uses his master secret key msk to generate a secret key skA (which
depends on the subset A of attributes), and gives it to the user. We refer to
an execution of this protocol as skA ← ABE.Ext(params, A,msk).

– The encryption algorithm Enc takes a subset of attributes S ⊂ P, a thresh-
old t such that 1 ≤ t ≤ |S|, and a message M as inputs. The output is
a ciphertext C. We denote an execution of the encryption algorithm as
C ← ABE.Enc(params, S, t,M).

– The decryption algorithm Dec takes a ciphertext C for the pair (S, t) and a
secret key skA corresponding to some subset A of attributes as inputs. The
output is a message M̃ . We write M̃ ← ABE.Dec(params, C, (S, t), skA) to
refer to an execution of this protocol.

For correctness, it is required that

ABE.Dec(params,ABE.Enc(params, S, t,M), (S, t), skA) = M,

whenever |A ∩ S| ≥ t and the values params,msk, skA have been obtained by
properly executing the protocols ABE.Setup and ABE.Ext.

Security Model for ABE Schemes. Most previous schemes (all but the
one in [LO+10]) consider only security under selective chosen plaintext attacks.
This is also the security level that will be provably achieved by our scheme.
Indistinguishability under selective chosen plaintext attacks (IND-sCPA security,



for short) for an attribute-based encryption scheme ABE supporting threshold
decryption policies and for a security parameter λ ∈ N is defined by considering
the following game that an attacker A plays against a challenger:

1. The challenger specifies a universe of attributes P of size m and gives it to
the attacker A.

2. A selects a subset S ⊂ P of s attributes and a threshold t such that 1 ≤ t ≤ s.
3. The challenger runs (params,msk)← ABE.Setup(1λ,P) and gives params to
A.

4. [Secret key queries:] A adaptively sends subsets of attributes B ⊂ P, with
the restriction |B∩S| < t, and must receive skB ← ABE.Ext(params, B,msk)
as the answer.

5. A outputs two messages M0,M1 of the same length.
6. [Challenge:] The challenger picks a random bit b? ∈ {0, 1}, computes
C? ← ABE.Enc(params, S, t,Mb?) and gives C? to A.

7. Step 4 is repeated.
8. A outputs a bit b.

The advantage of such an adversary A in breaking the IND-sCPA security of
the ABE scheme is defined as

AdvIND-sCPA
A,ABE (λ) = |2 Pr[b = b?]− 1| .

An attribute-based encryption scheme ABE is said to be IND-sCPA secure
if AdvIND-sCPA

A,ABE (λ) is negligible with respect to the security parameter λ, for any
polynomial time adversary A.

Note also that collusion resistance follows from the fact that the adversary
can make multiple adaptive secret key queries both before and after the challenge
phase.

This is not the strongest security notion that one can consider for ABE
schemes. On the one hand, the attacker A can be allowed to make decryption
queries, for ciphertexts C ′ of his choice (corresponding to pairs (S′, t′)), with the
restriction that the challenge ciphertext C∗ is never queried for the challenge
pair (S, t). On the other hand, A can be allowed to choose the challenge pair
(S, t) not at the beginning of the game, but at the same time when he chooses
the two messages M0,M1. In this case, we say that A is a chosen ciphertext
attacker, and that his goal is to break the CCA security of the ABE scheme.

2.2 The Augmented Multi-Sequence of Exponents Diffie-Hellman
Problem

Our scheme uses an admissible bilinear map (or pairing) as an ingredient and its
security relies on the hardness of a problem that we call the augmented multi-
sequence of exponents decisional Diffie-Hellman problem, which is a slight mod-
ification of the multi-sequence of exponents decisional Diffie-Hellman problem
considered in [DP08]. The generic complexity of these two problems is covered



by the analysis in [BBG05], because the problems fit their general Diffie-Hellman
exponent problem framework.

Let G1,G2,GT be three groups of the same prime order p (this is called
a bilinear group triple in the sequel), and let e : G1 × G2 −→ GT be a non-
degenerate and efficiently computable bilinear map. Let g0 be a generator of
G1 and let h0 be a generator of G2. In practice, the bilinear map e can be
implemented on any pairing-friendly (hyper-)elliptic curve [FST10]; no more
assumptions are made on the groups G1 and G2, or on the hypothetical existence
of an efficient isomorphism from the one to the other.

Let ˜̀, m̃, t̃ be three integers. The (˜̀, m̃, t̃)-augmented multi-sequence of ex-
ponents decisional Diffie-Hellman problem ((˜̀, m̃, t̃)-aMSE-DDH) related to the
group triplet (G1,G2,GT ) is as follows:

Input: the vector −→x ˜̀+m̃ = (x1, . . . , x˜̀+m̃) whose components are pairwise distinct
elements of (Z/pZ)? which define the polynomials

f(X) =
˜̀∏

i=1

(X + xi) and g(X) =
˜̀+m̃∏
i=˜̀+1

(X + xi),

the values 

g0, g
γ
0 , . . . , g

γ
˜̀+t̃−2

0 , g
κ·γ·f(γ)
0 , (l.1)

gωγ0 , . . . , gωγ
˜̀+t̃−2

0 , (l.2)

gα0 , g
αγ
0 , . . . , gαγ

˜̀+t̃

0 , (l.3)
h0, h

γ
0 , . . . , h

γm̃−2

0 , h
κ·g(γ)
0 (l.4)

hω0 , h
ωγ
0 , . . . , hωγ

m̃−1

0 , (l.5)

hα0 , h
αγ
0 , . . . , hαγ

2(m̃−t̃)+3

0 (l.6)

where κ, α, γ, ω are unknown random elements of (Z/pZ)?, and finally an element
T ∈ GT .

Output: a bit b.

The problem is correctly solved if the output is b = 1 when T = e(g0, h0)κ·f(γ)

or if the output is b = 0 when T is a random value from GT . In other words, the
goal is to distinguish if T is a random value or if it is equal to e(g0, h0)κ·f(γ).

More formally, let us denote by real the event that T is indeed equal to
T = e(g0, h0)κ·f(γ), by random the event that T is a random element from GT

and by I(−→x ˜̀+m̃, κ, α, γ, ω, T ) the input of the problem. Then, we define the
advantage of an algorithm B in solving the (˜̀, m̃, t̃)-aMSE-DDH problem as

Adv
(˜̀,m̃,t̃)−aMSE-DDH
B (λ) =

∣∣∣Pr
[
B(I(−→x ˜̀+m̃, κ, α, γ, ω, T )) = 1

∣∣real]
−Pr

[
B(I(−→x ˜̀+m̃, κ, α, γ, ω, T )) = 1

∣∣random
] ∣∣∣

where the probability is taken over all random choices and over the random coins
of B.



The only difference with the multi-sequence of exponents decisional Diffie-
Hellman problem from [DP08] is the presence in the input of two additional
lines (l.2) and (l.5). The generic hardness of this problem is a consequence of
Theorem A.2 from [BBG05]. It is stated in the next proposition whose proof
follows (almost exactly) that of Corollary 3 in [DP08].

Proposition 1. For any probabilistic algorithm B making at most qG queries
to the the oracle that computes the group operations (in groups G1,G2,GT of
order p) and the bilinear pairing e(·, ·), its advantage in solving the aMSE-DDH
problem satisfies

Adv
(˜̀,m̃,t̃)−aMSE-DDH
B (λ) ≤ (qG + 2s+ 2)2 · d

2p

where s = 4m̃+ 3˜̀+ t̃+ 3 and d = max{2(˜̀+ 2), 2(m̃+ 2), 4(m̃− t̃) + 10}.

3 The New ABE Scheme

This section is dedicated to the presentation of our ciphertext-policy attribute-
based encryption scheme.

In the decryption process, we will use the algorithm Aggregate of [DP08].
Given a list of values {g

r
γ+xi , xi}1≤i≤n, where r, γ ∈ (Z/pZ)? are unknown and

xi 6= xj if i 6= j, the algorithm computes the value

Aggregate({g
r

γ+xi , xi}1≤i≤n) = g
r∏n

i=1(γ+xi) .

using O(n2) exponentiations.
Although the algorithm Aggregate of [DP08] is given for elements in GT , it is

immediate to see that it works in any group of prime order. Running Aggregate
for elements in G1 results in our case in a more efficient decryption algorithm.

3.1 Description of the Scheme

Setup, ABE.Setup(1λ,P).
The master entity chooses a suitable encoding τ sending each of the m attributes
at ∈ P onto a (different) element τ(at) = x ∈ (Z/pZ)?. He also chooses a bilinear
group triple (G1,G2,GT ) of prime order p (such that p is λ bits long) and a
bilinear map e : G1×G2 −→ GT . He selects a generator g of G1 and a generator
h of G2.

After that, he chooses a set D = {d1, . . . , dm−1} consisting of m− 1 pairwise
different elements of (Z/pZ)?, which must also be different to the values x =
τ(at), for all at ∈ P. For any integer i lower or equal to m − 1, we denote as
Di the set {d1, . . . , di}. Next, the master entity picks at random α, γ ∈ (Z/pZ)?

and sets u = gαγ and v = e(gα, h). The master secret key is then msk = (g, α, γ)
and the public parameters are

params =
{
P,m, u, v,

{
hαγ

i
}
i=0,...,2m−1

,D, τ
}
.



Key Extraction, ABE.Ext(params, A,msk).
Given any subset A ⊂ P of attributes, the master entity picks r ∈ (Z/pZ)? at

random and computes skA =
{{

g
r

γ+τ(at)

}
at∈A

,
{
hrγ

i
}
i=0,...,m−2

, h
r−1
γ

}
.

Encryption, ABE.Enc(params, S, t,M).
Given a subset S ⊂ P with s = |S| attributes, a threshold t satisfying 1 ≤ t ≤ s,
and a message M ∈ GT , the sender picks at random κ ∈ (Z/pZ)? and computes

C1 = u−κ,

C2 = h
κ·α·

∏
at∈S

(γ+τ(at))
∏

d∈Dm+t−1−s
(γ+d)

,
K = vκ.

The value C2 is computed from the set {hαγi}i=0,...,2m−1 that can be found in
the public parameters. The ciphertext is then (C1, C2, C3), where C3 = K ·M .

Decryption, ABE.Dec(params, (C1, C2, C3), (S, t), skA).
Any user with a set of attributes A such that |A ∩ S| ≥ t can use the secret key
skA to decrypt the ciphertext, as follows. Let AS be any subset of A ∩ S with
|AS | = t. The user computes, from all at ∈ AS , the value

Aggregate({g
r

γ+τ(at) , τ(at)}at∈AS ) = g
r∏

at∈AS
(γ+τ(at)) .

With the output of the algorithm Aggregate the user computes

L = e(g
r∏

at∈AS
(γ+τ(at)) , C2) = e(g, h)

r·κ·α·
∏

at∈S\AS
(γ+τ(at))

∏
d∈Dm+t−1−s

(γ+d)

.

For simplicity we define τ(d) = d for all d ∈ D and given a set AS ⊂ S,
P(AS ,S)(γ) is

P(AS ,S)(γ) =
1
γ

 ∏
at∈(S∪Dm+t−1−s)\AS

(γ + τ(at))−
∏

at∈(S∪Dm+t−1−s)\AS

τ(at)

.
The crucial point is that, since |AS | ≥ t, the degree of the polynomial

P(AS ,S)(X) is lower or equal to m − 2. Therefore, from the values included in
skA, the user can compute hrP(AS,S)(γ).

After that, the user calculates

e(C1, h
rP(AS,S)(γ)) · L = e(g, h)κ·r·α·

∏
at∈(S∪Dm+t−1−s)\AS

τ(at) (1)

and
e(C1, h

r−1
γ ) = e(g, h)−κ·α·r · e(g, h)κ·α (2)

From Equation (1) the user can obtain

e(g, h)κ·r·α =
(
e(C1, h

rP(AS,S)(γ)) · L
)1/

∏
at∈(S∪Dm+t−1−s)\AS

τ(at)

and multiply this value in Equation (2). The result of this multiplication leads to
K = e(g, h)κ·α. Finally, the user recovers the message by computing M = C3/K.



3.2 Consistency Checking and Efficiency Considerations

It is not hard to prove that the new ABE scheme satisfy the correctness property:
if all the protocols are correctly executed, and if |A ∩ S| ≥ t, then skA allows to
recover plaintexts that have been encrypted for the pair (S, t).

It is worth noting that, by adding gα to the public parameters (this modifi-
cation does not affect the security proof that we present in the next section), the
users can check the consistency of the secret key they receive from the master
entity. To do so, they must verify that, for all their attributes at ∈ A,

e
(
g

r
γ+τ(at) , hαγ · (hα)τ(at)

)
= e (gα, hr)

and then that, for i = 1, . . . ,m− 2,

e
(
gα, hrγ

i
)

= e
(
u, hrγ

i−1
)

Finally, they have to check that e(u, h
r−1
γ ) = e (gα, hr) /v.

In terms of efficiency, the main contribution of this new scheme is the con-
stant size of the ciphertext, which consists of one element of each group G1, G2

and GT . The encryption requires no pairing computations, but m+ t+ 1 expo-
nentiations. The decryption process requires 3 pairing evaluations and O(t2 +m)
exponentiations. The size of the secret key is linear in the number of attributes,
as in all existing ABE schemes.

3.3 Security Analysis

We are going to prove that our scheme is IND-sCPA secure, assuming that the
aMSE-DDH problem is hard to solve.

Theorem 1. Let λ be an integer. For any adversary A against the IND-sCPA
security of our attribute-based encryption scheme, for a universe of m attributes
P, and a challenge pair (S, t) with s = |S|, there exists a solver B of the (˜̀, m̃, t̃)-
aMSE-DDH problem, for ˜̀= m− s, m̃ = m+ t− 1 and t̃ = t+ 1, such that

AdvaMSE-DDH
B (λ) ≥ 1

2
· AdvIND-sCPA

A (λ).

Proof. We are going to construct an algorithm B that uses the adversary A as a
black-box and that solves the (m− s,m+ t−1, t+ 1)-augmented multi-sequence
of exponents decisional Diffie-Hellman problem. The main trick in the proof will
be to use the input of the aMSE-DDH problem to compute evaluations of some
polynomials in γ “in the exponent”.

Let I(−→x 2m+t−1−s, κ, α, γ, ω, T ) be the input of the algorithm B. First, B
specifies a universe of attributes, P = {at1, . . . , atm}. Next, the adversary A
chooses a set S ⊂ P of cardinal s that he wants to attack, and a threshold t such
that 1 ≤ t ≤ s. Without loss of generality, we assume S = {atm−s+1, . . . , atm} ⊂



P. From now on, we will denote by AS the subset A ∩ S, for any subset of
attributes A.

Simulation of the setup. The algorithm B defines the encoding of the at-
tributes as τ(ati) = xi for i = 1, . . . ,m. Observe that the encodings of the first
m− s elements are the opposite of the roots of f(X), and the encodings of the
attributes in S are the opposite of some roots of g(X).

The values corresponding to the “dummy” attributes D = {d1, . . . , dm−1}
are defined as dj = xm+j if j = 1 . . .m+ t− 1− s. For j = m+ t− s, . . . ,m− 1,
the dj ’s are picked uniformly at random in (Z/pZ)? until they are distinct from
{x1, . . . , x2m+t−1−s, dm+t−s, . . . , dj−1}.

The algorithm B defines g := g
f(γ)
0 . Note that B can compute g with the

elements of line (l.1) of its input, since f is a polynomial of degree ˜̀. To complete
the setup phase, B sets h = h0 and computes

– u = gαγ = g
α·γ·f(γ)
0 with line (l.3) of its input, which is possible since Xf(X)

is a polynomial of degree ˜̀+ 1. Indeed, α · γ · f(γ) is a linear combination
of {αγ, . . . , αγ ˜̀+1} and the coefficients of this linear combination are known
to B, so the value u can be computed from line (l.3).

– v = e(g, h)α = e(gf(γ)α
0 , h0) with line (l.3) for gf(γ)α

0 . Note that the value
gα could be computed by B and added to the public parameters, in case the
verification of the consistency of the secret keys is desired for the scheme.

The algorithm B can compute the values {hαγi}i=0,...,2m−1 from line (l.6) of its
input. Eventually, B gives to A the resulting

params = {P,m, u, v, {hαγ
i

}i=0,...,2m−1,D, τ}.

Simulation of key extraction queries. Whenever the adversary A makes a
key extraction query for a subset of attributes A = {ati1 , . . . , atin} ⊂ P satisfying
that 0 ≤ |AS | ≤ t− 1, the algorithm B must produce a tuple of the form

skA =
{{

g
r

γ+τ(at)

}
at∈A

,
{
hrγ

i
}
i=0,...,m−2

, h
r−1
γ

}
,

for some random value r ∈ (Z/pZ)?. To do so, B implicitly defines r = (ωyAγ +
1)QA(γ), where yA is randomly picked in (Z/pZ)?, and the polynomial QA(X)
is defined as QA(γ) = 1 when |AS | = 0, or QA(X) = λA ·

∏
at∈AS

(X + τ(at))

otherwise, in which case λA = (
∏

at∈AS τ(at))−1.
The elements which form skA are then computed as follows:

– For any at ∈ AS , B defines

Qat(γ) = QA(γ)/(γ + τ(at)) = λA ·
∏

ãt∈AS , ãt 6=at

(γ + τ(ãt)).



Then g
r

γ+τ(at) = g
f(γ)ωyAγQat(γ)
0 · gf(γ)Qat(γ)

0 . The first factor of the product
(whose exponent is a polynomial in γ of degree at most (m− s) + 1 + t− 2)
can be computed from line (l.2), whereas the second factor (whose exponent
is a polynomial in γ of degree at most (m−s)+ t−2) can be computed from
line (l.1).

– For any at ∈ A \ AS , B defines the polynomial fat(X) = f(X)/(X + τ(at)).
Then g

r
γ+τ(at) = g

fat(γ)ωyAγQA(γ)
0 · gfat(γ)QA(γ)

0 . Again, the first factor of this
product can be computed from line (l.2), and the second factor can be com-
puted from line (l.1).

– The values
{
hrγ

i
}
i=0,...,m−2

can be computed from line (l.4) and (l.5), since

hrγ
i

= hQA(γ)ωyAγ
i+1 · hQA(γ)γi .

– Finally, B has to compute h
r−1
γ = hQA(γ)ωyA · h

QA(γ)−1
γ . The first factor of

the product can be computed from line (l.5) and the second factor can be
computed from line (l.4), since by definition of λA, QA(X) is a polynomial
with independent term equal to 1 and thus QA(γ)−1

γ is a linear combination
of {1, γ, . . . , γt−2}.

Note that QA(γ) 6= 0 (otherwise γ = τ(at) for some at ∈ AS and γ is public),
in which case it is not hard to see that r is uniformly distributed in Z/pZ. If
the choice of yA leads to r = 0 (which occurs only with negligible probability
anyhow), it suffices to pick a different value for yA. That is, in the simulation r
is uniformly distributed in (Z/pZ)?.

Simulation of the challenge. Once A sends to B the two messages M0 and
M1, B flips a coin b ∈ {0, 1}, and sets C?3 = T ·Mb. To simulate the rest of the
challenge ciphertext, B implicitly defines the randomness for the encryption as
κ′ = κ/α, and sets C?2 = h

κ·g(γ)
0 (given in line (l.4) of the aMSE-DDH input). To

complete the ciphertext, B computes C?1 =
(
g
κ·γf(γ)
0

)−1

from line (l.1) of the

input, which is equal to u−κ
′
.

After the challenge step A may make other key extraction queries, which are
answered as before.

Guess. Finally, A outputs a bit b′. If b′ = b, B answers 1 as the solution to
the given instance of the aMSE-DDH problem, meaning that T = e(g0, h0)κ·f(γ).
Otherwise, B answers 0, meaning that T is a random element.

We now have to analyze the advantage of the algorithm B:

AdvaMSE-DDH
B (λ) =

∣∣∣Pr
[
B(I(−→x ˜̀+m̃, κ, α, γ, ω, T )) = 1

∣∣real]−
Pr
[
B(I(−→x ˜̀+m̃, κ, α, γ, ω, T )) = 1

∣∣random
] ∣∣∣

=
∣∣∣Pr

[
b = b′

∣∣real]− Pr
[
b = b′

∣∣random
] ∣∣∣.

When the event real occurs, then A is playing a real attack and therefore
|Pr

[
b = b′

∣∣real]− 1/2| = 1
2AdvIND-sCPA

A,Π (λ). During the random event, the view of



A is completely independent of the bit b; in this case, the probability Pr[b = b′]
is equal to 1/2. Summing up, we obtain

AdvaMSE-DDH
B (λ) ≥ 1

2
AdvIND-sCPA

A,Π (λ).

ut

4 Extensions

In this section we discuss two possible extensions of the basic scheme that we have
described and analyzed in the previous section. First, we study the possibility
of supporting more general decryption policies, not only threshold ones. After
that, we discuss the options to obtain security against chosen ciphertext attacks.

4.1 More General Decryption Policies

Although we have considered in this paper the special case of threshold de-
cryption policies, attribute-based encryption schemes can be defined for general
decryption policies. Such a policy is determined by a monotone increasing family
Γ ⊂ 2P of subsets of attributes, in P = {at1, . . . , atn}. This family (or access
structure) is chosen by the sender at the time of encryption, in such a way that
only users whose subset of attributes A belong to Γ can decrypt. Even if many
users collude, each of them having a subset of attributes out of Γ , the encryption
scheme must remain secure.

The threshold ABE scheme that we have described and analyzed in this
paper is inspired on the dynamic threshold identity-based encryption scheme
of [DP08]. It is claimed in [DP08] that the threshold scheme there can be
extended to admit “all the classical cases” of more general access structures.
However, this is not completely true, because their extension only applies to a
sub family of access structures, weighted threshold ones. A family Γ ⊂ 2P is a
weighted threshold access structure if there exist a threshold t and an assign-
ment of weights ω : P → Z+ such that A ∈ Γ ⇐⇒

∑
at∈A

ω(at) ≥ t. Of course,

there are many access structures which are not weighted threshold, for example
Γ = {{at1, at2}, {at2, at3}, {at3, at4}} in the set P = {at1, at2, at3, at4}.

The same extension proposed in [DP08] works for our threshold ABE scheme.
Let K be an upper bound for ω(at), for all at ∈ P and for all possible as-
signments of weights that realize weighted threshold decryption policies. Dur-
ing the setup of the ABE scheme, the new universe of attributes will be P ′ =
{at1||1, at1||2, . . . , at1||K, . . . , atn||1, . . . , atn||K}. During the secret key request
phase, if an attribute at belongs to the requested subset A ⊂ P, the secret key
skA will contain the elements g

r

γ+τ(at(j)) corresponding to at(j) = at||j, for all
j = 1, . . . ,K.

Later, suppose a sender wants to encrypt a message for a weighted threshold
decryption policy Γ , defined on a subset of attributes S = {at1, . . . , ats} (without



loss of generality). Let t and ω : S → Z+ be the threshold and assignment of
weights that realize Γ . The sender can use the threshold ABE encryption routine
described in Section 3.1, with threshold t, but applied to the set of attributes
S′ = {at1||1, . . . , at1||ω(at1), . . . , ats||1, . . . , ats||ω(ats)}. In this way, if a user
holds a subset of attributes A ∈ Γ , he will have ω(at) valid elements in his
secret key, for each attribute at ∈ A. In total, he will have

∑
at∈A

ω(at) ≥ t valid

elements, so he will be able to run the decryption routine of the threshold ABE
scheme and decrypt the ciphertext.

The security analysis can be extended to this more general case, as well.
Therefore, we can conclude that our ABE scheme with constant size ciphertexts
also admits weighted threshold decryption policies.

4.2 Security under Chosen Ciphertext Attacks

Some ABE schemes proposed in the literature [BSW07,CN07,Wat08] achieve
security under selective chosen ciphertext attacks (sCCA security). This is done
in two steps. Firstly sCPA security is proved, and secondly the scheme is shown
to admit delegation of secret keys: it is possible to compute a valid secret key
skA′ from a valid secret key skA, for any A′ ⊂ A. If this is the case, the basic
ABE scheme can be viewed as a hierarchical ABE scheme, where the hierarchy
is the classical one: a user holding attributes A is over a user holding attributes
A′, if A′ ⊂ A. Finally, the techniques developed in [CHK04] can be applied to
this sCPA secure hierarchical ABE scheme, which results in a sCCA secure ABE
scheme, in the standard model.

Unfortunately our scheme does not seem to admit delegation of secret keys.
Therefore, it is still an open problem to come up with an ABE scheme with
constant size ciphertexts, achieving sCCA security in the standard model. In
contrast, if one requires security in the random oracle model only, such a result
is easily obtained by applying to our scheme (a variant of) some classical CPA
to CCA transformation, such as the Fujisaki-Okamoto one [FuOk99].

5 Conclusion

We have proposed in this paper the first (reasonably expressive) attribute-based
encryption scheme with constant size ciphertexts. The design of the scheme is in-
spired by the dynamic threshold encryption scheme in [DP08]. Our ABE scheme
works for threshold policies: the sender chooses, at the time of encryption, the
involved set of attributes and a threshold, in such a way that only those users
holding (at least) this threshold of the involved attributes can decrypt. How-
ever, the scheme can be easily extended to admit weighted threshold decryption
policies, as well.

Although finding attribute-based encryption schemes with short ciphertexts
supporting even more expressive decryption policies is an important open prob-
lem, weighted threshold decryption policies are quite expressive and can cover a



wide range of applications. Therefore, we think that our proposal achieves a fair
trade-off between expressiveness and efficiency.

Our scheme employs bilinear pairings, and its security is based on the as-
sumption that a newly introduced problem, the augmented Multi-Sequence of
Exponents Decisional Diffie-Hellman (aMSE-DDH) problem, is hard. It remains
an open problem to obtain a scheme with constant ciphertext’s length whose
security is based on a more standard algorithmic problem and which achieves
full security (i.e. not only selective security).
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