
Simple and Efficient Public-Key Encryption
from Computational Diffie-Hellman in the

Standard Model

Kristiyan Haralambiev?, Tibor Jager??, Eike Kiltz? ? ?, and Victor Shoup†

Abstract. This paper proposes practical chosen-ciphertext secure
public-key encryption systems that are provably secure under the compu-
tational Diffie-Hellman assumption, in the standard model. Our schemes
are conceptually simpler and more efficient than previous constructions.
We also show that in bilinear groups the size of the public-key can be
shrunk from n to 2

√
n group elements, where n is the security parameter.

1 Introduction

Security against chosen-ciphertext attack (CCA) is nowadays considered to be
the standard security notion for public-key encryption. In this work we are inter-
ested in practical schemes with proofs of security under mild security assump-
tions (such as the computational Diffie-Hellman assumption), without relying
on heuristics such as the random oracle model [2].

ElGamal Encryption. Let G be a cyclic group generated by g. The ElGamal
encryption scheme, described as a key-encapsulation mechanism (Gen,Enc,Dec),
is as follows

Gen : sk = z, pk = Z = gz, Enc(pk) : C = gr,K = Zr,

Dec(sk , C) : K = Cz ∈ G,

where all appearing exponents are chosen at random. It can be proved one-way
(OW-CPA) secure under the computational Diffie-Hellman (DH) assumption,
but its semantic (IND-CPA) security is equivalent to the stronger DDH as-
sumption. To obtain an IND-CPA secure variant from the DH assumption one
commonly uses the Goldreich-Levin [13] hard-core predicate fgl(·, R) with ran-
domness R to extract a pseudorandom bit from the Diffie-Hellman seed. By a
? Dept. of Computer Science, New York University, Courant Institute, 251 Mercer

Street, New York, NY 10012, USA. kkh@cs.nyu.edu. Supported by NSF award num-
ber CNS-0716690.
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standard randomness-reusing technique one obtains a scheme that encapsulates
n-bit keys:

Gendh : skdh = (z1, . . . , zn), pkdh = (Z1 = gz1 , . . . , Zn = gzn),
Enc(pk) :Cdh = gr, Kdh = (fgl(Zr1 , R), . . . , fgl(Zrn, R)) ∈ {0, 1}n, (1)

where decapsulation reconstructs the seed values Zri by computing Zri = Czidh.
Combined with a one-time pad it yields an IND-CPA secure encryption scheme.

IND-CCA security from Decisional Assumptions. Whereas CPA-secure
schemes can be constructed generically, building CCA-secure schemes seems
more difficult and usually requires stronger hardness assumptions. The first prac-
tical CCA-secure encryption scheme (without random oracles) was proposed in
a seminal paper by Cramer and Shoup [10]. Their construction was later gener-
alized to hash proof systems [9]. However, the Cramer-Shoup encryption scheme
and all its variants [22, 7, 20, 21, 16, 17] inherently rely on decisional assumption,
e.g., the Decisional Diffie-Hellman (DDH) assumption or the quadratic residuos-
ity assumption. Moreover, there are groups, such as certain elliptic curve groups
with bilinear pairing map, where the DDH assumption does not hold, but the
DH problem appears to be hard.

IND-CCA security from Computational Assumptions. The DDH as-
sumption has often been criticized as being too strong [3, 12] and in general
wrong in certain cryptographically relevant groups [19]. Schemes based on the
DH assumption are preferred but, surprisingly, even with strong tools such as
the Cramer Shoup framework [10] such schemes seem to be hard to obtain.

Canetti, Halevi and Katz [5] proposed the first practical public-key encryp-
tion scheme based on a computational assumption, namely the Bilinear DH
assumption in bilinear groups. Later, as a general tool to construct secure cryp-
tographic primitives against active attacks, Cash et al. [8] proposed the Twin
Diffie-Hellman (2DH) assumption. Though seemingly a stronger assumption,
the interactive Strong 2DH assumption (which is the 2DH assumption where
the adversary is additionally given an oracle that solves the 2DH problem for
fixed bases) is implied by the standard DH assumption. Building on “IBE tech-
niques” [4, 5], Cash et al. obtained the first practical encryption scheme which
is CCA-secure assuming the strong 2DH assumption, and therefore also assum-
ing the standard DH assumption. Here the decisional 2DH oracle provided by
Strong 2DH assumption plays a crucial role in distinguishing consistent from
non-consistent ciphertexts. However, to prove IND-CCA security, [8] had to add
n group elements to the ciphertext of the scheme from Equation (1) which ren-
ders the scheme quite impractical. In independent work, Hanaoka and Kuro-
sawa [14] used a different approach based on broadcast encryption, and could
thereby reduce the number of group elements in the ciphertexts to a constant.
According to [14], their approach is not based on the twinning framework. Re-
cently, Hofheinz and Kiltz gave a CCA-secure encryption scheme based on the
factoring assumption [18].



1.1 Our contributions

In this paper we propose a number of new encryption schemes that are CCA-
secure assuming the standard DH assumption. We apply the Twin Diffie-Hellman
framework from [8] to the CPA-secure scheme given in Equation (1). Therefore
our schemes are simple and intuitive. As summarized in [15, Table 1], they
improve efficiency of prior schemes from [8, 14].

A scheme from Strong DH. To illustrate our main ideas we first give a toy
scheme that is IND-CCA secure assuming the Strong DH assumption [1] (The
Strong DH assumption is that the DH assumption holds when the adversary is
equipped with a (fixed-base) DDH oracle.) This is essentially the same scheme
as ElGamal from Equation (1), but one more group element is added to the
ciphertext.

Gensdh : sk = (skdh, x, x
′), pk = (pkdh, X = gx, X ′ = gx

′
)

Encsdh(pk) : C = (Cdh, (XtX ′)r), K = Kdh,
(2)

where t = T(Cdh) is the output of a target collision resistant hash function.
Decryption only returns K if the ciphertext C = (C0, C1) is consistent, i.e., if
Cxt+x

′

0 = C1. In all other cases it rejects and returns ⊥. The additional element
(XtX ′)r from the ciphertext is used as a handle for an all-but-one simulation
technique (based on techniques from identity-based encryption [4]) to be able to
simulate the decryption oracle for all ciphertexts, except the challenge cipher-
text. The above simulation technique works only if consistent ciphertexts can
be distinguished from inconsistent ones, which is why we need the DDH oracle
provided by the Strong DH assumption.

First scheme from DH. Our first scheme, which is secure under the (standard)
DH assumption, applies the twinning framework to the above idea by adding an
additional element (Y tY ′)r to the ciphertext.

Gendh1 : sk = (skdh, x, x
′, y, y′),

pk = (pkdh, X = gx, X ′ = gx
′
, Y = gy, Y ′ = gy

′
)

Encdh1(pk) : C = (Cdh, (XtX ′)r, (Y tY ′)r),
K = Kdh.

(3)

Again, decryption only returns K if the ciphertext is consistent, and ⊥ otherwise.
By analogy to the scheme from Equation (2) it is IND-CCA secure under the
Strong 2DH assumption which, by the Twinning theorem from [8], is implied by
the standard DH assumption. Again, the Decisional 2DH oracle provided by the
Strong DH assumption is crucial for distinguishing consistent from inconsistent
ciphertexts in the reduction.

Second scheme from DH. Our second scheme from the DH assumption ap-
plies an “implicit rejection technique” to remove the second element from the



ciphertext.

Gendh2 : sk = (skdh, x, x
′, y, y′),

pk = (pkdh, X = gx, X ′ = gx
′
, Y = gy, Y ′ = gy

′
)

Encdh2(pk) : C = (Cdh, (XtX ′)r),
K = KG ⊕Kdh, where KG = G((Y tY ′)r),

(4)

where G : G → {0, 1}n is a secure pseudorandom generator. Decryption only
returns K if the ciphertext C = (C0, C1) is consistent, i.e., if Cxt+x

′

0 = C1.
In that case KG is computed as KG = G(Cyt+y

′

0 ). Unfortunately, we are not
able to show full CCA security of this KEM but, instead, we are able to prove
the weaker constrained CCA (CCCA) security [16] under the DH assumption.
A CCCA-secure KEM plus a symmetric authenticated encryption scheme (i.e.,
a MAC plus a one-time pad) yields CCA-secure encryption. The intuition be-
hind the security is similar to the scheme from Equation (3) with the difference
that, during the simulation, the values Y and Y ′ are set-up such that, if the
ciphertext is inconsistent, then the simulated decryption will produce KG that
is uniform in the adversary’s view and therefore K = KG ⊕Kdh is also uniform.
Consequently, when combined with symmetric authenticated encryption such
inconsistent decryption queries will get rejected by the symmetric cipher.

Reducing the size of the Public-Keys. Our schemes are quite practical,
except for the large public-key which consists of ≈ n group elements. We also
propose two methods to reduce the size of the public-key when our schemes are
instantiated over bilinear groups. Most interestingly, we note that the public-key
can be shrunk from n to 2

√
n elements by ”implicitly defining” the n elements of

pkdh as Zi,j := ê(Zi, Z ′j), for i, j ∈ [1,
√
n]. (Here ê : G×G→ GT is a symmetric

bilinear map.) Note that now only the 2
√
n elements Zi, Z ′j need to be stored

in the public-key. 1 Furthermore, in bilinear groups it is also possible to move
the n values Z1, . . . , Zn from the public-key pkdh into the system parameter that
can be shared among many users. In that case the public-key only contains one
group element, but the system parameters are still of size ≈ n. We remark that
the observation of putting public-key elements into the systems parameters is
not new and has been made before, e.g., for Water’s IBE scheme [24]. Finally, we
also sketch how our ideas can be extended to construct an IBE scheme. All our
bilinear constructions are CCA secure under the Bilinear DH (BDH) assumption.

2 Preliminaries

2.1 Notation

In the following we let (Gκ)κ∈N be a family of prime-order groups, indexed
by security parameter κ. Occasionally we write G shorthand for some group
1 We remark that this is a generic technique that may also be applied to other Diffie-

Hellman based constructions suffering from large public keys, such as the DDH-based
lossy trapdoor functions in [23, 11].



Gκ ∈ (Gκ)κ∈N, when the reference to the security parameter κ is clear. We
denote with poly(κ) an unspecified positive integer-valued polynomial, and with
negl(κ) a negligible function in κ, that is, |negl(κ)| < o(1/κc) for every positive
integer c. For a positive integer n, we denote with [n] the set [n] = {1, . . . , n}.

2.2 Key Encapsulation Mechanisms

Let n = n(κ) be a polynomial. A key-encapsulation mechanism (Gen,Enc,Dec)
with key-space {0, 1}n consists of three polynomial-time algorithms (PTAs). Via
(pk , sk) ← Gen(1n) the randomized key-generation algorithm produces pub-
lic/secret keys for security parameter κ ∈ N; via (C,K)← Enc(pk) the random-
ized encapsulation algorithm creates an uniformly distributed symmetric key
K ∈ {0, 1}n, together with a ciphertext C; via K ← Dec(sk , C) the possessor of
secret key sk decrypts ciphertext C to get back a key K which is an element in
{0, 1}n or a special rejection symbol ⊥. For consistency, we require that for all
κ ∈ N, and all (C,K) ← Enc(pk) we have Pr[Dec(sk , C) = K] = 1, where the
probability is taken over the choice of (pk , sk) ← Gen(1n), and the coins of all
the algorithms in the expression above.

Chosen-Ciphertext Security. The common requirement for a KEM is in-
distinguishability against chosen-ciphertext attacks (IND-CCA) [10] where an
adversary is allowed to adaptively query a decapsulation oracle with ciphertexts
to obtain the corresponding session key. More formally, for an adversary A we
define the advantage function

AdvCCAAKEMdh1
(κ) := Pr

b = b′ :

(pk , sk)← Gen(1n)
(C,K0)← Enc(pk)
K1 ← {0, 1}n; b← {0, 1}
b′ ← ADec(·)(pk ,Kb, C)

− 1
2
,

where oracle Dec(Ci) returns Ki ← Dec(sk , Ci). The restriction is that A is only
allowed to query Dec(·) on ciphertexts Ci different from the challenge ciphertext
C. A key encapsulation mechanism is said to be indistinguishable against cho-
sen ciphertext attacks (IND-CCA) if for all PTA adversaries A, the advantage
AdvCCAAKEMdh1

(κ) is a negligible function in κ.
It was proved in [10] that an IND-CCA secure KEM and a CCA-secure sym-

metric encryption scheme yields an IND-CCA secure hybrid encryption scheme.

Constrained Chosen-Ciphertext Security. Chosen-ciphertext security
can be relaxed to indistinguishability against constrained chosen-ciphertext at-
tacks (IND-CCCA) [16]. Intuitively, one only allows the adversary to make a
decapsulation query if it already has some “a priori knowledge” about the decap-
sulated key. This partial knowledge about the key is modeled implicitly by letting
the adversary additionally provide an efficiently computable Boolean predicate
pred : {0, 1}n → {0, 1}. If pred(K) = 1 then the decapsulated key K is returned,
and ⊥ otherwise. The amount of uncertainty the adversary has about the session
key (denoted as plaintext uncertainty uncertA) is measured by the fraction of



keys for which the predicate evaluates to 1. We require this fraction to be neg-
ligible for every query, i.e. the adversary has to have a high a priori knowledge
about the decapsulated key when making a decapsulation query. More formally,
for an adversary A we define the advantage function

AdvCCCAAKEMdh2
(κ) := Pr

b = b′ :

(pk , sk)← Gen(1n)
(C,K0)← Enc(pk)
K1 ← {0, 1}n; b← {0, 1}
b′ ← ACDec(·,·)(pk ,Kb, C)

− 1
2
,

where oracle CDec(pred i, Ci) first computes Ki ← Dec(sk , Ci). If Ki = ⊥ or
pred i(Ki) = 0 then return ⊥. Otherwise, return Ki. The restriction is that A is
only allowed to query CDec(pred i, Ci) on predicates pred i that are provided as
PTA and on ciphertexts Ci different from the challenge ciphertext C.

To adversary A in the above experiment we also associate A’s plaintext
uncertainty uncertA(κ) when making Q decapsulation queries, measured by

uncertA(κ) :=
1
Q

∑
1≤i≤Q

Pr
K∈{0,1}n

[pred i(K) = 1] ,

where pred i : G → {0, 1} is the predicate A submits in the ith decapsulation
query. Finally, a key encapsulation mechanism is said to be indistinguishable
against constrained chosen ciphertext attacks (IND-CCCA) if for all PTA ad-
versaries A with negligible uncertA(κ), the advantage AdvCCCAAKEMdh2

(n) is a
negligible function in κ.

It was proved in [16] that an IND-CCCA secure KEM plus a symmetric
encryption scheme secure in the sense of authenticated encryption yields an
IND-CCA secure hybrid encryption scheme.

We refer to the full version [15, Appendix A] for other definitions of standard
cryptographic primitives such as hash functions and pseudorandom generators.

2.3 Diffie-Hellman Assumptions

Let G = Gκ be a cyclic group generated by g. Define

dh(A,B) := C, where A = ga, B = gb, and C = gab. (5)

The problem of computing dh(A,B) given random A,B ∈ G is the computational
Diffie-Hellman (DH) problem. The DH assumption asserts that this problem is
hard, that is, Pr[A(A,B) = dh(A,B)] ≤ negl(κ) for all probabilistic polynomial-
time algorithms A. The DH predicate is defined as

dhp(A, B̂, Ĉ) := dh(A, B̂) ?= Ĉ.

The Strong DH assumption states that it is hard to compute dh(A,B), given
random A,B ∈ G, along with access to a decision oracle for the predicate
dhp(A, ·, ·), which on input (B̂, Ĉ), returns dhp(A, B̂, Ĉ).



Let dh be defined as in (5). Define the function

2dh : G3 → G2

(A1, A2, B) 7→ (dh(A1, B),dh(A2, B)).

This function, introduced in [8], is called the twin DH function. One can also
define a corresponding twin DH predicate:

2dhp(A1, A2, B̂, Ĉ1, Ĉ2) := 2dh(A1, A2, B̂) ?= (Ĉ1, Ĉ2).

The twin Diffie-Hellman assumption states it is hard to compute 2dh(A1, A2, B),
given random A1, A2, B ∈ G. The strong twin DH assumption states that it
is hard to compute 2dh(A1, A2, B), given random A1, A2, B ∈ G, along with
access to a decision oracle for the predicate 2dhp(A1, A2, ·, ·, ·), which on input
(B̂, Ĉ1, Ĉ2), returns 2dhp(A1, A2, B̂, Ĉ1, Ĉ2). It is clear that the (strong) twin
DH assumption implies the DH assumption.

We will make use of a result from [8], which essentially states that the DH
assumption implies the strong twin Diffie-Hellman assumption.

Lemma 1 (Theorem 3 of [8]). Let G be a group of prime order p, log2 p =
poly(κ). Suppose A is an adversary against the strong twin Diffie-Hellman prob-
lem in G, running in polynomial-time in κ and having non-negligible success
probability. Then there exists a polynomial-time adversary B against the compu-
tational Diffie-Hellman problem in G having non-negligible success probability.

2.4 Hard-core Functions

In the following we denote with fgl : G × {0, 1}u → {0, 1}ν a Goldreich-Levin
hard-core function [13] for dh(A,B) with randomness space {0, 1}u and range
{0, 1}ν , where u and ν are suitable integers (depending on the given group rep-
resentation).

The following lemma is from [8, Theorem 9].

Lemma 2. Let G = Gκ be a prime-order group generated by g. Let A1, A2, B
$←

G be random group elements, R $← {0, 1}u, and let K = fgl(dh(A1, B), R).
Let Uν

$← {0, 1}ν be uniformly random. Suppose there exists a proba-
bilistic polynomial-time algorithm B having access to an oracle computing
2dhp(A1, A2, ·, ·, ·) and distinguishing the distributions

∆dh = (g,A1, A2, B,K,R) and ∆rand = (g,A1, A2, B, Uν , R)

with non-negligible advantage. Then there exists a probabilistic polynomial-time
algorithm computing dh(A,B) on input (A,B) with non-negligible success prob-
ability.



3 Chosen-Ciphertext Secure Key Encapsulation

In this section we build our first CCA-secure key-encapsulation mechanism whose
security is based on the DH assumption.

Let G = Gκ be a group of prime order p and let n = n(κ) be a polynomial.
Let Ts : G → Zp be a hash function with key s that is assumed to be target
collision resistant (see [15, Appendix A] for a formal definition). Let KEMdh1 =
(Gen,Enc,Dec) be defined as follows.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for
fgl. Choose a random seed s for the hash function Ts, choose random integers
x, x′, y, y′, z1, . . . , zn

$← Zp, and set X = gx, X ′ = gx
′
, Y = gy, Y ′ = gy

′
,

Z1 = gz1 , . . . , Zn = gzn . Set

pk = (g,X,X ′, Y, Y ′, Z1, . . . , Zn, R, s) and sk = (pk , x, x′, y, y′, z1, . . . , zn)

and return (pk , sk).
Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = Ts(C0),

C1 = (XtX ′)r, C2 = (Y tY ′)r, and

K = (fgl(Zr1 , R), . . . , fgl(Zrn, R))

Return ((C0, C1, C2),K).
Dec(sk , (C0, C1, C2)) Set t = Ts(C0). If C1 6= Cxt+x

′

0 or C2 6= Cyt+y
′

0 then return
⊥. Otherwise compute and return

K = (fgl(Cz10 , R), . . . , fgl(Czn0 , R)).

Theorem 1. Let Ts be a target collision-resistant hash function and suppose
that the computational Diffie-Hellman assumption holds in G. Then KEMdh1 is
IND-CCA secure.

In the proof we use a trick from [4] to set up the public key and challenge
ciphertext in a way to perform an all-but-one simulation. This enables the simu-
lator to embed the given Diffie-Hellman challenge, while at the same time being
able to decapsulate any ciphertext submitted by the adversary. We combine this
technique with the twinning technique from [8], to be able to check for consis-
tency of submitted ciphertexts.
Proof. In the following we write (C∗0 , C

∗
1 , C

∗
2 ) to denote the challenge ciphertext

with corresponding key K∗0 , denote with K∗1 the random key chosen by the
IND-CCA experiment, and set t∗ = Ts(C∗0 ).

We proceed in a sequence of games. We start with a game where the chal-
lenger proceeds like the standard IND-CCA game (i.e., K∗0 is a real key and K∗1
is a random key), and end up with a game where both K∗0 and K∗1 are chosen
uniformly random. Then we show that all games are computationally indistin-
guishable under the computational Diffie-Hellman assumption. Let Wi denote
the event that A outputs b′ such that b′ = b in Game i.



Game 0. This is the standard IND-CCA game. By definition we have

Pr[W0] =
1
2

+ AdvCCAAKEMdh1
(κ)

Game 1. We proceed as in Game 0, except that the challenger returns ⊥ if
the adversary queries to decapsulate a ciphertext (C ′0, C

′
1, C

′
2) with C ′0 = C∗0 .

Note that the probability that the adversary submits a ciphertext such that
C ′0 = C∗0 before seeing the challenge ciphertext is bounded by q/p, where q is
the number of chosen-ciphertext queries issued by A. Since q = poly(κ), we
have q/p ≤ negl(κ). Moreover, a ciphertext is inconsistent, thus gets rejected, if
C ′0 = C∗0 and C ′1 6= C∗1 or C ′2 6= C∗2 , and is rejected by definition if C ′1 = C∗1 and
C ′2 = C∗2 . Therefore

|Pr[W1]− Pr[W0]| ≤ negl(κ).

Game 2. We define Game 2 like Game 1, except for the following. Now the
challenger aborts, if the adversary asks to decapsulate a ciphertext (C ′0, C

′
1, C

′
2)

with C ′0 6= C∗0 and Ts(C ′0) = Ts(C∗0 ). By the target collision resistance of Ts, we
have

|Pr[W2]− Pr[W1]| ≤ negl(κ).

Game 3. We define Game 3 like Game 2, except that we sample K∗0
$← {0, 1}nν

uniformly random. Note that now bothK∗0 andK∗1 are chosen uniformly random,
thus we have

Pr[W3] =
1
2
.

We claim that
|Pr[W3]− Pr[W2]| ≤ negl(κ)

under the computational Diffie-Hellman assumption. We prove this by a hybrid
argument. To this end, we define a sequence of hybrid games H0, . . . ,Hn, such
that H0 equals Game 2 and Hn equals Game 3. Then we argue that hybrid Hi is
indistinguishable from hybrid Hi−1 for i ∈ {1, . . . , n} under the computational
Diffie-Hellman assumption. The claim follows, since n = n(κ) is a polynomial.
We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we
set the first iν bits of K∗0 to independent random bits, and proceed otherwise
exactly like in hybrid Hi−1. Thus, hybrid Hn proceeds exactly like Game 3.

Let Ei denote the event that A outputs 1 in Hybrid i. Suppose

|Pr[E0]− Pr[En]| = 1/poly0(κ), (6)

that is, the success probability of A in Hybrid 0 is not negligibly close to the
success probability in Hybrid n. Note that then there must exist an index i such
that |Pr[Ei−1]− Pr[Ei]| = 1/poly(κ) (since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for
all i, then we would have |Pr[E0]− Pr[En]| ≤ negl(κ)).



Suppose there exists an algorithm A for which (6) holds. Then we can con-
struct an adversary B having access to a 2dhp oracle and distinguishing the
distributions ∆dh and ∆rand, which by Lemma 2 is sufficient to prove secu-
rity under the computational Diffie-Hellman assumption in G. Adversary B re-
ceives a challenge δ = (g,A1, A2, B, L,R) as input, and has access to an oracle
evaluating 2dhp(A1, A2, ·, ·, ·). B guesses an index i ∈ [n], which with proba-
bility at least 1/n corresponds to the index i such that |Pr[Ei−1]− Pr[Ei]| =
maxi |Pr[Ei−1]− Pr[Ei]|, and proceeds as follows.

Set-up of the public key. B picks random integers d, e, f $← Zp, and sets X =
Ae1, X ′ = A−et

∗

1 gd, Y = A2, Y ′ = A−t
∗

2 gf , and Zi = A1, where t∗ = Ts(B).
R is used as randomness for fgl(·, R), the rest of the public key is generated
as in Game 0. Note that X,X ′, Y, Y ′, Zi are independent and uniformly
distributed group elements.

Handling decapsulation queries. When A issues a decapsulation query
(C0 = gr, C1, C2), B computes t = Ts(C0), X̃ = (C1/C

d
0 )1/(et−et

∗), and
Ỹ = (C2/C

f
0 )1/(t−t

∗). Assuming t 6= t∗ and that the ciphertext is formed
correctly (that is, C0 = gr, C1 = (XtX ′)r, and C2 = (Y tY ′)r) we have

X̃ = ((XtX ′)r/(gr)d)1/(et−et
∗) = (Aer(t−t

∗)
1 grd/grd)1/(et−et

∗)

= Ar1 = dh(A1, C0),

and likewise Ỹ = Ar2 = dh(A2, C0). B tests consistency of ciphertexts
by querying 2dhp(A1, A2, C0, X̃, Ỹ ), which returns 1 if and only if X̃ =
dh(A1, C0) and Ỹ = dh(A2, C0).
If this test is passed, then B sets K∗0 = (K∗0,1, . . . ,K

∗
0,n) as K∗0,i = fgl(X̃, R)

and K∗0,j = fgl(C
zj
0 , R) for j ∈ [n] \ {i}. Since by Game 2 we have t 6= t∗ for

all queries issued by A, B can answer all decapsulation queries correctly.
Set-up of the challenge ciphertext. B sets C∗0 = B, C∗1 = Bd, and C∗2 =

Bf . Note that, by the set-up of X,X ′, Y, Y ′, this is a consistent ciphertext,
since we have

(Xt∗X ′)logg B = ((Ae1)t
∗
A−et

∗

1 gd)logg B = Bd

and (similarly) (Y t
∗
Y ′)logg B = Bf . Then B samples i−1 uniformly random

bits K1, . . . ,Ki−1, sets Ki = L, Kj = fgl((C∗0 )zj , R) for j from i + 1 to n,
and outputs the challenge ((C∗0 , C

∗
1 , C

∗
2 ), (K1, . . . ,Kn)).

Now, if δ $← ∆dh then L = fgl(dh(B,Zi), R). Thus A’s view when interacting
with B is identical to Hybrid Hi−1. If δ $← ∆rand, then A’s view is identical to
Hybrid Hi. Thus B can use A to distinguish δ ∈ ∆dh from δ ∈ ∆rand. �

We remark that the same proof strategy can be used to prove that the KEM
given in equation (2) (Section 1) is CCA-secure under the Strong DH assump-
tion.



4 Constrained Chosen-Ciphertext Secure Key
Encapsulation

In this section we build a more efficient variant of our first CCA-secure key-
encapsulation mechanism, which we cannot prove CCA-secure. However, we can
prove that it is secure in the sense of constrained CCA security, which is sufficient
to obtain CCA-secure hybrid encryption. Again the security is based on the DH
assumption.

Let G = Gκ be a group of prime order p and let n = n(κ) be a polynomial.
Let KEMdh2 = (Gen,Enc,Dec) be defined as follows.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for fgl.
Choose a random seed s for the hash function Ts : G→ Zp, choose random
integers x, x′, y, y′, z1, . . . , zn

$← Zp, and set X = gx, X ′ = gx
′
, Y = gy,

Y ′ = gy
′
, Z1 = gz1 , . . . , Zn = gzn . Let G : G → {0, 1}n be a pseudorandom

generator. Set

pk = (g,X,X ′, Y, Y ′, Z1, . . . , Zn, R, s,G) and sk = (pk, x, x′, y, y′, z1, . . . , zn)

and return (pk, sk).
Enc(pk) On input of public key pk, sample r $← Zp. Set C0 = gr, t = Ts(C0),

C1 = (XtX ′)r, KG = G((Y tY ′)r), and

Kdh = (fgl(Zr1 , R), . . . , fgl(Zrn, R))

Set K = KG ⊕Kdh and return ((C0, C1),K).
Dec(sk, (C0, C1)) Set t = Ts(C0). If C1 6= Cxt+x

′

0 then return ⊥. Otherwise
compute KG = G(Cyt+y

′

0 ) and

Kdh = (fgl(Cz10 , R), . . . , fgl(Czn0 , R)),

and return K = KG ⊕Kdh.

Theorem 2. Let Ts be a target collision-resistant hash function, G be a pseudo-
random generator, and suppose that the computational Diffie-Hellman assump-
tion holds in G. Then KEMdh2 is IND-CCCA secure.

Since we removed one element from the ciphertext (which was crucial to apply
the twinning technique from the proof of Theorem 1 to check for consistency
of ciphertexts) we have to use different means to prove the constrained chosen-
ciphertext security of KEMdh2. Here we exploit the new set-up of the encapsu-
lated key, which allows us to reject invalid ciphertexts “implicitly.” Due to space
restrictions, the proof is deferred to the full version [15].

5 Reducing the size of the public key

Let (G,GT ) be a bilinear group that is equiped with an efficiently computable
pairing ê : G × G → GT . (See, e.g., [6, 4].) In this section we show that by
instantiating our scheme from Equation (2) (Section 1) in bilinear groups we are
able to reduce the size of the public-key considerably.



5.1 Bilinear Diffie-Hellman Assumption

Let

bdh(A,B,C) := D, where A = ga, B = gb, C = gc, and D = ê(g, g)abc. (7)

The problem of computing bdh(A,B,C) given random A,B,C ∈ G is the compu-
tational Bilinear Diffie-Hellman (DH) problem. The BDH assumption [6] asserts
that this problem is hard, that is, Pr[A(A,B,C) = bdh(A,B,C)] ≤ negl(κ) for
all probabilistic polynomial-time algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [13] gives us the following
lemma for a fgl : GT × {0, 1}u → {0, 1}ν .

Lemma 3. Let G = Gκ be a prime-order group generated by g equipped with
a pairing ê : G × G → GT . Let A,B,C $← G be random group elements,
R

$← {0, 1}u, and let K = fgl(bdh(A,B,C), R). Let Uν
$← {0, 1}ν be uniformly

random. Suppose there exists a probabilistic polynomial-time algorithm B distin-
guishing the distributions

∆bdh = (g,A,B,C,K,R) and ∆rand = (g,A,B,C, Uν , R)

with non-negligible advantage. Then there exists a probabilistic polynomial-time
algorithm computing bdh(A,B,C) on input (A,B,C) with non-negligible success
probability, hence breaking the BDH assumption.

5.2 Public-key encryption with public keys of size O(1)

Our first idea is a variant where the elements sys = (g,X,X ′, Z1, . . . , Zn) ∈ Gn+3

can be put into the system parameters (that can be shared among many users)
and the public-key to contain only one single group element Y . Our encryption
scheme can be viewed as a BDH-variant of a Decisional BDH scheme from [7,
20]. It is defined as follows.

Gen(1κ) Given the system parameters sys choose a random integer y $← Zp, and
set Y = gy. Set

pk = Y and sk = y

and return (pk , sk).
Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = T(C0),

C1 = (XtX ′)r, and K = (K1, . . . ,Kn), where

Ki = fgl(ê(Y r, Zi), R), for i ∈ [1, n].

Return ((C0, C1),K).
Dec(sk , (C0, C1)) If ê(C0, X

tX ′) 6= ê(g, C1) then return ⊥. Otherwise, compute,
for each i ∈ [1, n],

Ki = fgl(ê(Cy0 , Zi), R)

and return K = (K1, . . . ,Kn) ∈ {0, 1}nν .
Note that the consistency of the ciphertext is publicly verifiable, i.e., anyone
could verify a ciphertext being consistent or not.



Theorem 3. Let T be a target collision-resistant hash function and suppose
that the computational Bilinear Diffie-Hellman assumption holds in G. Then the
above scheme is an IND-CCA secure KEM.

Proof. We proceed in a sequence of games similarly to Theorem 1.
As before, we write (C∗0 , C

∗
1 ) to denote the challenge ciphertext with cor-

responding key K∗0 , denote with K∗1 the random key chosen by the IND-CCA
experiment, and set t∗ = Ts(C∗0 ).

We start with a game where the challenger proceeds like the standard
IND-CCA game (i.e., K∗0 is a real key and K∗1 is a random key), and end up with
a game where both K∗0 and K∗1 are chosen uniformly random. Then we show
that all games are computationally indistinguishable under the computational
Bilinear Diffie-Hellman assumption. Let Wi denote the event that A outputs b′

such that b′ = b in Game i.

Game 0. This is the standard IND-CCA game. By definition we have

Pr[W0] =
1
2

+ AdvCCAAKEMbdh1
(κ)

Game 1. We proceed as in Game 0, except that the challenger aborts, if the
adversary queries to decapsulate a ciphertext (C ′0, C

′
1) with C ′0 = C∗0 . Note that

the probability that the adversary submits a ciphertext such that C ′0 = C∗0
before seeing the challenge ciphertext is bounded by q/p, where q is the number
of chosen-ciphertext queries issued by A. Since q = poly(κ), we have q/p ≤
negl(κ). Moreover, a ciphertext is inconsistent, thus gets rejected, if C ′0 = C∗0
and C ′1 6= C∗1 , and is rejected by definition if C ′0 = C∗0 and C ′1 = C∗1 . Therefore

|Pr[W1]− Pr[W0]| ≤ negl(κ).

Game 2. We define Game 2 like Game 1, except for the following. Now the
challenger aborts, if the adversary asks to decapsulate a ciphertext (C ′0, C

′
1)

with C ′0 6= C∗0 and Ts(C ′0) = Ts(C∗0 ). By the target collision resistance of Ts, we
have

|Pr[W2]− Pr[W1]| ≤ negl(κ).

Game 3. We define Game 3 like Game 2, except that we sample K∗0
$← {0, 1}nν

uniformly random. Note that now bothK∗0 andK∗1 are chosen uniformly random,
thus we have

Pr[W3] =
1
2
.

We claim that
|Pr[W3]− Pr[W2]| ≤ negl(κ)

under the computational Bilinear Diffie-Hellman assumption. We prove this by a
hybrid argument. To this end, we define a sequence of hybrid games H0, . . . ,Hn,



such that H0 equals Game 2 and Hn equals Game 3. Then we argue that hy-
brid Hi is indistinguishable from hybrid Hi−1 for i ∈ {1, . . . , n} under the com-
putational Bilinear Diffie-Hellman assumption. The claim follows, since n = n(κ)
is a polynomial. We define H0 exactly like Game 2. Then, for i from 1 to n, in
hybrid Hi we set the first iν bits of K∗0 to independent random bits, and pro-
ceed otherwise exactly like in hybrid Hi−1. Thus, hybrid Hn proceeds exactly
like Game 3.

Let Ei denote the event that A outputs 1 in Hybrid i. Suppose that

|Pr[E0]− Pr[En]| = 1/poly0(κ), (8)

that is, the success probability of A in Hybrid 0 is not negligibly close to the
success probability in Hybrid n. Note that then there must exist an index i such
that |Pr[Ei−1]− Pr[Ei]| = 1/poly(κ) (since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for
all i, then we would have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which (8) holds. Then we
can construct an adversary B distinguishing the distributions ∆bdh and ∆rand,
which by Lemma 3 is sufficient to prove security under the computational
Bilinear Diffie-Hellman assumption in G. Adversary B receives a challenge
δ = (g,A,B,C, L,R) as input, guesses an index i ∈ [n], which with proba-
bility at least 1/n corresponds to the index i such that |Pr[Ei−1]− Pr[Ei]| =
maxi |Pr[Ei−1]− Pr[Ei]|, and proceeds as follows:

Set-up of the system parameters. B picks random integers d, e, f
$← Zp,

and sets X = Ae, X ′ = A−et
∗
gd, and Zi = A, where t∗ = T(C). The

rest of the public key is generated as in Game 0. Note that C,X,X ′, Zi are
independent and uniformly distributed group elements.

Set-up of the public key. B sets Y = B.
Handling decapsulation queries. When A issues a decapsulation query

(C0 = gr, C1), B computes t = Ts(C0) and tests the consistency of the
ciphertext by verifying

ê(C0, X
tX ′) ?= ê(g, C1).

If the equality holds, then B sets K = (K1, . . . ,Kn) as Kj =
fgl(ê(Czj0 , Y ), R) for j ∈ [n] \ {i} and Ki = fgl(ê(X̃, Y ), R), where X̃ :=
(C1/C

d
0 )1/(et−et

∗). Note that

X̃ = ((XtX ′)r/(gr)d)1/(et−et
∗) = (Ar(et−et

∗)grd/grd)1/(et−et
∗)

= Ar = dh(A,C0).

Since by Game 2 we have t 6= t∗, B can answer all decapsulation queries
correctly for all queries issued by A.

Set-up of the challenge ciphertext. B sets C∗0 = C and C∗1 = Cd. Note
that, by the set-up of X,X ′, this is a consistent ciphertext, since we have

(Xt∗X ′)logg C = ((Ae1)t
∗
A−et

∗

1 gd)logg C = Cd



Then B samples i− 1 uniformly random groups of ν bits K∗1 , . . . ,K
∗
i−1, sets

K∗i = L, K∗j = fgl(ê(C∗0 , Y )zj , R) for j from i + 1 to n, and outputs the
challenge ((C∗0 , C

∗
1 ), (K∗1 , . . . ,K

∗
n)).

Now, if δ $← ∆bdh then we have L = fgl(bdh(A,B,C), R). Thus A’s view
when interacting with B is identical to Hybrid Hi−1. If δ $← ∆rand, then A’s
view is identical to Hybrid Hi. Thus B can use A to distinguish δ ∈ ∆bdh from
δ ∈ ∆rand. �

5.3 Public-key encryption with public-key of size O(
√

n)

Our second idea reduces the size of the public-key from ≈ n to ≈ 2
√
n group

elements (and no systems parameters). Assume n is a square and set η :=
√
n.

The public key contains elements Z1, Z
′
1, . . . , Zη, Z

′
η ∈ G which implicitly define

η2 = n distinct elements Zi,j = ê(Zi, Z ′j) in the target group GT . In our new
scheme these elements can be used in place of Z1, . . . , Zn.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for
fgl. Choose a random seed s for the hash function Ts, choose random integers
x, x′, z1, z

′
1, . . . , zη, z

′
η

$← Zp, and set X = gx, X ′ = gx
′
, Z1 = gz1 , Z ′1 = gz

′
1 ,

... , Zη = gzη , Z ′η = gz
′
η . Set

pk = (g,X,X ′, Z1, Z
′
1, . . . , Zη, Z

′
η, R, s) and sk = (pk , x, x′, z1, z′1, . . . , zη, z

′
η)

and return (pk , sk).
Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = Ts(C0),

C1 = (XtX ′)r, and K = (K1,1, . . . ,Kη,η), where

Ki,j = fgl(ê(Zri , Z
′
j), R), for i, j ∈ [1, η].

Return ((C0, C1),K).
Dec(sk , (C0, C1)) First reject if ê(C0, X

tX ′) 6= ê(g, C1). Otherwise, for each
i, j ∈ [1, η] compute

Ki,j = fgl(ê(Czi0 , Z
′
j), R).

and return K = (K1,1, . . . ,Kη,η) ∈ {0, 1}nν .
Like in the previous scheme, the consistency of the ciphertext is publicly
verifiable. Furthermore, decryption can alternatively check consistency of
the ciphertext by testing if Cxt+x

′

0 = C1.

Theorem 4. Let Ts be a target collision-resistant hash function and suppose
that the computational Bilinear Diffie-Hellman assumption holds in G. Then the
above scheme is an IND-CCA secure KEM.



Proof. The proofs goes analogously to that of Theorem 3 with Game 3 defining
hybrid games H1,0, H1,1, H1,2, . . . , H1,η, H2,1, H2,2, . . . , H2,η, H3,1, . . . , Hη,η

(for convenience, we denote with H−i,j the game preceding Hi,j in this ordering,
e.g. H−3,1 = H2,η). Assuming that each two consecutive hybrid games are indis-
tinguishable by A, Game 2 (which is the same as H1,0) is indistinguishable from
Hη,η (which is the same as Game 3). But when both K∗0 and K∗1 are chosen
uniformly random then we have

Pr[W3] =
1
2
.

So all we have to show is that indeed the hybrid games are indistinguishable.
Suppose that there exists an algorithm A for which

|Pr[Eη,η]− Pr[E1,0]| = 1/poly0(κ), (9)

where Ei,j denotes the event that A outputs 1 in Hi,j . Then there are i∗, j∗ ∈
{1 . . . η} such that Pr[Ei∗,j∗ ]− Pr[E−i∗,j∗ ] = 1/poly(κ), where E−i,j denotes the
event that A outputs 1 in H−i,j . (If no such indices exist and the difference is
negligible for all (i, j), then |Pr[Eη,η]− Pr[E1,0]| = negl(κ).)

Then we can construct an adversary B distinguishing the distributions ∆bdh

and ∆rand, which by Lemma 3 is sufficient to prove security under the computa-
tional Bilinear Diffie-Hellman assumption in G. Adversary B receives a challenge
δ = (g,A,B,C, L,R) as input, guesses indices i, j ∈ [η], which with probability
at least 1/η2 correspond to the indices i∗, j∗ such that

∣∣Pr[E−i∗,j∗ ]− Pr[Ei∗,j∗ ]
∣∣ =

maxi,j
∣∣Pr[E−i,j ]− Pr[Ei,j ]

∣∣, and proceeds as follows:

Set-up of the public-key. B picks random integers d, e, f $← Zp, and sets X =
Ae, X ′ = A−et

∗
gd, Zi∗ = A, and Z ′j∗ = B, where t∗ = Ts(C). The rest of the

public key is generated as in scheme definition. Note that C,X,X ′, Zi∗ , Z ′j∗
are independent and uniformly distributed group elements.

Handling decapsulation queries. When A issues a decapsulation query
(C0 = gr, C1), B computes t = Ts(C0) and tests the consistency of the
ciphertext by verifying

ê(C0, X
tX ′) ?= ê(g, C1).

If the equality holds, then B sets K = (K1,1, . . . ,Kη,η) as:
– Ki,j = fgl(ê(C0, Z

′
j)
zi , R) for i ∈ [η] \ {i∗} and j ∈ [η],

– Ki∗,j = fgl(ê(C0, Zi∗)z
′
j , R) for j ∈ [η] \ {j∗}, and

– Ki∗,j∗ = fgl(ê(X̃, B), R), where X̃ := (C1/C
d
0 )1/(et−et

∗).
Note that

X̃ = ((XtX ′)r/(gr)d)1/(et−et
∗) = (Ar(et−et

∗)grd/grd)1/(et−et
∗)

= Ar = dh(A,C0).

Since by Game 2 we have t 6= t∗, B can answer all decapsulation queries
correctly for all queries issued by A.



Set-up of the challenge ciphertext. B sets C∗0 = C and C∗1 = Cd. Note
that, by the set-up of X,X ′, this is a consistent ciphertext, since we have

(Xt∗X ′)logg C = ((Ae1)t
∗
A−et

∗

1 gd)logg C = Cd

Then B sets the key K∗ = (K∗1,1,K
∗
1,2, . . . ,K

∗
i∗,j∗ , . . . ,K

∗
η,η) accordingly:

– the bits before K∗i∗,j∗ uniformly at random;
– K∗i∗,j∗ = L;
– and K∗i,j = fgl(bdh(C,Zi, Z ′j), R) for the remaining ν-bit blocks K∗i,j , i.e.
i > i∗ or (i = i∗ ∧ j > j∗), which is possible because B knows zi or z′j ;

and outputs the challenge ((C∗0 , C
∗
1 ),K∗).

Now, if δ $← ∆bdh then we have L = fgl(bdh(A,B,C), R). Thus A’s view
when interacting with B is identical to Hybrid H−i∗,j∗ . If δ $← ∆rand, then A’s
view is identical to Hybrid Hi,j . Thus B can use A to distinguish δ ∈ ∆bdh from
δ ∈ ∆rand. �

We remark that the above construction also extends to a Boneh-Boyen-
style [4] identity-based encryption scheme selective-identity secure under the
computational Bilinear Diffie-Hellman assumption. The IBE scheme has the
same parameters as the above scheme, a user secret key for an identity id con-
tains 2n group elements of the form (gziz

′
j · (X idX ′)si,j , gsi,j ) ∈ G2.
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