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Abstract. We construct a public-key cryptosystem based on an NP-
complete problem in algebraic geometry. It is a problem of finding sec-
tions on fibered algebraic surfaces; in other words, we use a solution to
a system of multivariate equations of high degrees. Our cryptosystem is
a revised version of the algebraic surface cryptosystem (ASC) we con-
structed earlier (cf. [AG04,AG06]). We revise its encryption algorithm
to avoid known attacks. Further, we show that the key size of our cryp-
tosystem is one of the shortest among those of post-quantum public-key
cryptosystems known at present.
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1 Introduction

In 1994, Shor showed that the factorization problem and the discrete logarithm
problem can be solved efficiently by a quantum computer [Shr]. This implies
that the RSA cryptosystem and Elliptic Curve cryptosystems will no longer be
secure, once a quantum computer is built. We are thus in search for a public-
key cryptosystem that does not rely on these problems and possibly can be
implemented even on our present machines.

In this paper, we propose a new public-key cryptosystem whose security is
based on an NP-complete problem in algebraic geometry. It is a problem of
finding sections on algebraic surfaces fibered on an affine line. We shall call it a
section finding problem (SFP) on algebraic surfaces. The SFP can be viewed as a
problem of solving multivariate equation systems (of high degrees) over a finite
field F,, with an arbitrary prime p. As this problem is known to be NP-complete,
our cryptosystem is expected to have resistance against quantum computers. In
what follows, we call our cryptosystem an algebraic surface cryptosystem (ASC).

The first version of the ASC was announced in [AG04]. It was then attacked
by Uchiyama-Tokunaga [UT] and Voloch [Vol] in two different methods. The
former attack uses a reduction-by-polynomial method that works in some special
cases, while the latter employs a trace map of algebraic extensions of function



fields that works in any case. (Eventually, Iwami [Iw08] found an unconditional
reduction method generalizing the result of Uchiyama-Tokunaga.) The weakness
of the original ASC lay in the use of a one-variable polynomial in the encryption
algorithm. We have therefore changed it to a three-variable polynomial and
revised the entire cryptosystem to avoid the attacks we mentioned above.

The new ASC was announced in [AG07] and soon, Voloch [Vol] came up with
an idea of attacking this new system. Fortunately, however, it did not really break
our system as we explain in Sect. 5.5 later. In the present paper, we reproduce
the cryptosystem described in [AG07], and fill in various details and update the
toy example.

One of the advantages of our new ASC is the small key size. To the best of
our knowledge, it can offer one of the shortest keys of the known post-quantum
public-key cryptosystems. For instance, a multivariate public-key cryptosystem
is a candidate for a post-quantum cryptosystem. Its private key size is in the
same order as ASC, but the public key size tends to be very large. The following
table describes a rough comparison of the key sizes for several post-quantum
cryptosystems, where n is a security parameter.

Table 1. Key size of several post-quantum public-key cryptosystems

Cryptosystem | Lattice-based | Multivariate | Knapsack | ASC
Public key O(nlogn) O(n?) om*) | 0(n)
Private key O(nlogn) O(n) O(n) O(n)

Both multivariate public-key cryptosystems and our ASC are associated with
a system of multivariate algebraic equations f; = -+ = f,, = 0 over a finite
field F,. Typically, the public key of a multivariate public-key cryptosystem is
constructed directly from polynomials fi,--- , fi,- The public key of the ASC,
on the other hand, is a single equation X (x,y) = 0 over a polynomial ring
I, [t] whose solution (u.(t),uy,(t)) is a pair of polynomials over F, related with

fi,-+, fm (precisely, the coefficients of w,(t) and u,(t) are solutions to some
equation system f; = --- = f,,, = 0). In this way, we can elude the direct use of
fi, -+, fm and save the public-key size drastically.

This paper is organized as follows. Section 2 collects some important facts
about algebraic surfaces and recalls our original cryptosystem (ASC04). Section
3 describes the attacks on the ASC04 by Uchiyama-Tokunaga and Iwami, and
also by Voloch. We discuss how to avoid their attacks. Section 4 presents our
new algebraic surface cryptosystem which has resistance against various types
of attacks. That resistance is discussed in Sect. 5. Lastly, the key size of the
ASC is evaluated in Sect. 6. In Appendix, we give a toy example to illustrate
our algorithm concretely.



2 Preliminaries

2.1 Algebraic Surfaces and the Section Finding Problem

Let k := F,, be a finite prime field of p elements. An algebraic surface over k is the
set of solutions of algebraic equations over k that has two dimensional freedom
over k. In order to construct our cryptosystem, we use an affine algebraic surface,
X, in affine 3-space A} defined by a single equation

f(z,y,t) =0 (1)

over k. It does not matter whether X is smooth or singular, but f(x,y,t) should
be irreducible.

There are many curves and points on X. For example, if we take another
surface Y, then the intersection X NY is often a curve on X. These curves are
easy to find, but finding all curves on X is a difficult problem; in fact, there is
no effective algorithm to do so in general.

There is a special kind of curves on X which are generally very difficult to
find explicitly. They are parameterized curves on X written in such a form as

(@, y,1) = (ua(t), uy(8),1)

where u,(t) and u,(t) are polynomials in ¢ over k. If we define a map o : X —
Al by o(z,y,t) = t, then this parameterized curve induces an inverse map
7:A' — X such that o o7 =idy1. The map o is called a fibration of X on A
and 7 is called a section of 0. A section may be explained also as follows: rewriting
f(z,y,t) as a polynomial over k[t], we can view X as a curve over the field k(t)
(or over the ring k[t]). Then a section is a k(t)-rational point on this curve.
Finding such rational points is a Hilbert’s 10th problem over a function field
and is a hard mathematical problem. In our case, there is an exponential-time
algorithm to solve this problem (cf. [Szp]), but no polynomial-time algorithm
exists to find sections in general.

Definition 1. (Section Finding Problem) If X (z,y,t) = 0 is a surface over k,
then the problem of finding a parameterized curve (z,y,t) = (uz(t), uy(t),t) on
X is called a section finding problem on X.

A general (but computationally inefficient) method of solving this problem,
known at present, is as follows: express the defining equation for X as

X(z,y,t)= > mijra'y’t* =0,
(i,3,k)ELx

where I'; denotes the set of indices (i, , k) that appear in a polynomial f(z,y,t).
Choose r, and r, that satisfy degu,(t) < r, and degu,(t) < r, and write

Uy (t) = g + art + -+ ap, 1t
uy(t) = Bo+ Bit+ -+ By, —at™ "



The substitution of these into X (z,y,t) gives
X(ua(),uy(),1) = 3 mijutia () uy (1)t = Zcztl :
(i,,k)E€rx

where ¢; are polynomials in «; and §;. If we write r = max{idegu,(t) +
jdeguy(t) +k | (i,4,k) € I'x}, then we find a system of equations

60(040,"‘ 7a7"1717/807-.- 7ﬂry71) =0 )

CT(OéOa"' 7051‘1—17/807"' 7/87‘y—1) =0

A solution to this system is a section of X. In this sense, our section finding
problem can be reduced to solving a multivariate equation system of large degrees
and such a problem is known to be NP-complete (cf. [GJ]).

2.2 Original Version (ASCO04)

We briefly explain the first version of our cryptosystem (ASC04) that was an-
nounced in 2004. See [AG04] for the details.

Keys. Following are important system parameters:

1. Size of the ground field: p
2. Maximum degree of sections: d
3. Number of blocks in a plaintext: [ (assume d < )

[Public keys and secret keys]

1. The secret key is a pair of two sections

D, : (-Tayat) = (ux(t)auy(t)at)a D, : (-Tayat) = (Um(t)avy(t)at)
with
d = max{degu,(t), degu,(t), deg v, (t),degvy(¢)} . (2)
2. The public key is a surface X that contains D; as sections

(i,j)€EAx

where Ax := {(i,j) € N?|e;;(t) # 0} 2 (0,0),(1,0).

Key Generation. First we choose polynomials Dy = (uy(t), uy(t),t) and Dy =
(v (t),vy(t),t), and then construct a surface X (z,y,t) that contains Dy and D,
as sections. This can be done, for instance, by letting the polynomials satisfy

(e (8) = 02 (8))|(uy (£) — vy (2))-



Encryption Algorithm. Divide a plaintext m into [ blocks as m = mg|| - - - ||mu—1
and embed m into a polynomial in ¢ by

mt) =my '+ mit+me (0<m;<p,i=0,---,1-1).

1. Choose an irreducible polynomial f(t) of degree I.
2. Choose a random polynomial

r(@,y,t) =3 pea, Tii (DY (3)
and write
X(wayat)r(wayat) = Z(i,j)GAxT a'ij (t)mlyj (4)

where Ax, :={(i,7) € N?|a;;(t) # 0}.
3. Randomly choose
s(z,y,t) = Z sij (D)a'y’ (5)

(1,j)EAxr

with deg s;;(t) = dega;;(t) —I. This makes fs and Xr have the same form
as polynomials in = and y over k[t].
4. Set the cipher polynomial F(z,y,t) to be

Fz,y,t) = m(t) + f(t)s(z,y,t) + X(2,y,t)r(z,y,t) . (6)

Decryption Algorithm. First we substitute sections D; into F(z,y,t) and let

ha(t) =F (ug(t),uy(t),t) = m(t) + f(t)s(ug(t), uy(t),t) ,
ha(t) =F (v (t),vy(t),t) = m(t) + f(t)s(va(t), vy(t), ) -
1. Compute hq(t) — h2(t) to find f(t){s(ux(t), uy(t),t) — s(va(t),vy(t),1)}.
2. Factor hy(t) — ho(t) and obtain f(t) as an irreducible polynomial of degree
l

3. Find m(t) as the remainder in division of hi(t) by f(t) and recover the
plaintext m from m(t).

3 Attacks on ASC04

There have been announced two attacks on the ASC04. We sketch the ideas of
these attacks and analyze how to avoid them.
3.1 Reduction Attack by Uchiyama and Tokunaga

Uchiyama and Tokunaga announced an attack on the ASC04 in 2007 (cf. [UT]).
Their algorithm is as follows.



1. Given a cipher text F(z,y,t) as in (6), compute the remainder

Rz,y,t) = Y, gi(t)z'y’ (7)

(i,7)€EAR

in division of F'(x,y,t) by a public key X (z,y,t).

2. Let G be the set of all irreducible factors of g;;(t) of degree > .

3. For each f;(t) € G, find the remainder m;(t) in division by goo(t). Then one
of the m;(t)’s coincides with the plaintext m(t).

To make this algorithm work, it is necessary that G' contains f(¢) and that
goo has the form ggo(t) = m(t) + f(t)s(t) for some s(¢). In [UT], it is proven that
this condition is satisfied if the leading term LT'(X) of X (z,y,¢) in a monomial
order is of the form LT (X) = cx®y” with c € F,.

The algorithm of Uchiyama and Tokunaga can be generalized if there exists
a monomial order for z, y and ¢ with which the remainder of F(z,y,t) in division
by X (z,y,t) coincides with some part of

m(t) + f(t)s(x,y,t) = m(t) + f(t) D sij(t)a'y’ . (8)

(i,j)€A

3.2 A Refinement by Iwami

The Uchiyama and Tokunaga attack had an assumption that the leading term
LT(X) of X(x,y,t) in a monomial order is of the form LT(X) = cx®y” with
¢ € F,. In [Iw08], Iwami found a way to get rid of this assumption. The main idea
is to consider X (z,y,t) as a polynomial in two variables z and y over the field
F, (t) rather than as a polynomial in three variables over F,. Then by dividing
through by the coefficient of the leading term, one can always have the situation
LT(X) = z*y”. Now apply the reduction algorithm to X (z,y,t) over F, (¢) and
clear the denominators of the coefficients. The same method of Uchiyama and
Tokunaga on the numerators of the coefficients reveals the polynomial f(t).

3.3 Conditions to Avoid the Reduction Attack

One way to avoid the reduction attack is to modify the ASC04 so that no mono-
mial order will be effective to extract sufficient information of m(t) and f(t)
when F(z,y,t) is divided by X (z,y,t).

Let > be a monomial order on k[z1, - ,z,] and write 2 for 7! --- 2%~ For
a non-zero polynomial f = Y aqz® € klz1,--- ,2,], let multideg (f) denote
the multidegree of f and LT'(f) the leading term of f. It is known that every
polynomial f € k[z1, -+ ,x,] can be expressed as

f=aX +r

for some a,r € k[z1,--- ,x,] satisfying r = 0 or r is a linear combination of
monomials that are not divisible by LT (X). Furthermore, if aX # 0, then



multideg (f) > multideg (aX). As r is not divisible by LT(X) when r # 0,
we can avoid the reduction attack if LT (X) divide some monomials in m(t) and
f(t) in every monomial order. Since there are an infinite number of monomial
orders, almost all monomials in X (z,y,t) can be a leading term. Therefore we
are led to change m(¢) and f(t) to polynomials m(z,y,t) and f(z,y,t) in 3
variables and pose the following condition:

(Condition) m(z,y,t) and f(z,y,t) contain some monomials that are di-
visible by all monomials in X (z,y,t).

3.4 An Attack by Voloch

Another attack was suggested by Voloch [Vol]. His idea is to consider an extension
of F, (t) and use the trace map 7T'. Let F(z,y,t) be a ciphertext.

1. Substitute some polynomial ¢(t) into y so that X (z,c(t),t) becomes irre-
ducible.

2. Let a be a solution to X (z,c(t),t) = 0 over F, (¢) and find § € F, (¢)(a) such
that T, (1)(a) /5, (1) (6) = 0.

3. Compute T(BF (a,c(t),t)) and have

T(BF(a,c(t), 1)) = T(Bm(t) + Bf(t)s(a, c(t), 1)) = FO)T(Bs(, c(t), 1)) -

4. Factor T(BF(a,c(t),t)) and obtain f(t).
5. Find p; € F, (t)(a) such that TFp(t)(a)/Fp(t) (B1) € F;; and compute:

T(B1F(a,c(t), 1)) = m()T(Br) + f(O)T (Brs(e, c(t), 1)) -
6. Divide T'(81 F(a, c(t),t)) by f(t) to find m(t)T(51) and then m(t).

3.5 Ideas to Avoid Voloch’s Attack

There may be two ways to avoid Voloch’s attack: make the trace computation
extremely time-consuming or change the form of m(t) and f(¢). Both ideas can
be realized simultaneously by letting m(t) and f(¢) multi-variable.

For instance, replace m(t) by m(z,t) and f(t) by f(y,t). Choose z = c(t).
Let y = a be a solution to X (c(t),y,t) = 0. Compute T'(SoF(c(t), o, t)) with an
element By satisfying T'(8y) = 0. We can find T'(Bo f (a, t)s(c(t), @, t)). But, this
does not yield f(«,t). Neither in the attempt by y = ¢(t) can we obtain enough
information for f(y,t) or m(x,t). Therefore the Voloch attack does not work in
this case.

(On the other hand, if we replace m(t) by m(z,t) and keep f(t) as is, then
f(t) can be obtained in the same way as in Sect. 3.4 and m(z,t) can be found
by taking various y = ¢(t). Hence the case (m(z,t), f(t)) is insecure.)

Considering all cases, we conclude in particular the following:

(Safe case) The case where m(t) and f(t) are replaced by three-variable
polynomials m(z,y,t) and f(x,y,t), respectively, is safe.
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4 New Algorithm (Algebraic Surface Cryptosystem)

This section presents an improved algebraic surface public-key cryptosystem
(ASC) which has resistance against the attacks described in Sect. 3. The dis-
cussions in Sect. 3.5 and 3.3 suggest that m(¢) and f(¢) should be 3-variable
polynomials m(z,y,t) and f(z,y,t).

Although this idea is effective to avoid the attacks, a problem arises now in
decryption steps 1 and 2 of ASC04 as m(u,(t), uy(t),t) # m(ve(t),vy(t),t) and
flug(t),uy(t),t) # f(ve(t),vy(t),t). Our solution to overcome this drawback is to
employ an algebraic surface X with one section and use two cipher polynomials
instead.

We assume that algebraic surfaces are defined over a prime field F,. (p is a
prime small enough to calculate, such as primes within the word size.)

4.1 Keys

1. Secret key
D : (z,y,t) = (uz(t), uy(t),t) : a section of X
2. Public key
(a) X(z,y,t) =0 : a defining equation of a surface X with fibration.
(b) m(z,y,t) = 3 jyea,, Mij (t)z'y’ : a plaintext polynomial where 4,, and
degm;;(t) are fixed.
(¢) f(z,y,t) = Z(i,j)eAf fij(®)xy? : a divisor polynomial where A; and
deg f;;(t) are fixed.
Here A4 denotes the set of exponents of nonzero x'y’ terms in A(z,y,t). We
choose m(x,y,t) and f(x,y,t) so that they satisfy

Ay C AfAX (9)

where AgAp = {(ia + s, jo + jb)|(ias Ja) € Aa, (iv, j») € AB}.
The decryption process requires that these keys satisfy the following condi-
tion:

deg, X (z,y,t) < deg, m(z,y,t) < deg,, f(z,y,t)
deg, X (z,y,1) < deg, m(z,y,t) < deg, f(z,y,1)
degt X(l’,y,t) < degt m(m,y,t) < degt f(l',y,t)

and

(degz ’ITL(CU, Y, t)7 degy ’ITL(CU, Y, t)7 degt ’ITL(CU, Y, t)) € Fm ’

(degz f(a:,y,t),degy f(xayat)adegt f(a:,y,t)) € Ff )

where I, = {(i, 5, k) € N’|cijx # 0} denotes the set of exponents of nonzero
xiy/tk terms in m(z,y,t), so that m(z,y,t) = 2 (irj k)ETm cijrriyith.

(10)

Condition (10) implies the following inequality:

deg(m (u. (1), uy(t),1)) < deg(f(ua(t), uy(t), 1)) - (11)



Also, we see that m(z,y,t) and f(z,y,t) have at least one term divisible by any
terms of X (z,y,t).

First we define a set of polynomials D (i.e. secret key) and then construct
X containing D as a section. (Details are explained in Sect. 4.3.) For security
reasons, we assume that the general fiber of X is not a rational curve. This can
be realized, for instance, by letting deg, X (z,y,t) > 2 and deg, X (z,y,t) > 2.

4.2 Encryption/Decryption

Encryption. Let m be a plaintext, and divide m into small blocks as m =
mool| - - - ||mj| - - - |/mrs where

V(i,j) € Am,  Imij| < (Ip| = 1)(degmi;(t) +1)

Further, write ¢;; := degm;;(t) and divide m;; into ¢;; + 1 blocks each of which
is of (|p| — 1) bits:
mij = mijo|miji[] -+~ |lmije;; -

1. Embed m into a plaintext polynomial as

m(x,y,t) = Z mij(t):niyj

(6:3) €A
where m;;(t) is given as

degm,; (t)

mij (t) = Z mijktk -
k=0

2. Choose a random divisor polynomial f(z,y,t) in accordance with the con-
dition of f(z,y,t).

3. Choose random polynomials ro(z,y,t) and ri(z,y,t) that have the same
form as f(z,y,t); i.e. they have A, = Ay and degr;;(t) = deg fi;(t) for
(i,7) € Ay as polynomials in z and y over k[t].

4. Choose random polynomials so(z,y,t) and s;(z,y,t) that have the same
form as X(z,y,t); i.e. they have A; = Ax and degs;;(t) = dege;;(t) for
(i,j) € Ax as polynomials in = and y over k[t].

5. Construct the cipher polynomial F(x,y,t) by

Fo(a:,y,t):m(m,y,t)+f(a:,y,t)so(a:,y,t)+X(a:,y,t)r0(a:,y,t) ) (12)

Fl(mayat) = m(a:,y,t) + f(mayvt)sl(wayat) + X(mayvt)rl(xayat) .
Decryption. Note that the section D satisfies X (u,(t),uy(t),t) = 0 as they are
on the surface X.

1. Substitute D into Fj

ho(t) = Fo (ux(t), uy(t), 1)

= (U (£), 1y (1), 1) + f (U (), wy (), )50 (ua (), uy (), 1)
hi(t) = Fi(ue (1), uy (1), 1)

= (U (1), 1y (£), 1) + f (e (), 0y (2), 8) 51 (uar (), 1y (2), 1) -
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2. Compute ho(t) — hy (t):

ho(t) = ha(t) = f(ua(t), 1y (1), 8){s0(a (t), uy (1), ) — Sl(um(t),uy(t),t)}(lé)

w

. Factor ho(t) — hy(t).

4. Find a factor of ho(t) — h1(t) whose degree matches deg f(u.(t),uy(t),
(This degree can be calculated from the initial setting of f(z,y,t) and D
(s (8,1, (8),).)

5. Compute ho(t) = m(ug(t), uy(t),t) (mod f(ux(t),uy(t),t)) (cf. (11))

6. Extract the coefficient m;;(t) from m(z,y,t) by solving linear equations.

Let m(z,y,t) = E(z}j,k)eFm m;jrz'yitk, where m;;;,’s are variables. Con-
struct linear equations by comparing the coefficients of ¢ in

).

m(ug (), uy(),8) = Y mijrua () uy, (8)F

(5:4:k) ETm

The left-hand side is given in Step 5.
7. Extract m from m;;(t) and authenticate the MAC of m. We can make certain
of the plaintext m, if MAC is authenticated. Otherwise, return to Step 4.

In Step 4, we may not always extract f(u.(t), uy(t),t) exactly, since the factor
of degree equal to deg f(u.(t), uy(t),t) is not always unique. If this happens, then
we repeat Steps 4 to 7 until MAC is authenticated.

We note that degm(ug(t), uy(t),t) and deg f(uy(t), uy(t),t) are fixed. If the
difference deg(f(ux(t), uy(t),t)) —deg(m(u(t), uy(t),t)) in (11) is set large, then
we have a good chance to find f(u.(t),u,(t),t) immediately.

Remark 1. In the decryption process, some factorizations of polynomials in ¢
can be rather time-consuming and Step 4 involves a knapsack problem. But, as
we noted above, it is not an arbitrary knapsack problem, and so we can keep the
entire algorithm practical. (The exact complexity of the decryption algorithm is
under evaluation now and will be discussed elsewhere.)

4.3 Key Generation

Generation of Algebraic Surfaces. Let X(z,y,t) = 0 be a surface given by

X(z,y,t) = Z cii(H)xiy? .

(i,5)€EAx

1. Randomly choose a set of polynomials (u,(t),u,(t)) as a section.
2. Randomly choose polynomials ¢;;(t) with (4, 7) # (0,0) and calculate coo(t)
by
coo(t) = — > i (t)ua (t) uy (1)

(4,5)€Ax\{(0,0)}
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The Form of m(z,y,t) and f(z,y,t). We describe a method of determining
deg f;;(t) and deg m;;(t). The form of f(z,y,t) which satisfies (10) can be defined
easily from the information of X (z,y,t). A, can be determined as a subset
of AxAy in (10). To find a plaintext efficiently, linear equations established
in decryption step 6 should have a unique solution. In Step 6, we construct
equations as follows

Mooo
mMoo1 ‘o
moo2 ‘@
A e |, (14)
myjk
CK
where cg, - - - , cx are coefficients of

K
m(ug (), uy(t),t) = ZcrtT .

The equations (14) have a unique solution, if and only if rank (A) = n, where n
denotes the number of variable m;;;’s. Hence we must return to the determining
process of the form of f(z,y,t), if rank (4) < n.

5 Security Analysis

In this section, we will discuss about the resistance of our system against various
types of attacks.

5.1 Reduction to a Multivariate Equation System

When we solve FO(mayat) - Fl(wayat) = f(wayat)g(wvyat) + X(wayat)r(wayat)a
an obvious way is to let

fz,y,t) = Z(i7j,k)EFf aijkl'ljyj:ti )
S(x,y,t) = Z(i7j,k)EFX bwkxly]tk 9
T(l’,y,t) = Z(i,ch)EFf Cijk:.’l:'ly-]tk 9

and consider a multivariate equation system in a;j, b;jr and c¢;j. If there ex-
ists a solution to this system, then we can obtain exact f(z,y,t). Then we may
have m(z,y,t) by using ideal (f, X). But, as #I'y and #I'x increase, finding a
solution to this system becomes considerably difficult, even if ¢;;;,’s are elimi-
nated by substituting rational points of X (z,y,t). For instance, if #£1f > 50 and
#I'x > 50, then the system contains more than 100 variables. Hence it becomes
computationally intractable when we choose a sufficiently large #1Iy and #1'x.
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5.2 Reduction by the Defining Equation

One can try to divide Fy(z,y,t) — Fi(z,y,t) by X(z,y,t) to find a common
divisor f(x,y,t) in the possible remainders. But f(z,y,t) does not appear in
these remainders since m(z,y,t) and f(z,y,t) have at least one term divisible
by any terms of X (z,y,t); this is due to (10).

5.3 Reduction by Substituting Various Curves

Among the affine curves in A%, there are many rational curves parameterized in
such a way as

(2,y,1) = (a2 (W), uy (W), we(w))
If one can find such curves on X, then he can use them for the sections of X
and decode the ciphertext in the same way as we decipher it using sections. We
show, however, that finding such curves on X is as difficult as finding sections
on X. We explain this according to degu:(w).

(i) Case degus(w) > 2

This is part of the divisor finding problem on X. As we assume the difficulty
of it, such parameterized curves cannot be found easily.

(ii) Case degus(w) =1

This is equivalent to finding sections on X, and hence it is difficult to find
such curves on X.

(iii) Case degui(w) =0

This means that ¢ is set to be some constant value and we try to find a
parameterized curve in w. As we assume that the general fibers of X are non-
rational (cf. Sect. 4.1), only singular fibers may contain rational curves. Hence
we look for a singular fiber containing a rational curve.

One can find singular fibers by solving a system of equations X /d0z =
0X /0y = 0 counsisting of partial derivatives of X (z,y,t) = 0 with respect to
x and y. But, as we raise the degree of X, this becomes considerably difficult.
Also, no efficient algorithm is known for determining whether or not a singular
fiber contains a rational curve. Even if it contains a rational curve, finding a
parameterization by w is a divisor finding problem and is known to be difficult.
Therefore the attack by substituting rational curves does not seem to be effective.

5.4 Reduction to a Function Field F,(t) by the Trace Map

As we explained in Sect. 3.5, Voloch’s attack by the trace map (at least in the
original form) does not work on ASC.

5.5 Voloch’s New Attack

Previously, our ASC was announced in SCIS 2008 (cf. [AG07]) and soon after,
Voloch communicated to us with a new attack that uses rational points on
surfaces over finite fields; see [Vol]. The attacking procedure is described as
follows:
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1. Let F(z,y,t) = Fi(z,y,t) — Fa(x,y,t); i.e.

F(Cﬂ,y,t) = f(:n,y,t)(sl(:n,y,t)—sQ(:U,y,t))-{—X(:n,y,t)(rl(:n,y,t)—rg(a:,y,t)) .

2. Let g(l‘,y,t) = f(l',y,t)(sl(l',y,t) - 52('Tay7t)) and write

g(z,y,t) = > gipa'y’tt
(i,5)€ly

3. Find a large number of rational points (z¢,ye,t¢) on X(z,y,t) = 0 and
substitute them into F'(z,y,t) to obtain a system of linear equations in
GJijk € Fp:

9(we,ye, te) = Fze,ye,te) (€=1,---,n) . (15)

4. Solve this system for g;;. and factor g(z,y,t) to find f(z,y,?).

5. Finally, substitute rational points of X (z,y,t) = 0 into

Fl(wayat) = m(mayat) + f(wayat)gl (wayat) + X(wvyat)rl (wayat)

to construct a system of linear equations in the coefficients of m(z,y,t) and
s1(x,y,t). A solution to this system gives m(z,y,t).

Effectiveness of Voloch’s Rational Point Attack. The above new attack
requires many rational points on X (z,y,t) = 0, which can be obtained by raising
the field of definition for X (x,y,t) = 0. However, we claim that no matter how
many rational points we use, the polynomials f(z,y,t) and m(z,y,t) cannot be
determined uniquely. In fact, if go(z,y,t) is a solution to (15), then for any
polynomial r(z,y,t), go(z,y,t) + X(z,y,t)r(z,y,t) also serves as a solution.
Hence by raising the number of monomials in r(z,y,t) (which is the same as in
f(z,y,t)), we have too many candidates for g(z,y,t) in the decryption process.
More precisely, if v denotes the number of monomials in 7(z,y,t), then there are
p” candidates for g(z,y,t). Therefore, for instance, by choosing v that satisfies
(16), we may avoid Voloch’s rational point attack:

pY > 2100 (16)

It is not difficult to create the situation with (16).

6 Key Size Estimation

Finally, we discuss the public and secret key sizes to keep the ASC sufficiently
secure. ASC has four parameters d (maximal degree of the polynomials defining
a section), w = deg,, X (z,y,t), k (number of terms in X (z,y,t) respect to =
and y) and p (size of finite fields). Now we assume p = 2 to compare with the
case of HFE.

In the case of w < 4, surfaces X are very likely to be elliptic or rational
surfaces whose sections are known well. So w must be greater than or equal to
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5 to avoid this case. Also, d must be greater than or equal to 50 to avoid the
attack by Faugere et al. in [FJ03].

These observations suggest that the secret key size must be larger than 100
bits. A public key X (z,y,t) contains coefficients a; (t), - , ar(t). The degrees of
coo(t) can be set equal to dw by the key generation algorithm, if the coefficient of
zdeg= Xydeg, X ig constant. So the public-key size can be set less than or equal to
(k — 1)dw in size. The lower bound of k is 3, since the key generation algorithm
requires a constant term. So the public-key size is presented in the linear from of
d. Hence a lower bound for the public-key size is 500 bits, which is much smaller
than HFE.

7 Conclusion

This paper has proposed a new type of public-key cryptosystem whose security
is based on a section finding problem on algebraic surfaces. The section finding
problem has no known efficient algorithm to solve other than finding roots of
a multivariable equation system that is NP-complete in general. We show that
our system requires only O(n) bit key size that is much smaller than other post-
quantum cryptosystems.
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A  Toy Example

We give an example of the algebraic surface cryptosystem described in this paper.
This example is intended mainly to demonstrate our algorithm explicitly. The
security of the system is not fully guaranteed; in practice, we should use more
complicated polynomials.

Set k =TFy7 (i.e. p=17).

A.1 Key Generation

Choose u,(t) = 143 + 121>+ 5t + 1 and uy(t) = 1143 +3t> + 5t + 4. Let D be
a parameterized curve

D (up(t),uy(t),t) = (146> + 1282 + 5t + 1,112 + 382 + 5t +4,¢) . (17)

An algebraic surface X having D as a section is constructed as follows:

X(z,y,t) = (t+10)23y? + (16 2 + Tt +4)2y? + 310+ 8415 + 13 ¢14 + 813 + 3¢12 +
1281 44104 8¢9+ 718 4447 +1315+ 285+ 54 +4 13 +14 > +9t+14 .

We fix the form of a plain-text polynomial m(z,y,t) and a divisor polynomial
f(z,y,t) as follows, where §,, = {(0,0) = 17,(4,4) = 17} for instance means
that the index set of m(x,y,t) is A, = {(0,0), (4,4)} and degmoo(t) = 17 and
deg M44(t) =17:

Sx = {(0,0) = 16,(1,2) = 2,(3,2) = 1} ,
3(f = (070) =13, (172) =11, (575) = 18} )
Sm = {(070) =17, (474) = 17}

The polynomials X (z,y,t), f(z,y,t) and m(z,y,t) thus constructed satisfy (10)
and (16).
A.2 Encryption

For example, a plain text m = 0203 f25a22d683a10b362bc3e17a6b832794 f5 can
be embedded into a polynomial m(z,y,t) as
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m(z,y,t) =

(BT + 15816 + 4415 4+ 941 + 7413 4+ 2412 4 341 + 8410+ 1149 +
615 +10t" + 70+ 5+ 14t + 383+ 1242+ 11t +2)2ty* +6 17 +
316+ 1141° + 13 + 10412 + 3¢ + 8410 +64° + 1345 + 247 +
216 + 1085 +5t* + 23 + 1512 + 3t + 11 .

Then choose randomly an irreducible polynomial f(z,y,t) as

fz,y,t) =

(8 4+ 8417+ 810 16415+ 3414 + 11413 + 12412 + 911 + 14410 +
8124+ 1184107+ 710 +8t°+ 16t + 1043 + 1212+ 7t +16)2%y° +
(Tt +219 +16¢% + 1645 +2¢7 + 445 + 445 + 94+ 93 + 42 +
Tt+14)zy? + 813 + 12¢12 + 151 + 5% + 1248 + 1347+ 615 +
665 +2t* + 133 + 14> + 14t + 11 .

Also, we may choose s;(x,y,t) and r;(x,y,t) as

Sl(xayat) =

52(957111:75) =

Tl(xayat) =

T2(l’,y,t) =

(4t+2)23y? + (16 2+ 9t +4)xy? + 8 t16 44 15+ 11 144 713 412
1119048124+ 13184+1217+14 15 +16 548 t* +13 13416 12+ 14 t+4 |

(Tt+11)ay? + (112 + 3t + 3)zy? +t'6 + 315 4 1314 +¢13 +
3t12 416t +9t10 447 + 1247+t + T+t 43+ 284+ 1

(108 + 3417 + 7416 415 4+ 10414 + 10413 + 5412 + T + 15419 +
1089+ 88 +2¢7 + 1610 + 4t + 13 + 312 + 16t +2)x°y° + (1 +
1019 + 1447 + 108 + 247 + 445 + 13¢5+ 6¢* + 1043 + 10> +
4t+15)2y? + 5t + 1642 + 11 + 8410+ 8¢9 + 318 +3¢7 + 510 +
SO+ 3t 93+ T2+t + 15,

(12¢18 42417 + 7416 1 6415 + 8414 + 9123 1 16412 + 411 +- 848 +
87+ 105 + 13¢5 + 1244 + 1143 + 82 + 4t + 16)x°y°® + (¢! +
8t10 +2¢% + 8 + 447 + 245 + 8% + 4t + 133 + 1542 + 2t +
8)zy? + 163 + 61" 2 + ' + 11410 + 1647 + 413 + 247 4+ 1410 +
3P+ Tt + 1383 + 1312+ 8t + 16

where 7;(z,y, t) satisfies the condition of a divisor polynomial, s;(z,y,t) is in the
same form as X (z,y,t). Expanding F;(z,y,t), we obtain the following polyno-



mial:

Fo(z,y,t) =

Fl(ﬂfail/:t) =

17

(1419 + 18+ 9410 +10¢5 + 714+ 513 + 15412 + 641 + 16410 +
1589 +88+16t"+2t5+16 2+ 114+ 133+ 132 +2¢+1)2%y" +
(6129 +3t8 45417 +6¢16 4245+ 743416412 4+5¢11 +410+114°+
A8+ 117 +810+61°+ 914 + 1413 + 1312+ 12t +4) 28y + (434 +
413 41013241383 42830 L 114204328 15 27 + T2 413124
413 + 6421 + 420 + 18 + 15¢1 T+ 6410 +16¢'° + 1581 + 7813 +
14114124104 8494913+ 6"+ 610+ 1087+ 144 +2 3 +4 >+t +
NzPy® + (5t 7T+ 15416 +4 41549414 4 7413 4+ 14412+ 1141 + 3410+
267+ 1248 +3¢7 + 1615 + 1115 + 2t + 16 3 + 10¢> + 10)z*y* +
B+ 11834+ 7#2 41441 46 10+ 59+ 718 +4 10+ 245 +10 ¢4 +
93 +2¢2+12¢+2)23y? + (9t 3+ 72+ 5411 +9¢10+ 749498 +
1247481542855 134 4813+ 412+ 3t+14) 22y + (8 12T+ 1420 +
8125 +16t%44+16 122 +13 122+ 6121 + 131204+ 1017 +4 18 +101 7+
10416 + 13¢50 + 111 4+ 14413 + 14412 + 15¢1 + 4410 +11¢° +
1383 +5tT+410+104°+13¢* + 383 +242+16 t+13)zy* + 112 +
12828410 2T +420 + 14425+ 16 24+ 12 23+ 1422+ 14 21+ 11 20+
THO+ 158+ 6417 +16 16+ 15415 + 10414 + 442 + 712+ 16 41 +
1110489+ 28 +16¢"+t0+12¢° +3t*+13t3+12¢2+5t+10

(20421841 742410 4 2415 112414 45413 42412416t +6 110+
3tV 4T+ 1147+ 815 +2¢° + 314 + 63+ 1042+ 7t +13)28y" +
(16420 + 310 + 12417 +#16 + 15415 + 15414 + 613 + 312+ 3411 +
910 4 11#° + 1483 + T +1° + 4t + 15 + 52 + 10t + 10)2%y7 +
(B3 + 11433 8431 11430 4 11427 4+ 4428 4+ 5427 4426 44475 +
3P+ 913 45122 + T2 41670 + 4410 + 10418 + 7417 49416 4
155+ 1314+ 813+ 92+ 1041 + 10410+ 3% + 1447+ 1545 +
AP+t 283+ T2+ +2)2%y° + (57 + 15816 + 41549414 +
TR+ t2 10t + 3410 + 1449 + 63 + 515 +51° + 814 +161° +
3t24+10t+15)zyt + (411 + 15412 + 912 +16 11 + 810+ 1449 +
1088 + 1587 + 1345 + 1545 + 9t + 103 + 16> + 4t + 9)2®y> +
(8t + 812+ 6411 +3t10+10¢° +9t% +16¢7 + 13¢5 +15¢° +
A+ T 4+612+8t+6) 22y + (1027 + 426 49425+ 7124 + 3423 +
13122 416421 + 14120 4+ 19 4417 4 6416 4 11415 + 9414 2413 +
16249t +1640+1312+ 247 +210+141°+6t* + 153 +6 2 +
14t4+2)zy?> +52° + 12428 +6 27 + 1425 + 55+ 10824 + 12423 +
12248121+ 2420415419+ 318 + 517+ 1445 4 7 4513 42412+
9t + 70+ 1142 + 383 +10¢" + 75 + 144 + 43+ 842+ 6t +8 .
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A.3 Decryption
Substituting the section defined in (17) into F;(z,y,t) (i =0, 1), we obtain

ho(t) = Fo(ug (), 1, (1), 1)
= 1315448193 48102413161 4715041678 +10 177+ 1317646 1°° 43 174+
15893 4352 451 4 4450 4 2449 4 5448 1 12447 + 3440 4 Q¢4+ 4 1443 +
9t42 13t + 1440 +10¢3° + 838 + 1137 + 12436 4 9435 4 7433 &
14832 412831 4830 4428 L 92T 4 15420 4425 14424 4+ 823 + 5122 +
1432 +3320 479+ 64 3+ 7¢ 7+ 16t 6 4+9¢° +6 ¢ + 32+ 8¢ +
#0112+ 1488+ 1147+ 1545+ 1442 + 24 + 1043+ 102+ + 10

hy(t) = Fy (ug (), uy (1), 1)

= 1444603460248 ¢01 47100459 44458 LT L T30 L1115 410 54+
253 113192416 51 +14 0+ 154943 ¢4 4 3146 445 111 144 41043+
13442 4 841 + 6140 + 9130 4+ 4438 L 134%7 +16¢%6 + 13435 + 12434 +
133 132 1613+ 15130+ 15820+ 16428+ 14 127+ 2420 + 13425 + 16 124+
16123 4322 413120 44120 4 5419 4 1518 4 5417 4416 4415 11044 4
15834t 4841046 t° +13t3+15t54+1085+4 t*+834+11124+12¢4+2 .

Factor hy(t) — ha(t). We have

hi(t) —ho(t) = 16 (BB +3t2+13t4+3)(t* + 113 + 1512+ 14t +13)(t° + 818 +
1167 +38° +4t4+ 643+ 1417+ 12¢+13) (117 + 2416 + 14415 +
5t 4513 48112 4941 1141094347 4+ 13184107 4815 4
1585+ 7t + 1283 + 1082 + 3t +2)(t° + 13¢* + 43 + 242 +
4t +13) (10 + 441 L1114 + 413 44412 1341 410 4 24% +
4267 10 2t 1583 + 582 + 11t +6) (10 + 415 +3t4 +
108 + 1482 + 2t +5)(t* + 443 + 582 + 16t + 10) .

Then we find 4 candidates for f(u.(t),uy(t),t) as it should have degree 48. Fur-
thermore, by comparison of the degrees of m(u.(t), uy(t),t) and hi(¢) (mod f(t)),
we can single out the correct f(uy(t),uy(t),t) as

flua(t),uy(t),t) = (EB+324+13t+3)(#*+113+152+14 t+13) (P +13 t*+4 3+
282 +4t+13)(t5+4 15+ 3t + 1083 + 1482+ 21+ 5) (17 + 8¢5 +
11T +3854+4t 4643 +1412 +12¢+13) (1T + 2816 + 14415 +
5t 4513 4812+ 91 114194347 4+ 13184107 4815+
158°+ 7t 4+ 1243+ 1082 + 3t +2)(t* + 443 + 5> + 16t + 10)

and we obtain

m(ug(t),uy(t),t) = 5t + 10410 + 9438 + 9436 + 5435 + 1243 + 14433 + 931 +
6130 +120 2T L7206 110t + 3124 41023 + 132244421 4
10420 + 11419 + 6418 + 4417 + 5416 4 7415 + 1441 + 413 +
T2 411t 45809 4+2¢8° + 818+ 14"+ 13¢0 +12¢° + 16 t* +
1383 + 92 + 13t + 13 .
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Now recall that m(u.(t), uy(t),t) has the form

m(ug (t), uy (t), ) = (a7t +ma g 1680+ -+my g 1t4+ma 4,0)ue (8) 0y (1) +
mo,0.17t2T +mo 16t + -+ moo1t +mo0,0 -
(18)
By comparing two expressions of m(u,(t), u,(t),t) above, we create a system of
linear equations with variables m; ;; as follows:

(My,4,17 5
My,4,0 + M0,0,0 =13
16 my4 4,17 + M4 416 =10
mMo,0,1 +Ma41 +8Maap 13

Mmaa1s + 13maas + 14myaa12 + 2maag + 12maae +
16 M4 43+10m4 4,13+13 M4 4 5+3 My 4 0+3 M4 a1+Ma 417+
\ M44,14 +8mMy 416 +Mo0,17 =4 .

Solving this, we recover the plaintext polynomial

m(z,y,t) = (Gt + 15810 + 4415 4941 4 7413 42412 + 3411 4+ 8410 + 1149 +
65 +10t"+ 70 +#° + 1414 + 33 + 1242 + 11+ 2)2*y* + 6417 +
316 4 1145 4+ 413 4 10412 + 341 48410 4647 + 1315 + 247 +
216 +108° + 5 + 213 + 152 + 3t + 11 .



